Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: mbed_microECC Wallet_v1
Revision 0:b6fdeddc0bc9, committed 2017-09-07
- Comitter:
- allankliu
- Date:
- Thu Sep 07 12:10:11 2017 +0000
- Commit message:
- Init version, ported from GCC version of uECC of Github. Assembly optimization for thumb2 is disabled.
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/asm_arm.h Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,820 @@
+/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_ASM_ARM_H_
+#define _UECC_ASM_ARM_H_
+
+#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
+ #define uECC_MIN_WORDS 8
+#endif
+#if uECC_SUPPORTS_secp224r1
+ #undef uECC_MIN_WORDS
+ #define uECC_MIN_WORDS 7
+#endif
+#if uECC_SUPPORTS_secp192r1
+ #undef uECC_MIN_WORDS
+ #define uECC_MIN_WORDS 6
+#endif
+#if uECC_SUPPORTS_secp160r1
+ #undef uECC_MIN_WORDS
+ #define uECC_MIN_WORDS 5
+#endif
+
+#if (uECC_PLATFORM == uECC_arm_thumb)
+ #define REG_RW "+l"
+ #define REG_WRITE "=l"
+#else
+ #define REG_RW "+r"
+ #define REG_WRITE "=r"
+#endif
+
+#if (uECC_PLATFORM == uECC_arm_thumb || uECC_PLATFORM == uECC_arm_thumb2)
+ #define REG_RW_LO "+l"
+ #define REG_WRITE_LO "=l"
+#else
+ #define REG_RW_LO "+r"
+ #define REG_WRITE_LO "=r"
+#endif
+
+#if (uECC_PLATFORM == uECC_arm_thumb2)
+ #define RESUME_SYNTAX
+#else
+ #define RESUME_SYNTAX ".syntax divided \n\t"
+#endif
+
+#if (uECC_OPTIMIZATION_LEVEL >= 2)
+
+uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ #if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2)
+ uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1;
+ #else /* ARM */
+ uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4;
+ #endif
+#endif
+ uint32_t carry;
+ uint32_t left_word;
+ uint32_t right_word;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ "movs %[carry], #0 \n\t"
+ #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ "adr %[left], 1f \n\t"
+ ".align 4 \n\t"
+ "adds %[jump], %[left] \n\t"
+ #endif
+
+ "ldmia %[lptr]!, {%[left]} \n\t"
+ "ldmia %[rptr]!, {%[right]} \n\t"
+ "adds %[left], %[right] \n\t"
+ "stmia %[dptr]!, {%[left]} \n\t"
+
+ #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ "bx %[jump] \n\t"
+ #endif
+ "1: \n\t"
+ REPEAT(DEC(uECC_MAX_WORDS),
+ "ldmia %[lptr]!, {%[left]} \n\t"
+ "ldmia %[rptr]!, {%[right]} \n\t"
+ "adcs %[left], %[right] \n\t"
+ "stmia %[dptr]!, {%[left]} \n\t")
+
+ "adcs %[carry], %[carry] \n\t"
+ RESUME_SYNTAX
+ : [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right),
+ #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ [jump] REG_RW_LO (jump),
+ #endif
+ [carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word),
+ [right] REG_WRITE_LO (right_word)
+ :
+ : "cc", "memory"
+ );
+ return carry;
+}
+#define asm_add 1
+
+uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+#if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ #if (uECC_PLATFORM == uECC_arm_thumb) || (uECC_PLATFORM == uECC_arm_thumb2)
+ uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 2 + 1;
+ #else /* ARM */
+ uint32_t jump = (uECC_MAX_WORDS - num_words) * 4 * 4;
+ #endif
+#endif
+ uint32_t carry;
+ uint32_t left_word;
+ uint32_t right_word;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ "movs %[carry], #0 \n\t"
+ #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ "adr %[left], 1f \n\t"
+ ".align 4 \n\t"
+ "adds %[jump], %[left] \n\t"
+ #endif
+
+ "ldmia %[lptr]!, {%[left]} \n\t"
+ "ldmia %[rptr]!, {%[right]} \n\t"
+ "subs %[left], %[right] \n\t"
+ "stmia %[dptr]!, {%[left]} \n\t"
+
+ #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ "bx %[jump] \n\t"
+ #endif
+ "1: \n\t"
+ REPEAT(DEC(uECC_MAX_WORDS),
+ "ldmia %[lptr]!, {%[left]} \n\t"
+ "ldmia %[rptr]!, {%[right]} \n\t"
+ "sbcs %[left], %[right] \n\t"
+ "stmia %[dptr]!, {%[left]} \n\t")
+
+ "adcs %[carry], %[carry] \n\t"
+ RESUME_SYNTAX
+ : [dptr] REG_RW_LO (result), [lptr] REG_RW_LO (left), [rptr] REG_RW_LO (right),
+ #if (uECC_MAX_WORDS != uECC_MIN_WORDS)
+ [jump] REG_RW_LO (jump),
+ #endif
+ [carry] REG_WRITE_LO (carry), [left] REG_WRITE_LO (left_word),
+ [right] REG_WRITE_LO (right_word)
+ :
+ : "cc", "memory"
+ );
+ return !carry; /* Note that on ARM, carry flag set means "no borrow" when subtracting
+ (for some reason...) */
+}
+#define asm_sub 1
+
+#endif /* (uECC_OPTIMIZATION_LEVEL >= 2) */
+
+#if (uECC_OPTIMIZATION_LEVEL >= 3)
+
+#if (uECC_PLATFORM != uECC_arm_thumb)
+
+#if uECC_ARM_USE_UMAAL
+ #include "asm_arm_mult_square_umaal.inc"
+#else
+ #include "asm_arm_mult_square.inc"
+#endif
+
+#if (uECC_OPTIMIZATION_LEVEL == 3)
+
+uECC_VLI_API void uECC_vli_mult(uint32_t *result,
+ const uint32_t *left,
+ const uint32_t *right,
+ wordcount_t num_words) {
+ register uint32_t *r0 __asm__("r0") = result;
+ register const uint32_t *r1 __asm__("r1") = left;
+ register const uint32_t *r2 __asm__("r2") = right;
+ register uint32_t r3 __asm__("r3") = num_words;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+#if (uECC_MIN_WORDS == 5)
+ FAST_MULT_ASM_5
+ #if (uECC_MAX_WORDS > 5)
+ FAST_MULT_ASM_5_TO_6
+ #endif
+ #if (uECC_MAX_WORDS > 6)
+ FAST_MULT_ASM_6_TO_7
+ #endif
+ #if (uECC_MAX_WORDS > 7)
+ FAST_MULT_ASM_7_TO_8
+ #endif
+#elif (uECC_MIN_WORDS == 6)
+ FAST_MULT_ASM_6
+ #if (uECC_MAX_WORDS > 6)
+ FAST_MULT_ASM_6_TO_7
+ #endif
+ #if (uECC_MAX_WORDS > 7)
+ FAST_MULT_ASM_7_TO_8
+ #endif
+#elif (uECC_MIN_WORDS == 7)
+ FAST_MULT_ASM_7
+ #if (uECC_MAX_WORDS > 7)
+ FAST_MULT_ASM_7_TO_8
+ #endif
+#elif (uECC_MIN_WORDS == 8)
+ FAST_MULT_ASM_8
+#endif
+ "1: \n\t"
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1), "+r" (r2)
+ : "r" (r3)
+ : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+}
+#define asm_mult 1
+
+#if uECC_SQUARE_FUNC
+uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
+ const uECC_word_t *left,
+ wordcount_t num_words) {
+ register uint32_t *r0 __asm__("r0") = result;
+ register const uint32_t *r1 __asm__("r1") = left;
+ register uint32_t r2 __asm__("r2") = num_words;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+#if (uECC_MIN_WORDS == 5)
+ FAST_SQUARE_ASM_5
+ #if (uECC_MAX_WORDS > 5)
+ FAST_SQUARE_ASM_5_TO_6
+ #endif
+ #if (uECC_MAX_WORDS > 6)
+ FAST_SQUARE_ASM_6_TO_7
+ #endif
+ #if (uECC_MAX_WORDS > 7)
+ FAST_SQUARE_ASM_7_TO_8
+ #endif
+#elif (uECC_MIN_WORDS == 6)
+ FAST_SQUARE_ASM_6
+ #if (uECC_MAX_WORDS > 6)
+ FAST_SQUARE_ASM_6_TO_7
+ #endif
+ #if (uECC_MAX_WORDS > 7)
+ FAST_SQUARE_ASM_7_TO_8
+ #endif
+#elif (uECC_MIN_WORDS == 7)
+ FAST_SQUARE_ASM_7
+ #if (uECC_MAX_WORDS > 7)
+ FAST_SQUARE_ASM_7_TO_8
+ #endif
+#elif (uECC_MIN_WORDS == 8)
+ FAST_SQUARE_ASM_8
+#endif
+
+ "1: \n\t"
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1)
+ : "r" (r2)
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+}
+#define asm_square 1
+#endif /* uECC_SQUARE_FUNC */
+
+#else /* (uECC_OPTIMIZATION_LEVEL > 3) */
+
+uECC_VLI_API void uECC_vli_mult(uint32_t *result,
+ const uint32_t *left,
+ const uint32_t *right,
+ wordcount_t num_words) {
+ register uint32_t *r0 __asm__("r0") = result;
+ register const uint32_t *r1 __asm__("r1") = left;
+ register const uint32_t *r2 __asm__("r2") = right;
+ register uint32_t r3 __asm__("r3") = num_words;
+
+#if uECC_SUPPORTS_secp160r1
+ if (num_words == 5) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_MULT_ASM_5
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1), "+r" (r2)
+ : "r" (r3)
+ : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+#if uECC_SUPPORTS_secp192r1
+ if (num_words == 6) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_MULT_ASM_6
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1), "+r" (r2)
+ : "r" (r3)
+ : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+#if uECC_SUPPORTS_secp224r1
+ if (num_words == 7) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_MULT_ASM_7
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1), "+r" (r2)
+ : "r" (r3)
+ : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
+ if (num_words == 8) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_MULT_ASM_8
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1), "+r" (r2)
+ : "r" (r3)
+ : "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+}
+#define asm_mult 1
+
+#if uECC_SQUARE_FUNC
+uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
+ const uECC_word_t *left,
+ wordcount_t num_words) {
+ register uint32_t *r0 __asm__("r0") = result;
+ register const uint32_t *r1 __asm__("r1") = left;
+ register uint32_t r2 __asm__("r2") = num_words;
+
+#if uECC_SUPPORTS_secp160r1
+ if (num_words == 5) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_SQUARE_ASM_5
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1)
+ : "r" (r2)
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+#if uECC_SUPPORTS_secp192r1
+ if (num_words == 6) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_SQUARE_ASM_6
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1)
+ : "r" (r2)
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+#if uECC_SUPPORTS_secp224r1
+ if (num_words == 7) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_SQUARE_ASM_7
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1)
+ : "r" (r2)
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
+ if (num_words == 8) {
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ FAST_SQUARE_ASM_8
+ RESUME_SYNTAX
+ : "+r" (r0), "+r" (r1)
+ : "r" (r2)
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+ return;
+ }
+#endif
+}
+#define asm_square 1
+#endif /* uECC_SQUARE_FUNC */
+
+#endif /* (uECC_OPTIMIZATION_LEVEL > 3) */
+
+#endif /* uECC_PLATFORM != uECC_arm_thumb */
+
+#endif /* (uECC_OPTIMIZATION_LEVEL >= 3) */
+
+/* ---- "Small" implementations ---- */
+
+#if !asm_add
+uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uint32_t carry = 0;
+ uint32_t left_word;
+ uint32_t right_word;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ "1: \n\t"
+ "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
+ "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
+ "lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */
+ "adcs %[left], %[left], %[right] \n\t" /* Add with carry. */
+ "adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */
+ "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
+ "subs %[ctr], #1 \n\t" /* Decrement counter. */
+ "bne 1b \n\t" /* Loop until counter == 0. */
+ RESUME_SYNTAX
+ : [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right),
+ [ctr] REG_RW (num_words), [carry] REG_RW (carry),
+ [left] REG_WRITE (left_word), [right] REG_WRITE (right_word)
+ :
+ : "cc", "memory"
+ );
+ return carry;
+}
+#define asm_add 1
+#endif
+
+#if !asm_sub
+uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uint32_t carry = 1; /* carry = 1 initially (means don't borrow) */
+ uint32_t left_word;
+ uint32_t right_word;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ "1: \n\t"
+ "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
+ "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
+ "lsrs %[carry], #1 \n\t" /* Set up carry flag (carry = 0 after this). */
+ "sbcs %[left], %[left], %[right] \n\t" /* Subtract with borrow. */
+ "adcs %[carry], %[carry], %[carry] \n\t" /* Store carry bit. */
+ "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
+ "subs %[ctr], #1 \n\t" /* Decrement counter. */
+ "bne 1b \n\t" /* Loop until counter == 0. */
+ RESUME_SYNTAX
+ : [dptr] REG_RW (result), [lptr] REG_RW (left), [rptr] REG_RW (right),
+ [ctr] REG_RW (num_words), [carry] REG_RW (carry),
+ [left] REG_WRITE (left_word), [right] REG_WRITE (right_word)
+ :
+ : "cc", "memory"
+ );
+ return !carry;
+}
+#define asm_sub 1
+#endif
+
+#if !asm_mult
+uECC_VLI_API void uECC_vli_mult(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+#if (uECC_PLATFORM != uECC_arm_thumb)
+ uint32_t c0 = 0;
+ uint32_t c1 = 0;
+ uint32_t c2 = 0;
+ uint32_t k = 0;
+ uint32_t i;
+ uint32_t t0, t1;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+
+ "1: \n\t" /* outer loop (k < num_words) */
+ "movs %[i], #0 \n\t" /* i = 0 */
+ "b 3f \n\t"
+
+ "2: \n\t" /* outer loop (k >= num_words) */
+ "movs %[i], %[k] \n\t" /* i = k */
+ "subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */
+
+ "3: \n\t" /* inner loop */
+ "subs %[t0], %[k], %[i] \n\t" /* t0 = k-i */
+
+ "ldr %[t1], [%[right], %[t0]] \n\t" /* t1 = right[k - i] */
+ "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */
+
+ "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */
+
+ "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
+ "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
+ "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
+
+ "adds %[i], #4 \n\t" /* i += 4 */
+ "cmp %[i], %[last_word] \n\t" /* i > (num_words - 1) (times 4)? */
+ "bgt 4f \n\t" /* if so, exit the loop */
+ "cmp %[i], %[k] \n\t" /* i <= k? */
+ "ble 3b \n\t" /* if so, continue looping */
+
+ "4: \n\t" /* end inner loop */
+
+ "str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */
+ "mov %[c0], %[c1] \n\t" /* c0 = c1 */
+ "mov %[c1], %[c2] \n\t" /* c1 = c2 */
+ "movs %[c2], #0 \n\t" /* c2 = 0 */
+ "adds %[k], #4 \n\t" /* k += 4 */
+ "cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */
+ "ble 1b \n\t" /* if so, loop back, start with i = 0 */
+ "cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
+ "ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */
+ /* end outer loop */
+
+ "str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */
+ RESUME_SYNTAX
+ : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2),
+ [k] "+r" (k), [i] "=&r" (i), [t0] "=&r" (t0), [t1] "=&r" (t1)
+ : [result] "r" (result), [left] "r" (left), [right] "r" (right),
+ [last_word] "r" ((num_words - 1) * 4)
+ : "cc", "memory"
+ );
+
+#else /* Thumb-1 */
+ uint32_t r4, r5, r6, r7;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ "subs %[r3], #1 \n\t" /* r3 = num_words - 1 */
+ "lsls %[r3], #2 \n\t" /* r3 = (num_words - 1) * 4 */
+ "mov r8, %[r3] \n\t" /* r8 = (num_words - 1) * 4 */
+ "lsls %[r3], #1 \n\t" /* r3 = (num_words - 1) * 8 */
+ "mov r9, %[r3] \n\t" /* r9 = (num_words - 1) * 8 */
+ "movs %[r3], #0 \n\t" /* c0 = 0 */
+ "movs %[r4], #0 \n\t" /* c1 = 0 */
+ "movs %[r5], #0 \n\t" /* c2 = 0 */
+ "movs %[r6], #0 \n\t" /* k = 0 */
+
+ "push {%[r0]} \n\t" /* keep result on the stack */
+
+ "1: \n\t" /* outer loop (k < num_words) */
+ "movs %[r7], #0 \n\t" /* r7 = i = 0 */
+ "b 3f \n\t"
+
+ "2: \n\t" /* outer loop (k >= num_words) */
+ "movs %[r7], %[r6] \n\t" /* r7 = k */
+ "mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */
+ "subs %[r7], %[r0] \n\t" /* r7 = i = k - (num_words - 1) (times 4) */
+
+ "3: \n\t" /* inner loop */
+ "mov r10, %[r3] \n\t"
+ "mov r11, %[r4] \n\t"
+ "mov r12, %[r5] \n\t"
+ "mov r14, %[r6] \n\t"
+ "subs %[r0], %[r6], %[r7] \n\t" /* r0 = k - i */
+
+ "ldr %[r4], [%[r2], %[r0]] \n\t" /* r4 = right[k - i] */
+ "ldr %[r0], [%[r1], %[r7]] \n\t" /* r0 = left[i] */
+
+ "lsrs %[r3], %[r0], #16 \n\t" /* r3 = a1 */
+ "uxth %[r0], %[r0] \n\t" /* r0 = a0 */
+
+ "lsrs %[r5], %[r4], #16 \n\t" /* r5 = b1 */
+ "uxth %[r4], %[r4] \n\t" /* r4 = b0 */
+
+ "movs %[r6], %[r3] \n\t" /* r6 = a1 */
+ "muls %[r6], %[r5], %[r6] \n\t" /* r6 = a1 * b1 */
+ "muls %[r3], %[r4], %[r3] \n\t" /* r3 = b0 * a1 */
+ "muls %[r5], %[r0], %[r5] \n\t" /* r5 = a0 * b1 */
+ "muls %[r0], %[r4], %[r0] \n\t" /* r0 = a0 * b0 */
+
+ /* Add middle terms */
+ "lsls %[r4], %[r3], #16 \n\t"
+ "lsrs %[r3], %[r3], #16 \n\t"
+ "adds %[r0], %[r4] \n\t"
+ "adcs %[r6], %[r3] \n\t"
+
+ "lsls %[r4], %[r5], #16 \n\t"
+ "lsrs %[r5], %[r5], #16 \n\t"
+ "adds %[r0], %[r4] \n\t"
+ "adcs %[r6], %[r5] \n\t"
+
+ "mov %[r3], r10\n\t"
+ "mov %[r4], r11\n\t"
+ "mov %[r5], r12\n\t"
+ "adds %[r3], %[r0] \n\t" /* add low word to c0 */
+ "adcs %[r4], %[r6] \n\t" /* add high word to c1, including carry */
+ "movs %[r0], #0 \n\t" /* r0 = 0 (does not affect carry bit) */
+ "adcs %[r5], %[r0] \n\t" /* add carry to c2 */
+
+ "mov %[r6], r14\n\t" /* r6 = k */
+
+ "adds %[r7], #4 \n\t" /* i += 4 */
+ "cmp %[r7], r8 \n\t" /* i > (num_words - 1) (times 4)? */
+ "bgt 4f \n\t" /* if so, exit the loop */
+ "cmp %[r7], %[r6] \n\t" /* i <= k? */
+ "ble 3b \n\t" /* if so, continue looping */
+
+ "4: \n\t" /* end inner loop */
+
+ "ldr %[r0], [sp, #0] \n\t" /* r0 = result */
+
+ "str %[r3], [%[r0], %[r6]] \n\t" /* result[k] = c0 */
+ "mov %[r3], %[r4] \n\t" /* c0 = c1 */
+ "mov %[r4], %[r5] \n\t" /* c1 = c2 */
+ "movs %[r5], #0 \n\t" /* c2 = 0 */
+ "adds %[r6], #4 \n\t" /* k += 4 */
+ "cmp %[r6], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */
+ "ble 1b \n\t" /* if so, loop back, start with i = 0 */
+ "cmp %[r6], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
+ "ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */
+ /* end outer loop */
+
+ "str %[r3], [%[r0], %[r6]] \n\t" /* result[num_words * 2 - 1] = c0 */
+ "pop {%[r0]} \n\t" /* pop result off the stack */
+
+ ".syntax divided \n\t"
+ : [r3] "+l" (num_words), [r4] "=&l" (r4),
+ [r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7)
+ : [r0] "l" (result), [r1] "l" (left), [r2] "l" (right)
+ : "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+#endif
+}
+#define asm_mult 1
+#endif
+
+#if uECC_SQUARE_FUNC
+#if !asm_square
+uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
+ const uECC_word_t *left,
+ wordcount_t num_words) {
+#if (uECC_PLATFORM != uECC_arm_thumb)
+ uint32_t c0 = 0;
+ uint32_t c1 = 0;
+ uint32_t c2 = 0;
+ uint32_t k = 0;
+ uint32_t i, tt;
+ uint32_t t0, t1;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+
+ "1: \n\t" /* outer loop (k < num_words) */
+ "movs %[i], #0 \n\t" /* i = 0 */
+ "b 3f \n\t"
+
+ "2: \n\t" /* outer loop (k >= num_words) */
+ "movs %[i], %[k] \n\t" /* i = k */
+ "subs %[i], %[last_word] \n\t" /* i = k - (num_words - 1) (times 4) */
+
+ "3: \n\t" /* inner loop */
+ "subs %[tt], %[k], %[i] \n\t" /* tt = k-i */
+
+ "ldr %[t1], [%[left], %[tt]] \n\t" /* t1 = left[k - i] */
+ "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = left[i] */
+
+ "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = left[i] * right[k - i] */
+
+ "cmp %[i], %[tt] \n\t" /* (i < k - i) ? */
+ "bge 4f \n\t" /* if i >= k - i, skip */
+ "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
+ "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
+ "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
+
+ "4: \n\t"
+ "adds %[c0], %[c0], %[t0] \n\t" /* add low word to c0 */
+ "adcs %[c1], %[c1], %[t1] \n\t" /* add high word to c1, including carry */
+ "adcs %[c2], %[c2], #0 \n\t" /* add carry to c2 */
+
+ "adds %[i], #4 \n\t" /* i += 4 */
+ "cmp %[i], %[k] \n\t" /* i >= k? */
+ "bge 5f \n\t" /* if so, exit the loop */
+ "subs %[tt], %[k], %[i] \n\t" /* tt = k - i */
+ "cmp %[i], %[tt] \n\t" /* i <= k - i? */
+ "ble 3b \n\t" /* if so, continue looping */
+
+ "5: \n\t" /* end inner loop */
+
+ "str %[c0], [%[result], %[k]] \n\t" /* result[k] = c0 */
+ "mov %[c0], %[c1] \n\t" /* c0 = c1 */
+ "mov %[c1], %[c2] \n\t" /* c1 = c2 */
+ "movs %[c2], #0 \n\t" /* c2 = 0 */
+ "adds %[k], #4 \n\t" /* k += 4 */
+ "cmp %[k], %[last_word] \n\t" /* k <= (num_words - 1) (times 4) ? */
+ "ble 1b \n\t" /* if so, loop back, start with i = 0 */
+ "cmp %[k], %[last_word], lsl #1 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
+ "ble 2b \n\t" /* if so, loop back, start with i = (k + 1) - num_words */
+ /* end outer loop */
+
+ "str %[c0], [%[result], %[k]] \n\t" /* result[num_words * 2 - 1] = c0 */
+ RESUME_SYNTAX
+ : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2),
+ [k] "+r" (k), [i] "=&r" (i), [tt] "=&r" (tt), [t0] "=&r" (t0), [t1] "=&r" (t1)
+ : [result] "r" (result), [left] "r" (left), [last_word] "r" ((num_words - 1) * 4)
+ : "cc", "memory"
+ );
+
+#else
+ uint32_t r3, r4, r5, r6, r7;
+
+ __asm__ volatile (
+ ".syntax unified \n\t"
+ "subs %[r2], #1 \n\t" /* r2 = num_words - 1 */
+ "lsls %[r2], #2 \n\t" /* r2 = (num_words - 1) * 4 */
+ "mov r8, %[r2] \n\t" /* r8 = (num_words - 1) * 4 */
+ "lsls %[r2], #1 \n\t" /* r2 = (num_words - 1) * 8 */
+ "mov r9, %[r2] \n\t" /* r9 = (num_words - 1) * 8 */
+ "movs %[r2], #0 \n\t" /* c0 = 0 */
+ "movs %[r3], #0 \n\t" /* c1 = 0 */
+ "movs %[r4], #0 \n\t" /* c2 = 0 */
+ "movs %[r5], #0 \n\t" /* k = 0 */
+
+ "push {%[r0]} \n\t" /* keep result on the stack */
+
+ "1: \n\t" /* outer loop (k < num_words) */
+ "movs %[r6], #0 \n\t" /* r6 = i = 0 */
+ "b 3f \n\t"
+
+ "2: \n\t" /* outer loop (k >= num_words) */
+ "movs %[r6], %[r5] \n\t" /* r6 = k */
+ "mov %[r0], r8 \n\t" /* r0 = (num_words - 1) * 4 */
+ "subs %[r6], %[r0] \n\t" /* r6 = i = k - (num_words - 1) (times 4) */
+
+ "3: \n\t" /* inner loop */
+ "mov r10, %[r2] \n\t"
+ "mov r11, %[r3] \n\t"
+ "mov r12, %[r4] \n\t"
+ "mov r14, %[r5] \n\t"
+ "subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */
+
+ "ldr %[r3], [%[r1], %[r7]] \n\t" /* r3 = left[k - i] */
+ "ldr %[r0], [%[r1], %[r6]] \n\t" /* r0 = left[i] */
+
+ "lsrs %[r2], %[r0], #16 \n\t" /* r2 = a1 */
+ "uxth %[r0], %[r0] \n\t" /* r0 = a0 */
+
+ "lsrs %[r4], %[r3], #16 \n\t" /* r4 = b1 */
+ "uxth %[r3], %[r3] \n\t" /* r3 = b0 */
+
+ "movs %[r5], %[r2] \n\t" /* r5 = a1 */
+ "muls %[r5], %[r4], %[r5] \n\t" /* r5 = a1 * b1 */
+ "muls %[r2], %[r3], %[r2] \n\t" /* r2 = b0 * a1 */
+ "muls %[r4], %[r0], %[r4] \n\t" /* r4 = a0 * b1 */
+ "muls %[r0], %[r3], %[r0] \n\t" /* r0 = a0 * b0 */
+
+ /* Add middle terms */
+ "lsls %[r3], %[r2], #16 \n\t"
+ "lsrs %[r2], %[r2], #16 \n\t"
+ "adds %[r0], %[r3] \n\t"
+ "adcs %[r5], %[r2] \n\t"
+
+ "lsls %[r3], %[r4], #16 \n\t"
+ "lsrs %[r4], %[r4], #16 \n\t"
+ "adds %[r0], %[r3] \n\t"
+ "adcs %[r5], %[r4] \n\t"
+
+ /* Add to acc, doubling if necessary */
+ "mov %[r2], r10\n\t"
+ "mov %[r3], r11\n\t"
+ "mov %[r4], r12\n\t"
+
+ "cmp %[r6], %[r7] \n\t" /* (i < k - i) ? */
+ "bge 4f \n\t" /* if i >= k - i, skip */
+ "movs %[r7], #0 \n\t" /* r7 = 0 */
+ "adds %[r2], %[r0] \n\t" /* add low word to c0 */
+ "adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */
+ "adcs %[r4], %[r7] \n\t" /* add carry to c2 */
+ "4: \n\t"
+ "movs %[r7], #0 \n\t" /* r7 = 0 */
+ "adds %[r2], %[r0] \n\t" /* add low word to c0 */
+ "adcs %[r3], %[r5] \n\t" /* add high word to c1, including carry */
+ "adcs %[r4], %[r7] \n\t" /* add carry to c2 */
+
+ "mov %[r5], r14\n\t" /* r5 = k */
+
+ "adds %[r6], #4 \n\t" /* i += 4 */
+ "cmp %[r6], %[r5] \n\t" /* i >= k? */
+ "bge 5f \n\t" /* if so, exit the loop */
+ "subs %[r7], %[r5], %[r6] \n\t" /* r7 = k - i */
+ "cmp %[r6], %[r7] \n\t" /* i <= k - i? */
+ "ble 3b \n\t" /* if so, continue looping */
+
+ "5: \n\t" /* end inner loop */
+
+ "ldr %[r0], [sp, #0] \n\t" /* r0 = result */
+
+ "str %[r2], [%[r0], %[r5]] \n\t" /* result[k] = c0 */
+ "mov %[r2], %[r3] \n\t" /* c0 = c1 */
+ "mov %[r3], %[r4] \n\t" /* c1 = c2 */
+ "movs %[r4], #0 \n\t" /* c2 = 0 */
+ "adds %[r5], #4 \n\t" /* k += 4 */
+ "cmp %[r5], r8 \n\t" /* k <= (num_words - 1) (times 4) ? */
+ "ble 1b \n\t" /* if so, loop back, start with i = 0 */
+ "cmp %[r5], r9 \n\t" /* k <= (num_words * 2 - 2) (times 4) ? */
+ "ble 2b \n\t" /* if so, loop back, with i = (k + 1) - num_words */
+ /* end outer loop */
+
+ "str %[r2], [%[r0], %[r5]] \n\t" /* result[num_words * 2 - 1] = c0 */
+ "pop {%[r0]} \n\t" /* pop result off the stack */
+
+ ".syntax divided \n\t"
+ : [r2] "+l" (num_words), [r3] "=&l" (r3), [r4] "=&l" (r4),
+ [r5] "=&l" (r5), [r6] "=&l" (r6), [r7] "=&l" (r7)
+ : [r0] "l" (result), [r1] "l" (left)
+ : "r8", "r9", "r10", "r11", "r12", "r14", "cc", "memory"
+ );
+#endif
+}
+#define asm_square 1
+#endif
+#endif /* uECC_SQUARE_FUNC */
+
+#endif /* _UECC_ASM_ARM_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/curve-specific.h Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,1248 @@
+/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_CURVE_SPECIFIC_H_
+#define _UECC_CURVE_SPECIFIC_H_
+
+#define num_bytes_secp160r1 20
+#define num_bytes_secp192r1 24
+#define num_bytes_secp224r1 28
+#define num_bytes_secp256r1 32
+#define num_bytes_secp256k1 32
+
+#if (uECC_WORD_SIZE == 1)
+
+#define num_words_secp160r1 20
+#define num_words_secp192r1 24
+#define num_words_secp224r1 28
+#define num_words_secp256r1 32
+#define num_words_secp256k1 32
+
+#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) \
+ 0x##a, 0x##b, 0x##c, 0x##d, 0x##e, 0x##f, 0x##g, 0x##h
+#define BYTES_TO_WORDS_4(a, b, c, d) 0x##a, 0x##b, 0x##c, 0x##d
+
+#elif (uECC_WORD_SIZE == 4)
+
+#define num_words_secp160r1 5
+#define num_words_secp192r1 6
+#define num_words_secp224r1 7
+#define num_words_secp256r1 8
+#define num_words_secp256k1 8
+
+#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
+#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
+
+#elif (uECC_WORD_SIZE == 8)
+
+#define num_words_secp160r1 3
+#define num_words_secp192r1 3
+#define num_words_secp224r1 4
+#define num_words_secp256r1 4
+#define num_words_secp256k1 4
+
+#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##h##g##f##e##d##c##b##a##ull
+#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a##ull
+
+#endif /* uECC_WORD_SIZE */
+
+#if uECC_SUPPORTS_secp160r1 || uECC_SUPPORTS_secp192r1 || \
+ uECC_SUPPORTS_secp224r1 || uECC_SUPPORTS_secp256r1
+static void double_jacobian_default(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * Z1,
+ uECC_Curve curve) {
+ /* t1 = X, t2 = Y, t3 = Z */
+ uECC_word_t t4[uECC_MAX_WORDS];
+ uECC_word_t t5[uECC_MAX_WORDS];
+ wordcount_t num_words = curve->num_words;
+
+ if (uECC_vli_isZero(Z1, num_words)) {
+ return;
+ }
+
+ uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
+ uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
+ uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
+ uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
+ uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
+
+ uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
+ uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
+ uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
+ uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
+
+ uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
+ uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
+ if (uECC_vli_testBit(X1, 0)) {
+ uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
+ uECC_vli_rshift1(X1, num_words);
+ X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
+ } else {
+ uECC_vli_rshift1(X1, num_words);
+ }
+ /* t1 = 3/2*(x1^2 - z1^4) = B */
+
+ uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
+ uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
+ uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
+ uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
+ uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
+ uECC_vli_modSub(t4, X1, t4, curve->p, num_words); /* t4 = B * (A - x3) - y1^4 = y3 */
+
+ uECC_vli_set(X1, Z1, num_words);
+ uECC_vli_set(Z1, Y1, num_words);
+ uECC_vli_set(Y1, t4, num_words);
+}
+
+/* Computes result = x^3 + ax + b. result must not overlap x. */
+static void x_side_default(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve) {
+ uECC_word_t _3[uECC_MAX_WORDS] = {3}; /* -a = 3 */
+ wordcount_t num_words = curve->num_words;
+
+ uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
+ uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
+ uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
+ uECC_vli_modAdd(result, result, curve->b, curve->p, num_words); /* r = x^3 - 3x + b */
+}
+#endif /* uECC_SUPPORTS_secp... */
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+#if uECC_SUPPORTS_secp160r1 || uECC_SUPPORTS_secp192r1 || \
+ uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1
+/* Compute a = sqrt(a) (mod curve_p). */
+static void mod_sqrt_default(uECC_word_t *a, uECC_Curve curve) {
+ bitcount_t i;
+ uECC_word_t p1[uECC_MAX_WORDS] = {1};
+ uECC_word_t l_result[uECC_MAX_WORDS] = {1};
+ wordcount_t num_words = curve->num_words;
+
+ /* When curve->p == 3 (mod 4), we can compute
+ sqrt(a) = a^((curve->p + 1) / 4) (mod curve->p). */
+ uECC_vli_add(p1, curve->p, p1, num_words); /* p1 = curve_p + 1 */
+ for (i = uECC_vli_numBits(p1, num_words) - 1; i > 1; --i) {
+ uECC_vli_modSquare_fast(l_result, l_result, curve);
+ if (uECC_vli_testBit(p1, i)) {
+ uECC_vli_modMult_fast(l_result, l_result, a, curve);
+ }
+ }
+ uECC_vli_set(a, l_result, num_words);
+}
+#endif /* uECC_SUPPORTS_secp... */
+#endif /* uECC_SUPPORT_COMPRESSED_POINT */
+
+#if uECC_SUPPORTS_secp160r1
+
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+static void vli_mmod_fast_secp160r1(uECC_word_t *result, uECC_word_t *product);
+#endif
+
+static const struct uECC_Curve_t curve_secp160r1 = {
+ num_words_secp160r1,
+ num_bytes_secp160r1,
+ 161, /* num_n_bits */
+ { BYTES_TO_WORDS_8(FF, FF, FF, 7F, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_4(FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(57, 22, 75, CA, D3, AE, 27, F9),
+ BYTES_TO_WORDS_8(C8, F4, 01, 00, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, 01, 00, 00, 00) },
+ { BYTES_TO_WORDS_8(82, FC, CB, 13, B9, 8B, C3, 68),
+ BYTES_TO_WORDS_8(89, 69, 64, 46, 28, 73, F5, 8E),
+ BYTES_TO_WORDS_4(68, B5, 96, 4A),
+
+ BYTES_TO_WORDS_8(32, FB, C5, 7A, 37, 51, 23, 04),
+ BYTES_TO_WORDS_8(12, C9, DC, 59, 7D, 94, 68, 31),
+ BYTES_TO_WORDS_4(55, 28, A6, 23) },
+ { BYTES_TO_WORDS_8(45, FA, 65, C5, AD, D4, D4, 81),
+ BYTES_TO_WORDS_8(9F, F8, AC, 65, 8B, 7A, BD, 54),
+ BYTES_TO_WORDS_4(FC, BE, 97, 1C) },
+ &double_jacobian_default,
+#if uECC_SUPPORT_COMPRESSED_POINT
+ &mod_sqrt_default,
+#endif
+ &x_side_default,
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ &vli_mmod_fast_secp160r1
+#endif
+};
+
+uECC_Curve uECC_secp160r1(void) { return &curve_secp160r1; }
+
+#if (uECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp160r1)
+/* Computes result = product % curve_p
+ see http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf page 354
+
+ Note that this only works if log2(omega) < log2(p) / 2 */
+static void omega_mult_secp160r1(uECC_word_t *result, const uECC_word_t *right);
+#if uECC_WORD_SIZE == 8
+static void vli_mmod_fast_secp160r1(uECC_word_t *result, uECC_word_t *product) {
+ uECC_word_t tmp[2 * num_words_secp160r1];
+ uECC_word_t copy;
+
+ uECC_vli_clear(tmp, num_words_secp160r1);
+ uECC_vli_clear(tmp + num_words_secp160r1, num_words_secp160r1);
+
+ omega_mult_secp160r1(tmp, product + num_words_secp160r1 - 1); /* (Rq, q) = q * c */
+
+ product[num_words_secp160r1 - 1] &= 0xffffffff;
+ copy = tmp[num_words_secp160r1 - 1];
+ tmp[num_words_secp160r1 - 1] &= 0xffffffff;
+ uECC_vli_add(result, product, tmp, num_words_secp160r1); /* (C, r) = r + q */
+ uECC_vli_clear(product, num_words_secp160r1);
+ tmp[num_words_secp160r1 - 1] = copy;
+ omega_mult_secp160r1(product, tmp + num_words_secp160r1 - 1); /* Rq*c */
+ uECC_vli_add(result, result, product, num_words_secp160r1); /* (C1, r) = r + Rq*c */
+
+ while (uECC_vli_cmp_unsafe(result, curve_secp160r1.p, num_words_secp160r1) > 0) {
+ uECC_vli_sub(result, result, curve_secp160r1.p, num_words_secp160r1);
+ }
+}
+
+static void omega_mult_secp160r1(uint64_t *result, const uint64_t *right) {
+ uint32_t carry;
+ unsigned i;
+
+ /* Multiply by (2^31 + 1). */
+ carry = 0;
+ for (i = 0; i < num_words_secp160r1; ++i) {
+ uint64_t tmp = (right[i] >> 32) | (right[i + 1] << 32);
+ result[i] = (tmp << 31) + tmp + carry;
+ carry = (tmp >> 33) + (result[i] < tmp || (carry && result[i] == tmp));
+ }
+ result[i] = carry;
+}
+#else
+static void vli_mmod_fast_secp160r1(uECC_word_t *result, uECC_word_t *product) {
+ uECC_word_t tmp[2 * num_words_secp160r1];
+ uECC_word_t carry;
+
+ uECC_vli_clear(tmp, num_words_secp160r1);
+ uECC_vli_clear(tmp + num_words_secp160r1, num_words_secp160r1);
+
+ omega_mult_secp160r1(tmp, product + num_words_secp160r1); /* (Rq, q) = q * c */
+
+ carry = uECC_vli_add(result, product, tmp, num_words_secp160r1); /* (C, r) = r + q */
+ uECC_vli_clear(product, num_words_secp160r1);
+ omega_mult_secp160r1(product, tmp + num_words_secp160r1); /* Rq*c */
+ carry += uECC_vli_add(result, result, product, num_words_secp160r1); /* (C1, r) = r + Rq*c */
+
+ while (carry > 0) {
+ --carry;
+ uECC_vli_sub(result, result, curve_secp160r1.p, num_words_secp160r1);
+ }
+ if (uECC_vli_cmp_unsafe(result, curve_secp160r1.p, num_words_secp160r1) > 0) {
+ uECC_vli_sub(result, result, curve_secp160r1.p, num_words_secp160r1);
+ }
+}
+#endif
+
+#if uECC_WORD_SIZE == 1
+static void omega_mult_secp160r1(uint8_t *result, const uint8_t *right) {
+ uint8_t carry;
+ uint8_t i;
+
+ /* Multiply by (2^31 + 1). */
+ uECC_vli_set(result + 4, right, num_words_secp160r1); /* 2^32 */
+ uECC_vli_rshift1(result + 4, num_words_secp160r1); /* 2^31 */
+ result[3] = right[0] << 7; /* get last bit from shift */
+
+ carry = uECC_vli_add(result, result, right, num_words_secp160r1); /* 2^31 + 1 */
+ for (i = num_words_secp160r1; carry; ++i) {
+ uint16_t sum = (uint16_t)result[i] + carry;
+ result[i] = (uint8_t)sum;
+ carry = sum >> 8;
+ }
+}
+#elif uECC_WORD_SIZE == 4
+static void omega_mult_secp160r1(uint32_t *result, const uint32_t *right) {
+ uint32_t carry;
+ unsigned i;
+
+ /* Multiply by (2^31 + 1). */
+ uECC_vli_set(result + 1, right, num_words_secp160r1); /* 2^32 */
+ uECC_vli_rshift1(result + 1, num_words_secp160r1); /* 2^31 */
+ result[0] = right[0] << 31; /* get last bit from shift */
+
+ carry = uECC_vli_add(result, result, right, num_words_secp160r1); /* 2^31 + 1 */
+ for (i = num_words_secp160r1; carry; ++i) {
+ uint64_t sum = (uint64_t)result[i] + carry;
+ result[i] = (uint32_t)sum;
+ carry = sum >> 32;
+ }
+}
+#endif /* uECC_WORD_SIZE */
+#endif /* (uECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp160r1) */
+
+#endif /* uECC_SUPPORTS_secp160r1 */
+
+#if uECC_SUPPORTS_secp192r1
+
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+static void vli_mmod_fast_secp192r1(uECC_word_t *result, uECC_word_t *product);
+#endif
+
+static const struct uECC_Curve_t curve_secp192r1 = {
+ num_words_secp192r1,
+ num_bytes_secp192r1,
+ 192, /* num_n_bits */
+ { BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FE, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(31, 28, D2, B4, B1, C9, 6B, 14),
+ BYTES_TO_WORDS_8(36, F8, DE, 99, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(12, 10, FF, 82, FD, 0A, FF, F4),
+ BYTES_TO_WORDS_8(00, 88, A1, 43, EB, 20, BF, 7C),
+ BYTES_TO_WORDS_8(F6, 90, 30, B0, 0E, A8, 8D, 18),
+
+ BYTES_TO_WORDS_8(11, 48, 79, 1E, A1, 77, F9, 73),
+ BYTES_TO_WORDS_8(D5, CD, 24, 6B, ED, 11, 10, 63),
+ BYTES_TO_WORDS_8(78, DA, C8, FF, 95, 2B, 19, 07) },
+ { BYTES_TO_WORDS_8(B1, B9, 46, C1, EC, DE, B8, FE),
+ BYTES_TO_WORDS_8(49, 30, 24, 72, AB, E9, A7, 0F),
+ BYTES_TO_WORDS_8(E7, 80, 9C, E5, 19, 05, 21, 64) },
+ &double_jacobian_default,
+#if uECC_SUPPORT_COMPRESSED_POINT
+ &mod_sqrt_default,
+#endif
+ &x_side_default,
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ &vli_mmod_fast_secp192r1
+#endif
+};
+
+uECC_Curve uECC_secp192r1(void) { return &curve_secp192r1; }
+
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+/* Computes result = product % curve_p.
+ See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */
+#if uECC_WORD_SIZE == 1
+static void vli_mmod_fast_secp192r1(uint8_t *result, uint8_t *product) {
+ uint8_t tmp[num_words_secp192r1];
+ uint8_t carry;
+
+ uECC_vli_set(result, product, num_words_secp192r1);
+
+ uECC_vli_set(tmp, &product[24], num_words_secp192r1);
+ carry = uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ tmp[0] = tmp[1] = tmp[2] = tmp[3] = tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
+ tmp[8] = product[24]; tmp[9] = product[25]; tmp[10] = product[26]; tmp[11] = product[27];
+ tmp[12] = product[28]; tmp[13] = product[29]; tmp[14] = product[30]; tmp[15] = product[31];
+ tmp[16] = product[32]; tmp[17] = product[33]; tmp[18] = product[34]; tmp[19] = product[35];
+ tmp[20] = product[36]; tmp[21] = product[37]; tmp[22] = product[38]; tmp[23] = product[39];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ tmp[0] = tmp[8] = product[40];
+ tmp[1] = tmp[9] = product[41];
+ tmp[2] = tmp[10] = product[42];
+ tmp[3] = tmp[11] = product[43];
+ tmp[4] = tmp[12] = product[44];
+ tmp[5] = tmp[13] = product[45];
+ tmp[6] = tmp[14] = product[46];
+ tmp[7] = tmp[15] = product[47];
+ tmp[16] = tmp[17] = tmp[18] = tmp[19] = tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
+ carry += uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ while (carry || uECC_vli_cmp_unsafe(curve_secp192r1.p, result, num_words_secp192r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp192r1.p, num_words_secp192r1);
+ }
+}
+#elif uECC_WORD_SIZE == 4
+static void vli_mmod_fast_secp192r1(uint32_t *result, uint32_t *product) {
+ uint32_t tmp[num_words_secp192r1];
+ int carry;
+
+ uECC_vli_set(result, product, num_words_secp192r1);
+
+ uECC_vli_set(tmp, &product[6], num_words_secp192r1);
+ carry = uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ tmp[0] = tmp[1] = 0;
+ tmp[2] = product[6];
+ tmp[3] = product[7];
+ tmp[4] = product[8];
+ tmp[5] = product[9];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ tmp[0] = tmp[2] = product[10];
+ tmp[1] = tmp[3] = product[11];
+ tmp[4] = tmp[5] = 0;
+ carry += uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ while (carry || uECC_vli_cmp_unsafe(curve_secp192r1.p, result, num_words_secp192r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp192r1.p, num_words_secp192r1);
+ }
+}
+#else
+static void vli_mmod_fast_secp192r1(uint64_t *result, uint64_t *product) {
+ uint64_t tmp[num_words_secp192r1];
+ int carry;
+
+ uECC_vli_set(result, product, num_words_secp192r1);
+
+ uECC_vli_set(tmp, &product[3], num_words_secp192r1);
+ carry = (int)uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ tmp[0] = 0;
+ tmp[1] = product[3];
+ tmp[2] = product[4];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ tmp[0] = tmp[1] = product[5];
+ tmp[2] = 0;
+ carry += uECC_vli_add(result, result, tmp, num_words_secp192r1);
+
+ while (carry || uECC_vli_cmp_unsafe(curve_secp192r1.p, result, num_words_secp192r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp192r1.p, num_words_secp192r1);
+ }
+}
+#endif /* uECC_WORD_SIZE */
+#endif /* (uECC_OPTIMIZATION_LEVEL > 0) */
+
+#endif /* uECC_SUPPORTS_secp192r1 */
+
+#if uECC_SUPPORTS_secp224r1
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+static void mod_sqrt_secp224r1(uECC_word_t *a, uECC_Curve curve);
+#endif
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+static void vli_mmod_fast_secp224r1(uECC_word_t *result, uECC_word_t *product);
+#endif
+
+static const struct uECC_Curve_t curve_secp224r1 = {
+ num_words_secp224r1,
+ num_bytes_secp224r1,
+ 224, /* num_n_bits */
+ { BYTES_TO_WORDS_8(01, 00, 00, 00, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_4(FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(3D, 2A, 5C, 5C, 45, 29, DD, 13),
+ BYTES_TO_WORDS_8(3E, F0, B8, E0, A2, 16, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_4(FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(21, 1D, 5C, 11, D6, 80, 32, 34),
+ BYTES_TO_WORDS_8(22, 11, C2, 56, D3, C1, 03, 4A),
+ BYTES_TO_WORDS_8(B9, 90, 13, 32, 7F, BF, B4, 6B),
+ BYTES_TO_WORDS_4(BD, 0C, 0E, B7),
+
+ BYTES_TO_WORDS_8(34, 7E, 00, 85, 99, 81, D5, 44),
+ BYTES_TO_WORDS_8(64, 47, 07, 5A, A0, 75, 43, CD),
+ BYTES_TO_WORDS_8(E6, DF, 22, 4C, FB, 23, F7, B5),
+ BYTES_TO_WORDS_4(88, 63, 37, BD) },
+ { BYTES_TO_WORDS_8(B4, FF, 55, 23, 43, 39, 0B, 27),
+ BYTES_TO_WORDS_8(BA, D8, BF, D7, B7, B0, 44, 50),
+ BYTES_TO_WORDS_8(56, 32, 41, F5, AB, B3, 04, 0C),
+ BYTES_TO_WORDS_4(85, 0A, 05, B4) },
+ &double_jacobian_default,
+#if uECC_SUPPORT_COMPRESSED_POINT
+ &mod_sqrt_secp224r1,
+#endif
+ &x_side_default,
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ &vli_mmod_fast_secp224r1
+#endif
+};
+
+uECC_Curve uECC_secp224r1(void) { return &curve_secp224r1; }
+
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+/* Routine 3.2.4 RS; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+static void mod_sqrt_secp224r1_rs(uECC_word_t *d1,
+ uECC_word_t *e1,
+ uECC_word_t *f1,
+ const uECC_word_t *d0,
+ const uECC_word_t *e0,
+ const uECC_word_t *f0) {
+ uECC_word_t t[num_words_secp224r1];
+
+ uECC_vli_modSquare_fast(t, d0, &curve_secp224r1); /* t <-- d0 ^ 2 */
+ uECC_vli_modMult_fast(e1, d0, e0, &curve_secp224r1); /* e1 <-- d0 * e0 */
+ uECC_vli_modAdd(d1, t, f0, curve_secp224r1.p, num_words_secp224r1); /* d1 <-- t + f0 */
+ uECC_vli_modAdd(e1, e1, e1, curve_secp224r1.p, num_words_secp224r1); /* e1 <-- e1 + e1 */
+ uECC_vli_modMult_fast(f1, t, f0, &curve_secp224r1); /* f1 <-- t * f0 */
+ uECC_vli_modAdd(f1, f1, f1, curve_secp224r1.p, num_words_secp224r1); /* f1 <-- f1 + f1 */
+ uECC_vli_modAdd(f1, f1, f1, curve_secp224r1.p, num_words_secp224r1); /* f1 <-- f1 + f1 */
+}
+
+/* Routine 3.2.5 RSS; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+static void mod_sqrt_secp224r1_rss(uECC_word_t *d1,
+ uECC_word_t *e1,
+ uECC_word_t *f1,
+ const uECC_word_t *d0,
+ const uECC_word_t *e0,
+ const uECC_word_t *f0,
+ const bitcount_t j) {
+ bitcount_t i;
+
+ uECC_vli_set(d1, d0, num_words_secp224r1); /* d1 <-- d0 */
+ uECC_vli_set(e1, e0, num_words_secp224r1); /* e1 <-- e0 */
+ uECC_vli_set(f1, f0, num_words_secp224r1); /* f1 <-- f0 */
+ for (i = 1; i <= j; i++) {
+ mod_sqrt_secp224r1_rs(d1, e1, f1, d1, e1, f1); /* RS (d1,e1,f1,d1,e1,f1) */
+ }
+}
+
+/* Routine 3.2.6 RM; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+static void mod_sqrt_secp224r1_rm(uECC_word_t *d2,
+ uECC_word_t *e2,
+ uECC_word_t *f2,
+ const uECC_word_t *c,
+ const uECC_word_t *d0,
+ const uECC_word_t *e0,
+ const uECC_word_t *d1,
+ const uECC_word_t *e1) {
+ uECC_word_t t1[num_words_secp224r1];
+ uECC_word_t t2[num_words_secp224r1];
+
+ uECC_vli_modMult_fast(t1, e0, e1, &curve_secp224r1); /* t1 <-- e0 * e1 */
+ uECC_vli_modMult_fast(t1, t1, c, &curve_secp224r1); /* t1 <-- t1 * c */
+ /* t1 <-- p - t1 */
+ uECC_vli_modSub(t1, curve_secp224r1.p, t1, curve_secp224r1.p, num_words_secp224r1);
+ uECC_vli_modMult_fast(t2, d0, d1, &curve_secp224r1); /* t2 <-- d0 * d1 */
+ uECC_vli_modAdd(t2, t2, t1, curve_secp224r1.p, num_words_secp224r1); /* t2 <-- t2 + t1 */
+ uECC_vli_modMult_fast(t1, d0, e1, &curve_secp224r1); /* t1 <-- d0 * e1 */
+ uECC_vli_modMult_fast(e2, d1, e0, &curve_secp224r1); /* e2 <-- d1 * e0 */
+ uECC_vli_modAdd(e2, e2, t1, curve_secp224r1.p, num_words_secp224r1); /* e2 <-- e2 + t1 */
+ uECC_vli_modSquare_fast(f2, e2, &curve_secp224r1); /* f2 <-- e2^2 */
+ uECC_vli_modMult_fast(f2, f2, c, &curve_secp224r1); /* f2 <-- f2 * c */
+ /* f2 <-- p - f2 */
+ uECC_vli_modSub(f2, curve_secp224r1.p, f2, curve_secp224r1.p, num_words_secp224r1);
+ uECC_vli_set(d2, t2, num_words_secp224r1); /* d2 <-- t2 */
+}
+
+/* Routine 3.2.7 RP; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+static void mod_sqrt_secp224r1_rp(uECC_word_t *d1,
+ uECC_word_t *e1,
+ uECC_word_t *f1,
+ const uECC_word_t *c,
+ const uECC_word_t *r) {
+ wordcount_t i;
+ wordcount_t pow2i = 1;
+ uECC_word_t d0[num_words_secp224r1];
+ uECC_word_t e0[num_words_secp224r1] = {1}; /* e0 <-- 1 */
+ uECC_word_t f0[num_words_secp224r1];
+
+ uECC_vli_set(d0, r, num_words_secp224r1); /* d0 <-- r */
+ /* f0 <-- p - c */
+ uECC_vli_modSub(f0, curve_secp224r1.p, c, curve_secp224r1.p, num_words_secp224r1);
+ for (i = 0; i <= 6; i++) {
+ mod_sqrt_secp224r1_rss(d1, e1, f1, d0, e0, f0, pow2i); /* RSS (d1,e1,f1,d0,e0,f0,2^i) */
+ mod_sqrt_secp224r1_rm(d1, e1, f1, c, d1, e1, d0, e0); /* RM (d1,e1,f1,c,d1,e1,d0,e0) */
+ uECC_vli_set(d0, d1, num_words_secp224r1); /* d0 <-- d1 */
+ uECC_vli_set(e0, e1, num_words_secp224r1); /* e0 <-- e1 */
+ uECC_vli_set(f0, f1, num_words_secp224r1); /* f0 <-- f1 */
+ pow2i *= 2;
+ }
+}
+
+/* Compute a = sqrt(a) (mod curve_p). */
+/* Routine 3.2.8 mp_mod_sqrt_224; from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+static void mod_sqrt_secp224r1(uECC_word_t *a, uECC_Curve curve) {
+ bitcount_t i;
+ uECC_word_t e1[num_words_secp224r1];
+ uECC_word_t f1[num_words_secp224r1];
+ uECC_word_t d0[num_words_secp224r1];
+ uECC_word_t e0[num_words_secp224r1];
+ uECC_word_t f0[num_words_secp224r1];
+ uECC_word_t d1[num_words_secp224r1];
+
+ /* s = a; using constant instead of random value */
+ mod_sqrt_secp224r1_rp(d0, e0, f0, a, a); /* RP (d0, e0, f0, c, s) */
+ mod_sqrt_secp224r1_rs(d1, e1, f1, d0, e0, f0); /* RS (d1, e1, f1, d0, e0, f0) */
+ for (i = 1; i <= 95; i++) {
+ uECC_vli_set(d0, d1, num_words_secp224r1); /* d0 <-- d1 */
+ uECC_vli_set(e0, e1, num_words_secp224r1); /* e0 <-- e1 */
+ uECC_vli_set(f0, f1, num_words_secp224r1); /* f0 <-- f1 */
+ mod_sqrt_secp224r1_rs(d1, e1, f1, d0, e0, f0); /* RS (d1, e1, f1, d0, e0, f0) */
+ if (uECC_vli_isZero(d1, num_words_secp224r1)) { /* if d1 == 0 */
+ break;
+ }
+ }
+ uECC_vli_modInv(f1, e0, curve_secp224r1.p, num_words_secp224r1); /* f1 <-- 1 / e0 */
+ uECC_vli_modMult_fast(a, d0, f1, &curve_secp224r1); /* a <-- d0 / e0 */
+}
+#endif /* uECC_SUPPORT_COMPRESSED_POINT */
+
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+/* Computes result = product % curve_p
+ from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+#if uECC_WORD_SIZE == 1
+static void vli_mmod_fast_secp224r1(uint8_t *result, uint8_t *product) {
+ uint8_t tmp[num_words_secp224r1];
+ int8_t carry;
+
+ /* t */
+ uECC_vli_set(result, product, num_words_secp224r1);
+
+ /* s1 */
+ tmp[0] = tmp[1] = tmp[2] = tmp[3] = 0;
+ tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
+ tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
+ tmp[12] = product[28]; tmp[13] = product[29]; tmp[14] = product[30]; tmp[15] = product[31];
+ tmp[16] = product[32]; tmp[17] = product[33]; tmp[18] = product[34]; tmp[19] = product[35];
+ tmp[20] = product[36]; tmp[21] = product[37]; tmp[22] = product[38]; tmp[23] = product[39];
+ tmp[24] = product[40]; tmp[25] = product[41]; tmp[26] = product[42]; tmp[27] = product[43];
+ carry = uECC_vli_add(result, result, tmp, num_words_secp224r1);
+
+ /* s2 */
+ tmp[12] = product[44]; tmp[13] = product[45]; tmp[14] = product[46]; tmp[15] = product[47];
+ tmp[16] = product[48]; tmp[17] = product[49]; tmp[18] = product[50]; tmp[19] = product[51];
+ tmp[20] = product[52]; tmp[21] = product[53]; tmp[22] = product[54]; tmp[23] = product[55];
+ tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
+ carry += uECC_vli_add(result, result, tmp, num_words_secp224r1);
+
+ /* d1 */
+ tmp[0] = product[28]; tmp[1] = product[29]; tmp[2] = product[30]; tmp[3] = product[31];
+ tmp[4] = product[32]; tmp[5] = product[33]; tmp[6] = product[34]; tmp[7] = product[35];
+ tmp[8] = product[36]; tmp[9] = product[37]; tmp[10] = product[38]; tmp[11] = product[39];
+ tmp[12] = product[40]; tmp[13] = product[41]; tmp[14] = product[42]; tmp[15] = product[43];
+ tmp[16] = product[44]; tmp[17] = product[45]; tmp[18] = product[46]; tmp[19] = product[47];
+ tmp[20] = product[48]; tmp[21] = product[49]; tmp[22] = product[50]; tmp[23] = product[51];
+ tmp[24] = product[52]; tmp[25] = product[53]; tmp[26] = product[54]; tmp[27] = product[55];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp224r1);
+
+ /* d2 */
+ tmp[0] = product[44]; tmp[1] = product[45]; tmp[2] = product[46]; tmp[3] = product[47];
+ tmp[4] = product[48]; tmp[5] = product[49]; tmp[6] = product[50]; tmp[7] = product[51];
+ tmp[8] = product[52]; tmp[9] = product[53]; tmp[10] = product[54]; tmp[11] = product[55];
+ tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
+ tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
+ tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
+ tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp224r1);
+
+ if (carry < 0) {
+ do {
+ carry += uECC_vli_add(result, result, curve_secp224r1.p, num_words_secp224r1);
+ } while (carry < 0);
+ } else {
+ while (carry || uECC_vli_cmp_unsafe(curve_secp224r1.p, result, num_words_secp224r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp224r1.p, num_words_secp224r1);
+ }
+ }
+}
+#elif uECC_WORD_SIZE == 4
+static void vli_mmod_fast_secp224r1(uint32_t *result, uint32_t *product)
+{
+ uint32_t tmp[num_words_secp224r1];
+ int carry;
+
+ /* t */
+ uECC_vli_set(result, product, num_words_secp224r1);
+
+ /* s1 */
+ tmp[0] = tmp[1] = tmp[2] = 0;
+ tmp[3] = product[7];
+ tmp[4] = product[8];
+ tmp[5] = product[9];
+ tmp[6] = product[10];
+ carry = uECC_vli_add(result, result, tmp, num_words_secp224r1);
+
+ /* s2 */
+ tmp[3] = product[11];
+ tmp[4] = product[12];
+ tmp[5] = product[13];
+ tmp[6] = 0;
+ carry += uECC_vli_add(result, result, tmp, num_words_secp224r1);
+
+ /* d1 */
+ tmp[0] = product[7];
+ tmp[1] = product[8];
+ tmp[2] = product[9];
+ tmp[3] = product[10];
+ tmp[4] = product[11];
+ tmp[5] = product[12];
+ tmp[6] = product[13];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp224r1);
+
+ /* d2 */
+ tmp[0] = product[11];
+ tmp[1] = product[12];
+ tmp[2] = product[13];
+ tmp[3] = tmp[4] = tmp[5] = tmp[6] = 0;
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp224r1);
+
+ if (carry < 0) {
+ do {
+ carry += uECC_vli_add(result, result, curve_secp224r1.p, num_words_secp224r1);
+ } while (carry < 0);
+ } else {
+ while (carry || uECC_vli_cmp_unsafe(curve_secp224r1.p, result, num_words_secp224r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp224r1.p, num_words_secp224r1);
+ }
+ }
+}
+#else
+static void vli_mmod_fast_secp224r1(uint64_t *result, uint64_t *product)
+{
+ uint64_t tmp[num_words_secp224r1];
+ int carry = 0;
+
+ /* t */
+ uECC_vli_set(result, product, num_words_secp224r1);
+ result[num_words_secp224r1 - 1] &= 0xffffffff;
+
+ /* s1 */
+ tmp[0] = 0;
+ tmp[1] = product[3] & 0xffffffff00000000ull;
+ tmp[2] = product[4];
+ tmp[3] = product[5] & 0xffffffff;
+ uECC_vli_add(result, result, tmp, num_words_secp224r1);
+
+ /* s2 */
+ tmp[1] = product[5] & 0xffffffff00000000ull;
+ tmp[2] = product[6];
+ tmp[3] = 0;
+ uECC_vli_add(result, result, tmp, num_words_secp224r1);
+
+ /* d1 */
+ tmp[0] = (product[3] >> 32) | (product[4] << 32);
+ tmp[1] = (product[4] >> 32) | (product[5] << 32);
+ tmp[2] = (product[5] >> 32) | (product[6] << 32);
+ tmp[3] = product[6] >> 32;
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp224r1);
+
+ /* d2 */
+ tmp[0] = (product[5] >> 32) | (product[6] << 32);
+ tmp[1] = product[6] >> 32;
+ tmp[2] = tmp[3] = 0;
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp224r1);
+
+ if (carry < 0) {
+ do {
+ carry += uECC_vli_add(result, result, curve_secp224r1.p, num_words_secp224r1);
+ } while (carry < 0);
+ } else {
+ while (uECC_vli_cmp_unsafe(curve_secp224r1.p, result, num_words_secp224r1) != 1) {
+ uECC_vli_sub(result, result, curve_secp224r1.p, num_words_secp224r1);
+ }
+ }
+}
+#endif /* uECC_WORD_SIZE */
+#endif /* (uECC_OPTIMIZATION_LEVEL > 0) */
+
+#endif /* uECC_SUPPORTS_secp224r1 */
+
+#if uECC_SUPPORTS_secp256r1
+
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+static void vli_mmod_fast_secp256r1(uECC_word_t *result, uECC_word_t *product);
+#endif
+
+static const struct uECC_Curve_t curve_secp256r1 = {
+ num_words_secp256r1,
+ num_bytes_secp256r1,
+ 256, /* num_n_bits */
+ { BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
+ BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
+ BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
+ BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
+ BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
+
+ BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
+ BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
+ BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
+ BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F) },
+ { BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
+ BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
+ BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
+ BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A) },
+ &double_jacobian_default,
+#if uECC_SUPPORT_COMPRESSED_POINT
+ &mod_sqrt_default,
+#endif
+ &x_side_default,
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ &vli_mmod_fast_secp256r1
+#endif
+};
+
+uECC_Curve uECC_secp256r1(void) { return &curve_secp256r1; }
+
+
+#if (uECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp256r1)
+/* Computes result = product % curve_p
+ from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+#if uECC_WORD_SIZE == 1
+static void vli_mmod_fast_secp256r1(uint8_t *result, uint8_t *product) {
+ uint8_t tmp[num_words_secp256r1];
+ int8_t carry;
+
+ /* t */
+ uECC_vli_set(result, product, num_words_secp256r1);
+
+ /* s1 */
+ tmp[0] = tmp[1] = tmp[2] = tmp[3] = 0;
+ tmp[4] = tmp[5] = tmp[6] = tmp[7] = 0;
+ tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
+ tmp[12] = product[44]; tmp[13] = product[45]; tmp[14] = product[46]; tmp[15] = product[47];
+ tmp[16] = product[48]; tmp[17] = product[49]; tmp[18] = product[50]; tmp[19] = product[51];
+ tmp[20] = product[52]; tmp[21] = product[53]; tmp[22] = product[54]; tmp[23] = product[55];
+ tmp[24] = product[56]; tmp[25] = product[57]; tmp[26] = product[58]; tmp[27] = product[59];
+ tmp[28] = product[60]; tmp[29] = product[61]; tmp[30] = product[62]; tmp[31] = product[63];
+ carry = uECC_vli_add(tmp, tmp, tmp, num_words_secp256r1);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s2 */
+ tmp[12] = product[48]; tmp[13] = product[49]; tmp[14] = product[50]; tmp[15] = product[51];
+ tmp[16] = product[52]; tmp[17] = product[53]; tmp[18] = product[54]; tmp[19] = product[55];
+ tmp[20] = product[56]; tmp[21] = product[57]; tmp[22] = product[58]; tmp[23] = product[59];
+ tmp[24] = product[60]; tmp[25] = product[61]; tmp[26] = product[62]; tmp[27] = product[63];
+ tmp[28] = tmp[29] = tmp[30] = tmp[31] = 0;
+ carry += uECC_vli_add(tmp, tmp, tmp, num_words_secp256r1);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s3 */
+ tmp[0] = product[32]; tmp[1] = product[33]; tmp[2] = product[34]; tmp[3] = product[35];
+ tmp[4] = product[36]; tmp[5] = product[37]; tmp[6] = product[38]; tmp[7] = product[39];
+ tmp[8] = product[40]; tmp[9] = product[41]; tmp[10] = product[42]; tmp[11] = product[43];
+ tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
+ tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
+ tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
+ tmp[24] = product[56]; tmp[25] = product[57]; tmp[26] = product[58]; tmp[27] = product[59];
+ tmp[28] = product[60]; tmp[29] = product[61]; tmp[30] = product[62]; tmp[31] = product[63];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s4 */
+ tmp[0] = product[36]; tmp[1] = product[37]; tmp[2] = product[38]; tmp[3] = product[39];
+ tmp[4] = product[40]; tmp[5] = product[41]; tmp[6] = product[42]; tmp[7] = product[43];
+ tmp[8] = product[44]; tmp[9] = product[45]; tmp[10] = product[46]; tmp[11] = product[47];
+ tmp[12] = product[52]; tmp[13] = product[53]; tmp[14] = product[54]; tmp[15] = product[55];
+ tmp[16] = product[56]; tmp[17] = product[57]; tmp[18] = product[58]; tmp[19] = product[59];
+ tmp[20] = product[60]; tmp[21] = product[61]; tmp[22] = product[62]; tmp[23] = product[63];
+ tmp[24] = product[52]; tmp[25] = product[53]; tmp[26] = product[54]; tmp[27] = product[55];
+ tmp[28] = product[32]; tmp[29] = product[33]; tmp[30] = product[34]; tmp[31] = product[35];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* d1 */
+ tmp[0] = product[44]; tmp[1] = product[45]; tmp[2] = product[46]; tmp[3] = product[47];
+ tmp[4] = product[48]; tmp[5] = product[49]; tmp[6] = product[50]; tmp[7] = product[51];
+ tmp[8] = product[52]; tmp[9] = product[53]; tmp[10] = product[54]; tmp[11] = product[55];
+ tmp[12] = tmp[13] = tmp[14] = tmp[15] = 0;
+ tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
+ tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
+ tmp[24] = product[32]; tmp[25] = product[33]; tmp[26] = product[34]; tmp[27] = product[35];
+ tmp[28] = product[40]; tmp[29] = product[41]; tmp[30] = product[42]; tmp[31] = product[43];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d2 */
+ tmp[0] = product[48]; tmp[1] = product[49]; tmp[2] = product[50]; tmp[3] = product[51];
+ tmp[4] = product[52]; tmp[5] = product[53]; tmp[6] = product[54]; tmp[7] = product[55];
+ tmp[8] = product[56]; tmp[9] = product[57]; tmp[10] = product[58]; tmp[11] = product[59];
+ tmp[12] = product[60]; tmp[13] = product[61]; tmp[14] = product[62]; tmp[15] = product[63];
+ tmp[16] = tmp[17] = tmp[18] = tmp[19] = 0;
+ tmp[20] = tmp[21] = tmp[22] = tmp[23] = 0;
+ tmp[24] = product[36]; tmp[25] = product[37]; tmp[26] = product[38]; tmp[27] = product[39];
+ tmp[28] = product[44]; tmp[29] = product[45]; tmp[30] = product[46]; tmp[31] = product[47];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d3 */
+ tmp[0] = product[52]; tmp[1] = product[53]; tmp[2] = product[54]; tmp[3] = product[55];
+ tmp[4] = product[56]; tmp[5] = product[57]; tmp[6] = product[58]; tmp[7] = product[59];
+ tmp[8] = product[60]; tmp[9] = product[61]; tmp[10] = product[62]; tmp[11] = product[63];
+ tmp[12] = product[32]; tmp[13] = product[33]; tmp[14] = product[34]; tmp[15] = product[35];
+ tmp[16] = product[36]; tmp[17] = product[37]; tmp[18] = product[38]; tmp[19] = product[39];
+ tmp[20] = product[40]; tmp[21] = product[41]; tmp[22] = product[42]; tmp[23] = product[43];
+ tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
+ tmp[28] = product[48]; tmp[29] = product[49]; tmp[30] = product[50]; tmp[31] = product[51];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d4 */
+ tmp[0] = product[56]; tmp[1] = product[57]; tmp[2] = product[58]; tmp[3] = product[59];
+ tmp[4] = product[60]; tmp[5] = product[61]; tmp[6] = product[62]; tmp[7] = product[63];
+ tmp[8] = tmp[9] = tmp[10] = tmp[11] = 0;
+ tmp[12] = product[36]; tmp[13] = product[37]; tmp[14] = product[38]; tmp[15] = product[39];
+ tmp[16] = product[40]; tmp[17] = product[41]; tmp[18] = product[42]; tmp[19] = product[43];
+ tmp[20] = product[44]; tmp[21] = product[45]; tmp[22] = product[46]; tmp[23] = product[47];
+ tmp[24] = tmp[25] = tmp[26] = tmp[27] = 0;
+ tmp[28] = product[52]; tmp[29] = product[53]; tmp[30] = product[54]; tmp[31] = product[55];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ if (carry < 0) {
+ do {
+ carry += uECC_vli_add(result, result, curve_secp256r1.p, num_words_secp256r1);
+ } while (carry < 0);
+ } else {
+ while (carry || uECC_vli_cmp_unsafe(curve_secp256r1.p, result, num_words_secp256r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp256r1.p, num_words_secp256r1);
+ }
+ }
+}
+#elif uECC_WORD_SIZE == 4
+static void vli_mmod_fast_secp256r1(uint32_t *result, uint32_t *product) {
+ uint32_t tmp[num_words_secp256r1];
+ int carry;
+
+ /* t */
+ uECC_vli_set(result, product, num_words_secp256r1);
+
+ /* s1 */
+ tmp[0] = tmp[1] = tmp[2] = 0;
+ tmp[3] = product[11];
+ tmp[4] = product[12];
+ tmp[5] = product[13];
+ tmp[6] = product[14];
+ tmp[7] = product[15];
+ carry = uECC_vli_add(tmp, tmp, tmp, num_words_secp256r1);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s2 */
+ tmp[3] = product[12];
+ tmp[4] = product[13];
+ tmp[5] = product[14];
+ tmp[6] = product[15];
+ tmp[7] = 0;
+ carry += uECC_vli_add(tmp, tmp, tmp, num_words_secp256r1);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s3 */
+ tmp[0] = product[8];
+ tmp[1] = product[9];
+ tmp[2] = product[10];
+ tmp[3] = tmp[4] = tmp[5] = 0;
+ tmp[6] = product[14];
+ tmp[7] = product[15];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s4 */
+ tmp[0] = product[9];
+ tmp[1] = product[10];
+ tmp[2] = product[11];
+ tmp[3] = product[13];
+ tmp[4] = product[14];
+ tmp[5] = product[15];
+ tmp[6] = product[13];
+ tmp[7] = product[8];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* d1 */
+ tmp[0] = product[11];
+ tmp[1] = product[12];
+ tmp[2] = product[13];
+ tmp[3] = tmp[4] = tmp[5] = 0;
+ tmp[6] = product[8];
+ tmp[7] = product[10];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d2 */
+ tmp[0] = product[12];
+ tmp[1] = product[13];
+ tmp[2] = product[14];
+ tmp[3] = product[15];
+ tmp[4] = tmp[5] = 0;
+ tmp[6] = product[9];
+ tmp[7] = product[11];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d3 */
+ tmp[0] = product[13];
+ tmp[1] = product[14];
+ tmp[2] = product[15];
+ tmp[3] = product[8];
+ tmp[4] = product[9];
+ tmp[5] = product[10];
+ tmp[6] = 0;
+ tmp[7] = product[12];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d4 */
+ tmp[0] = product[14];
+ tmp[1] = product[15];
+ tmp[2] = 0;
+ tmp[3] = product[9];
+ tmp[4] = product[10];
+ tmp[5] = product[11];
+ tmp[6] = 0;
+ tmp[7] = product[13];
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ if (carry < 0) {
+ do {
+ carry += uECC_vli_add(result, result, curve_secp256r1.p, num_words_secp256r1);
+ } while (carry < 0);
+ } else {
+ while (carry || uECC_vli_cmp_unsafe(curve_secp256r1.p, result, num_words_secp256r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp256r1.p, num_words_secp256r1);
+ }
+ }
+}
+#else
+static void vli_mmod_fast_secp256r1(uint64_t *result, uint64_t *product) {
+ uint64_t tmp[num_words_secp256r1];
+ int carry;
+
+ /* t */
+ uECC_vli_set(result, product, num_words_secp256r1);
+
+ /* s1 */
+ tmp[0] = 0;
+ tmp[1] = product[5] & 0xffffffff00000000ull;
+ tmp[2] = product[6];
+ tmp[3] = product[7];
+ carry = (int)uECC_vli_add(tmp, tmp, tmp, num_words_secp256r1);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s2 */
+ tmp[1] = product[6] << 32;
+ tmp[2] = (product[6] >> 32) | (product[7] << 32);
+ tmp[3] = product[7] >> 32;
+ carry += uECC_vli_add(tmp, tmp, tmp, num_words_secp256r1);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s3 */
+ tmp[0] = product[4];
+ tmp[1] = product[5] & 0xffffffff;
+ tmp[2] = 0;
+ tmp[3] = product[7];
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* s4 */
+ tmp[0] = (product[4] >> 32) | (product[5] << 32);
+ tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
+ tmp[2] = product[7];
+ tmp[3] = (product[6] >> 32) | (product[4] << 32);
+ carry += uECC_vli_add(result, result, tmp, num_words_secp256r1);
+
+ /* d1 */
+ tmp[0] = (product[5] >> 32) | (product[6] << 32);
+ tmp[1] = (product[6] >> 32);
+ tmp[2] = 0;
+ tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d2 */
+ tmp[0] = product[6];
+ tmp[1] = product[7];
+ tmp[2] = 0;
+ tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d3 */
+ tmp[0] = (product[6] >> 32) | (product[7] << 32);
+ tmp[1] = (product[7] >> 32) | (product[4] << 32);
+ tmp[2] = (product[4] >> 32) | (product[5] << 32);
+ tmp[3] = (product[6] << 32);
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ /* d4 */
+ tmp[0] = product[7];
+ tmp[1] = product[4] & 0xffffffff00000000ull;
+ tmp[2] = product[5];
+ tmp[3] = product[6] & 0xffffffff00000000ull;
+ carry -= uECC_vli_sub(result, result, tmp, num_words_secp256r1);
+
+ if (carry < 0) {
+ do {
+ carry += uECC_vli_add(result, result, curve_secp256r1.p, num_words_secp256r1);
+ } while (carry < 0);
+ } else {
+ while (carry || uECC_vli_cmp_unsafe(curve_secp256r1.p, result, num_words_secp256r1) != 1) {
+ carry -= uECC_vli_sub(result, result, curve_secp256r1.p, num_words_secp256r1);
+ }
+ }
+}
+#endif /* uECC_WORD_SIZE */
+#endif /* (uECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp256r1) */
+
+#endif /* uECC_SUPPORTS_secp256r1 */
+
+#if uECC_SUPPORTS_secp256k1
+
+static void double_jacobian_secp256k1(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * Z1,
+ uECC_Curve curve);
+static void x_side_secp256k1(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+static void vli_mmod_fast_secp256k1(uECC_word_t *result, uECC_word_t *product);
+#endif
+
+static const struct uECC_Curve_t curve_secp256k1 = {
+ num_words_secp256k1,
+ num_bytes_secp256k1,
+ 256, /* num_n_bits */
+ { BYTES_TO_WORDS_8(2F, FC, FF, FF, FE, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(41, 41, 36, D0, 8C, 5E, D2, BF),
+ BYTES_TO_WORDS_8(3B, A0, 48, AF, E6, DC, AE, BA),
+ BYTES_TO_WORDS_8(FE, FF, FF, FF, FF, FF, FF, FF),
+ BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF) },
+ { BYTES_TO_WORDS_8(98, 17, F8, 16, 5B, 81, F2, 59),
+ BYTES_TO_WORDS_8(D9, 28, CE, 2D, DB, FC, 9B, 02),
+ BYTES_TO_WORDS_8(07, 0B, 87, CE, 95, 62, A0, 55),
+ BYTES_TO_WORDS_8(AC, BB, DC, F9, 7E, 66, BE, 79),
+
+ BYTES_TO_WORDS_8(B8, D4, 10, FB, 8F, D0, 47, 9C),
+ BYTES_TO_WORDS_8(19, 54, 85, A6, 48, B4, 17, FD),
+ BYTES_TO_WORDS_8(A8, 08, 11, 0E, FC, FB, A4, 5D),
+ BYTES_TO_WORDS_8(65, C4, A3, 26, 77, DA, 3A, 48) },
+ { BYTES_TO_WORDS_8(07, 00, 00, 00, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
+ BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00) },
+ &double_jacobian_secp256k1,
+#if uECC_SUPPORT_COMPRESSED_POINT
+ &mod_sqrt_default,
+#endif
+ &x_side_secp256k1,
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ &vli_mmod_fast_secp256k1
+#endif
+};
+
+uECC_Curve uECC_secp256k1(void) { return &curve_secp256k1; }
+
+
+/* Double in place */
+static void double_jacobian_secp256k1(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * Z1,
+ uECC_Curve curve) {
+ /* t1 = X, t2 = Y, t3 = Z */
+ uECC_word_t t4[num_words_secp256k1];
+ uECC_word_t t5[num_words_secp256k1];
+
+ if (uECC_vli_isZero(Z1, num_words_secp256k1)) {
+ return;
+ }
+
+ uECC_vli_modSquare_fast(t5, Y1, curve); /* t5 = y1^2 */
+ uECC_vli_modMult_fast(t4, X1, t5, curve); /* t4 = x1*y1^2 = A */
+ uECC_vli_modSquare_fast(X1, X1, curve); /* t1 = x1^2 */
+ uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = y1^4 */
+ uECC_vli_modMult_fast(Z1, Y1, Z1, curve); /* t3 = y1*z1 = z3 */
+
+ uECC_vli_modAdd(Y1, X1, X1, curve->p, num_words_secp256k1); /* t2 = 2*x1^2 */
+ uECC_vli_modAdd(Y1, Y1, X1, curve->p, num_words_secp256k1); /* t2 = 3*x1^2 */
+ if (uECC_vli_testBit(Y1, 0)) {
+ uECC_word_t carry = uECC_vli_add(Y1, Y1, curve->p, num_words_secp256k1);
+ uECC_vli_rshift1(Y1, num_words_secp256k1);
+ Y1[num_words_secp256k1 - 1] |= carry << (uECC_WORD_BITS - 1);
+ } else {
+ uECC_vli_rshift1(Y1, num_words_secp256k1);
+ }
+ /* t2 = 3/2*(x1^2) = B */
+
+ uECC_vli_modSquare_fast(X1, Y1, curve); /* t1 = B^2 */
+ uECC_vli_modSub(X1, X1, t4, curve->p, num_words_secp256k1); /* t1 = B^2 - A */
+ uECC_vli_modSub(X1, X1, t4, curve->p, num_words_secp256k1); /* t1 = B^2 - 2A = x3 */
+
+ uECC_vli_modSub(t4, t4, X1, curve->p, num_words_secp256k1); /* t4 = A - x3 */
+ uECC_vli_modMult_fast(Y1, Y1, t4, curve); /* t2 = B * (A - x3) */
+ uECC_vli_modSub(Y1, Y1, t5, curve->p, num_words_secp256k1); /* t2 = B * (A - x3) - y1^4 = y3 */
+}
+
+/* Computes result = x^3 + b. result must not overlap x. */
+static void x_side_secp256k1(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve) {
+ uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
+ uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 */
+ uECC_vli_modAdd(result, result, curve->b, curve->p, num_words_secp256k1); /* r = x^3 + b */
+}
+
+#if (uECC_OPTIMIZATION_LEVEL > 0 && !asm_mmod_fast_secp256k1)
+static void omega_mult_secp256k1(uECC_word_t *result, const uECC_word_t *right);
+static void vli_mmod_fast_secp256k1(uECC_word_t *result, uECC_word_t *product) {
+ uECC_word_t tmp[2 * num_words_secp256k1];
+ uECC_word_t carry;
+
+ uECC_vli_clear(tmp, num_words_secp256k1);
+ uECC_vli_clear(tmp + num_words_secp256k1, num_words_secp256k1);
+
+ omega_mult_secp256k1(tmp, product + num_words_secp256k1); /* (Rq, q) = q * c */
+
+ carry = uECC_vli_add(result, product, tmp, num_words_secp256k1); /* (C, r) = r + q */
+ uECC_vli_clear(product, num_words_secp256k1);
+ omega_mult_secp256k1(product, tmp + num_words_secp256k1); /* Rq*c */
+ carry += uECC_vli_add(result, result, product, num_words_secp256k1); /* (C1, r) = r + Rq*c */
+
+ while (carry > 0) {
+ --carry;
+ uECC_vli_sub(result, result, curve_secp256k1.p, num_words_secp256k1);
+ }
+ if (uECC_vli_cmp_unsafe(result, curve_secp256k1.p, num_words_secp256k1) > 0) {
+ uECC_vli_sub(result, result, curve_secp256k1.p, num_words_secp256k1);
+ }
+}
+
+#if uECC_WORD_SIZE == 1
+static void omega_mult_secp256k1(uint8_t * result, const uint8_t * right) {
+ /* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
+ uECC_word_t r0 = 0;
+ uECC_word_t r1 = 0;
+ uECC_word_t r2 = 0;
+ wordcount_t k;
+
+ /* Multiply by (2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
+ muladd(0xD1, right[0], &r0, &r1, &r2);
+ result[0] = r0;
+ r0 = r1;
+ r1 = r2;
+ /* r2 is still 0 */
+
+ for (k = 1; k < num_words_secp256k1; ++k) {
+ muladd(0x03, right[k - 1], &r0, &r1, &r2);
+ muladd(0xD1, right[k], &r0, &r1, &r2);
+ result[k] = r0;
+ r0 = r1;
+ r1 = r2;
+ r2 = 0;
+ }
+ muladd(0x03, right[num_words_secp256k1 - 1], &r0, &r1, &r2);
+ result[num_words_secp256k1] = r0;
+ result[num_words_secp256k1 + 1] = r1;
+ /* add the 2^32 multiple */
+ result[4 + num_words_secp256k1] =
+ uECC_vli_add(result + 4, result + 4, right, num_words_secp256k1);
+}
+#elif uECC_WORD_SIZE == 4
+static void omega_mult_secp256k1(uint32_t * result, const uint32_t * right) {
+ /* Multiply by (2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
+ uint32_t carry = 0;
+ wordcount_t k;
+
+ for (k = 0; k < num_words_secp256k1; ++k) {
+ uint64_t p = (uint64_t)0x3D1 * right[k] + carry;
+ result[k] = (uint32_t) p;
+ carry = p >> 32;
+ }
+ result[num_words_secp256k1] = carry;
+ /* add the 2^32 multiple */
+ result[1 + num_words_secp256k1] =
+ uECC_vli_add(result + 1, result + 1, right, num_words_secp256k1);
+}
+#else
+static void omega_mult_secp256k1(uint64_t * result, const uint64_t * right) {
+ uECC_word_t r0 = 0;
+ uECC_word_t r1 = 0;
+ uECC_word_t r2 = 0;
+ wordcount_t k;
+
+ /* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */
+ for (k = 0; k < num_words_secp256k1; ++k) {
+ muladd(0x1000003D1ull, right[k], &r0, &r1, &r2);
+ result[k] = r0;
+ r0 = r1;
+ r1 = r2;
+ r2 = 0;
+ }
+ result[num_words_secp256k1] = r0;
+}
+#endif /* uECC_WORD_SIZE */
+#endif /* (uECC_OPTIMIZATION_LEVEL > 0 && && !asm_mmod_fast_secp256k1) */
+
+#endif /* uECC_SUPPORTS_secp256k1 */
+
+#endif /* _UECC_CURVE_SPECIFIC_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/platform-specific.h Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,71 @@
+/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_PLATFORM_SPECIFIC_H_
+#define _UECC_PLATFORM_SPECIFIC_H_
+
+#include "types.h"
+
+#if (defined(_WIN32) || defined(_WIN64))
+/* Windows */
+
+// use pragma syntax to prevent tweaking the linker script for getting CryptXYZ function
+#pragma comment(lib, "crypt32.lib")
+#pragma comment(lib, "advapi32.lib")
+
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <wincrypt.h>
+
+static int default_RNG(uint8_t *dest, unsigned size) {
+ HCRYPTPROV prov;
+ if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
+ return 0;
+ }
+
+ CryptGenRandom(prov, size, (BYTE *)dest);
+ CryptReleaseContext(prov, 0);
+ return 1;
+}
+#define default_RNG_defined 1
+
+#elif defined(unix) || defined(__linux__) || defined(__unix__) || defined(__unix) || \
+ (defined(__APPLE__) && defined(__MACH__)) || defined(uECC_POSIX)
+
+/* Some POSIX-like system with /dev/urandom or /dev/random. */
+#include <sys/types.h>
+#include <fcntl.h>
+#include <unistd.h>
+
+#ifndef O_CLOEXEC
+ #define O_CLOEXEC 0
+#endif
+
+static int default_RNG(uint8_t *dest, unsigned size) {
+ int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
+ if (fd == -1) {
+ fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
+ if (fd == -1) {
+ return 0;
+ }
+ }
+
+ char *ptr = (char *)dest;
+ size_t left = size;
+ while (left > 0) {
+ ssize_t bytes_read = read(fd, ptr, left);
+ if (bytes_read <= 0) { // read failed
+ close(fd);
+ return 0;
+ }
+ left -= bytes_read;
+ ptr += bytes_read;
+ }
+
+ close(fd);
+ return 1;
+}
+#define default_RNG_defined 1
+
+#endif /* platform */
+
+#endif /* _UECC_PLATFORM_SPECIFIC_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/types.h Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,108 @@
+/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_TYPES_H_
+#define _UECC_TYPES_H_
+
+#ifndef uECC_PLATFORM
+ #if __AVR__
+ #define uECC_PLATFORM uECC_avr
+ #elif defined(__thumb2__) || defined(_M_ARMT) /* I think MSVC only supports Thumb-2 targets */
+ #define uECC_PLATFORM uECC_arm_thumb2
+ #elif defined(__thumb__)
+ #define uECC_PLATFORM uECC_arm_thumb
+ #elif defined(__arm__) || defined(_M_ARM)
+ #define uECC_PLATFORM uECC_arm
+ #elif defined(__aarch64__)
+ #define uECC_PLATFORM uECC_arm64
+ #elif defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__I86__)
+ #define uECC_PLATFORM uECC_x86
+ #elif defined(__amd64__) || defined(_M_X64)
+ #define uECC_PLATFORM uECC_x86_64
+ #else
+ #define uECC_PLATFORM uECC_arch_other
+ #endif
+#endif
+
+#ifndef uECC_ARM_USE_UMAAL
+ #if (uECC_PLATFORM == uECC_arm) && (__ARM_ARCH >= 6)
+ #define uECC_ARM_USE_UMAAL 1
+ #elif (uECC_PLATFORM == uECC_arm_thumb2) && (__ARM_ARCH >= 6) && !__ARM_ARCH_7M__
+ #define uECC_ARM_USE_UMAAL 1
+ #else
+ #define uECC_ARM_USE_UMAAL 0
+ #endif
+#endif
+
+#ifndef uECC_WORD_SIZE
+ #if uECC_PLATFORM == uECC_avr
+ #define uECC_WORD_SIZE 1
+ #elif (uECC_PLATFORM == uECC_x86_64 || uECC_PLATFORM == uECC_arm64)
+ #define uECC_WORD_SIZE 8
+ #else
+ #define uECC_WORD_SIZE 4
+ #endif
+#endif
+
+#if (uECC_WORD_SIZE != 1) && (uECC_WORD_SIZE != 4) && (uECC_WORD_SIZE != 8)
+ #error "Unsupported value for uECC_WORD_SIZE"
+#endif
+
+#if ((uECC_PLATFORM == uECC_avr) && (uECC_WORD_SIZE != 1))
+ #pragma message ("uECC_WORD_SIZE must be 1 for AVR")
+ #undef uECC_WORD_SIZE
+ #define uECC_WORD_SIZE 1
+#endif
+
+#if ((uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
+ uECC_PLATFORM == uECC_arm_thumb2) && \
+ (uECC_WORD_SIZE != 4))
+ #pragma message ("uECC_WORD_SIZE must be 4 for ARM")
+ #undef uECC_WORD_SIZE
+ #define uECC_WORD_SIZE 4
+#endif
+
+#if defined(__SIZEOF_INT128__) || ((__clang_major__ * 100 + __clang_minor__) >= 302)
+ #define SUPPORTS_INT128 1
+#else
+ #define SUPPORTS_INT128 0
+#endif
+
+typedef int8_t wordcount_t;
+typedef int16_t bitcount_t;
+typedef int8_t cmpresult_t;
+
+#if (uECC_WORD_SIZE == 1)
+
+typedef uint8_t uECC_word_t;
+typedef uint16_t uECC_dword_t;
+
+#define HIGH_BIT_SET 0x80
+#define uECC_WORD_BITS 8
+#define uECC_WORD_BITS_SHIFT 3
+#define uECC_WORD_BITS_MASK 0x07
+
+#elif (uECC_WORD_SIZE == 4)
+
+typedef uint32_t uECC_word_t;
+typedef uint64_t uECC_dword_t;
+
+#define HIGH_BIT_SET 0x80000000
+#define uECC_WORD_BITS 32
+#define uECC_WORD_BITS_SHIFT 5
+#define uECC_WORD_BITS_MASK 0x01F
+
+#elif (uECC_WORD_SIZE == 8)
+
+typedef uint64_t uECC_word_t;
+#if SUPPORTS_INT128
+typedef unsigned __int128 uECC_dword_t;
+#endif
+
+#define HIGH_BIT_SET 0x8000000000000000ull
+#define uECC_WORD_BITS 64
+#define uECC_WORD_BITS_SHIFT 6
+#define uECC_WORD_BITS_MASK 0x03F
+
+#endif /* uECC_WORD_SIZE */
+
+#endif /* _UECC_TYPES_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/uECC.cpp Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,1644 @@
+/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#include "uECC.h"
+#include "uECC_vli.h"
+
+#ifndef uECC_RNG_MAX_TRIES
+ #define uECC_RNG_MAX_TRIES 64
+#endif
+
+#if uECC_ENABLE_VLI_API
+ #define uECC_VLI_API
+#else
+ #define uECC_VLI_API static
+#endif
+
+#define CONCATX(a, ...) a ## __VA_ARGS__
+#define CONCAT(a, ...) CONCATX(a, __VA_ARGS__)
+
+#define STRX(a) #a
+#define STR(a) STRX(a)
+
+#define EVAL(...) EVAL1(EVAL1(EVAL1(EVAL1(__VA_ARGS__))))
+#define EVAL1(...) EVAL2(EVAL2(EVAL2(EVAL2(__VA_ARGS__))))
+#define EVAL2(...) EVAL3(EVAL3(EVAL3(EVAL3(__VA_ARGS__))))
+#define EVAL3(...) EVAL4(EVAL4(EVAL4(EVAL4(__VA_ARGS__))))
+#define EVAL4(...) __VA_ARGS__
+
+#define DEC_1 0
+#define DEC_2 1
+#define DEC_3 2
+#define DEC_4 3
+#define DEC_5 4
+#define DEC_6 5
+#define DEC_7 6
+#define DEC_8 7
+#define DEC_9 8
+#define DEC_10 9
+#define DEC_11 10
+#define DEC_12 11
+#define DEC_13 12
+#define DEC_14 13
+#define DEC_15 14
+#define DEC_16 15
+#define DEC_17 16
+#define DEC_18 17
+#define DEC_19 18
+#define DEC_20 19
+#define DEC_21 20
+#define DEC_22 21
+#define DEC_23 22
+#define DEC_24 23
+#define DEC_25 24
+#define DEC_26 25
+#define DEC_27 26
+#define DEC_28 27
+#define DEC_29 28
+#define DEC_30 29
+#define DEC_31 30
+#define DEC_32 31
+
+#define DEC(N) CONCAT(DEC_, N)
+
+#define SECOND_ARG(_, val, ...) val
+#define SOME_CHECK_0 ~, 0
+#define GET_SECOND_ARG(...) SECOND_ARG(__VA_ARGS__, SOME,)
+#define SOME_OR_0(N) GET_SECOND_ARG(CONCAT(SOME_CHECK_, N))
+
+#define EMPTY(...)
+#define DEFER(...) __VA_ARGS__ EMPTY()
+
+#define REPEAT_NAME_0() REPEAT_0
+#define REPEAT_NAME_SOME() REPEAT_SOME
+#define REPEAT_0(...)
+#define REPEAT_SOME(N, stuff) DEFER(CONCAT(REPEAT_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), stuff) stuff
+#define REPEAT(N, stuff) EVAL(REPEAT_SOME(N, stuff))
+
+#define REPEATM_NAME_0() REPEATM_0
+#define REPEATM_NAME_SOME() REPEATM_SOME
+#define REPEATM_0(...)
+#define REPEATM_SOME(N, macro) macro(N) \
+ DEFER(CONCAT(REPEATM_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), macro)
+#define REPEATM(N, macro) EVAL(REPEATM_SOME(N, macro))
+
+//#include "platform-specific.inc"
+#include "platform-specific.h"
+
+#if (uECC_WORD_SIZE == 1)
+ #if uECC_SUPPORTS_secp160r1
+ #define uECC_MAX_WORDS 21 /* Due to the size of curve_n. */
+ #endif
+ #if uECC_SUPPORTS_secp192r1
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 24
+ #endif
+ #if uECC_SUPPORTS_secp224r1
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 28
+ #endif
+ #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 32
+ #endif
+#elif (uECC_WORD_SIZE == 4)
+ #if uECC_SUPPORTS_secp160r1
+ #define uECC_MAX_WORDS 6 /* Due to the size of curve_n. */
+ #endif
+ #if uECC_SUPPORTS_secp192r1
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 6
+ #endif
+ #if uECC_SUPPORTS_secp224r1
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 7
+ #endif
+ #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 8
+ #endif
+#elif (uECC_WORD_SIZE == 8)
+ #if uECC_SUPPORTS_secp160r1
+ #define uECC_MAX_WORDS 3
+ #endif
+ #if uECC_SUPPORTS_secp192r1
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 3
+ #endif
+ #if uECC_SUPPORTS_secp224r1
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 4
+ #endif
+ #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
+ #undef uECC_MAX_WORDS
+ #define uECC_MAX_WORDS 4
+ #endif
+#endif /* uECC_WORD_SIZE */
+
+#define BITS_TO_WORDS(num_bits) ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
+#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
+
+struct uECC_Curve_t {
+ wordcount_t num_words;
+ wordcount_t num_bytes;
+ bitcount_t num_n_bits;
+ uECC_word_t p[uECC_MAX_WORDS];
+ uECC_word_t n[uECC_MAX_WORDS];
+ uECC_word_t G[uECC_MAX_WORDS * 2];
+ uECC_word_t b[uECC_MAX_WORDS];
+ void (*double_jacobian)(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * Z1,
+ uECC_Curve curve);
+#if uECC_SUPPORT_COMPRESSED_POINT
+ void (*mod_sqrt)(uECC_word_t *a, uECC_Curve curve);
+#endif
+ void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
+#endif
+};
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+static void bcopy(uint8_t *dst,
+ const uint8_t *src,
+ unsigned num_bytes) {
+ while (0 != num_bytes) {
+ num_bytes--;
+ dst[num_bytes] = src[num_bytes];
+ }
+}
+#endif
+
+static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words);
+
+#if (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
+ uECC_PLATFORM == uECC_arm_thumb2)
+ //#include "asm_arm.inc"
+ #include "asm_arm.h"
+#if (uECC_PLATFORM == uECC_arm)
+ #warning uECC_arm
+#elif (uECC_PLATFORM == uECC_arm_thumb)
+ #warning uECC_arm_thumb
+#elif (uECC_PLATFORM == uECC_arm_thumb2)
+ #warning uECC_arm_thumb2
+#endif
+#endif
+
+#if (uECC_PLATFORM == uECC_avr)
+ #include "asm_avr.inc"
+#endif
+
+#if default_RNG_defined
+static uECC_RNG_Function g_rng_function = &default_RNG;
+#else
+static uECC_RNG_Function g_rng_function = 0;
+#endif
+
+void uECC_set_rng(uECC_RNG_Function rng_function) {
+ g_rng_function = rng_function;
+}
+
+uECC_RNG_Function uECC_get_rng(void) {
+ return g_rng_function;
+}
+
+int uECC_curve_private_key_size(uECC_Curve curve) {
+ return BITS_TO_BYTES(curve->num_n_bits);
+}
+
+int uECC_curve_public_key_size(uECC_Curve curve) {
+ return 2 * curve->num_bytes;
+}
+
+#if !asm_clear
+uECC_VLI_API void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words) {
+ wordcount_t i;
+ for (i = 0; i < num_words; ++i) {
+ vli[i] = 0;
+ }
+}
+#endif /* !asm_clear */
+
+/* Constant-time comparison to zero - secure way to compare long integers */
+/* Returns 1 if vli == 0, 0 otherwise. */
+uECC_VLI_API uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words) {
+ uECC_word_t bits = 0;
+ wordcount_t i;
+ for (i = 0; i < num_words; ++i) {
+ bits |= vli[i];
+ }
+ return (bits == 0);
+}
+
+/* Returns nonzero if bit 'bit' of vli is set. */
+uECC_VLI_API uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) {
+ return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
+}
+
+/* Counts the number of words in vli. */
+static wordcount_t vli_numDigits(const uECC_word_t *vli, const wordcount_t max_words) {
+ wordcount_t i;
+ /* Search from the end until we find a non-zero digit.
+ We do it in reverse because we expect that most digits will be nonzero. */
+ for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
+ }
+
+ return (i + 1);
+}
+
+/* Counts the number of bits required to represent vli. */
+uECC_VLI_API bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words) {
+ uECC_word_t i;
+ uECC_word_t digit;
+
+ wordcount_t num_digits = vli_numDigits(vli, max_words);
+ if (num_digits == 0) {
+ return 0;
+ }
+
+ digit = vli[num_digits - 1];
+ for (i = 0; digit; ++i) {
+ digit >>= 1;
+ }
+
+ return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
+}
+
+/* Sets dest = src. */
+#if !asm_set
+uECC_VLI_API void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words) {
+ wordcount_t i;
+ for (i = 0; i < num_words; ++i) {
+ dest[i] = src[i];
+ }
+}
+#endif /* !asm_set */
+
+/* Returns sign of left - right. */
+static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ wordcount_t i;
+ for (i = num_words - 1; i >= 0; --i) {
+ if (left[i] > right[i]) {
+ return 1;
+ } else if (left[i] < right[i]) {
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/* Constant-time comparison function - secure way to compare long integers */
+/* Returns one if left == right, zero otherwise. */
+uECC_VLI_API uECC_word_t uECC_vli_equal(const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uECC_word_t diff = 0;
+ wordcount_t i;
+ for (i = num_words - 1; i >= 0; --i) {
+ diff |= (left[i] ^ right[i]);
+ }
+ return (diff == 0);
+}
+
+uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words);
+
+/* Returns sign of left - right, in constant time. */
+uECC_VLI_API cmpresult_t uECC_vli_cmp(const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uECC_word_t tmp[uECC_MAX_WORDS];
+ uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
+ uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
+ return (!equal - 2 * neg);
+}
+
+/* Computes vli = vli >> 1. */
+#if !asm_rshift1
+uECC_VLI_API void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words) {
+ uECC_word_t *end = vli;
+ uECC_word_t carry = 0;
+
+ vli += num_words;
+ while (vli-- > end) {
+ uECC_word_t temp = *vli;
+ *vli = (temp >> 1) | carry;
+ carry = temp << (uECC_WORD_BITS - 1);
+ }
+}
+#endif /* !asm_rshift1 */
+
+/* Computes result = left + right, returning carry. Can modify in place. */
+#if !asm_add
+uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uECC_word_t carry = 0;
+ wordcount_t i;
+ for (i = 0; i < num_words; ++i) {
+ uECC_word_t sum = left[i] + right[i] + carry;
+ if (sum != left[i]) {
+ carry = (sum < left[i]);
+ }
+ result[i] = sum;
+ }
+ return carry;
+}
+#endif /* !asm_add */
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+#if !asm_sub
+uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uECC_word_t borrow = 0;
+ wordcount_t i;
+ for (i = 0; i < num_words; ++i) {
+ uECC_word_t diff = left[i] - right[i] - borrow;
+ if (diff != left[i]) {
+ borrow = (diff > left[i]);
+ }
+ result[i] = diff;
+ }
+ return borrow;
+}
+#endif /* !asm_sub */
+
+#if !asm_mult || (uECC_SQUARE_FUNC && !asm_square) || \
+ (uECC_SUPPORTS_secp256k1 && (uECC_OPTIMIZATION_LEVEL > 0) && \
+ ((uECC_WORD_SIZE == 1) || (uECC_WORD_SIZE == 8)))
+static void muladd(uECC_word_t a,
+ uECC_word_t b,
+ uECC_word_t *r0,
+ uECC_word_t *r1,
+ uECC_word_t *r2) {
+#if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
+ uint64_t a0 = a & 0xffffffffull;
+ uint64_t a1 = a >> 32;
+ uint64_t b0 = b & 0xffffffffull;
+ uint64_t b1 = b >> 32;
+
+ uint64_t i0 = a0 * b0;
+ uint64_t i1 = a0 * b1;
+ uint64_t i2 = a1 * b0;
+ uint64_t i3 = a1 * b1;
+
+ uint64_t p0, p1;
+
+ i2 += (i0 >> 32);
+ i2 += i1;
+ if (i2 < i1) { /* overflow */
+ i3 += 0x100000000ull;
+ }
+
+ p0 = (i0 & 0xffffffffull) | (i2 << 32);
+ p1 = i3 + (i2 >> 32);
+
+ *r0 += p0;
+ *r1 += (p1 + (*r0 < p0));
+ *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
+#else
+ uECC_dword_t p = (uECC_dword_t)a * b;
+ uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
+ r01 += p;
+ *r2 += (r01 < p);
+ *r1 = r01 >> uECC_WORD_BITS;
+ *r0 = (uECC_word_t)r01;
+#endif
+}
+#endif /* muladd needed */
+
+#if !asm_mult
+uECC_VLI_API void uECC_vli_mult(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words) {
+ uECC_word_t r0 = 0;
+ uECC_word_t r1 = 0;
+ uECC_word_t r2 = 0;
+ wordcount_t i, k;
+
+ /* Compute each digit of result in sequence, maintaining the carries. */
+ for (k = 0; k < num_words; ++k) {
+ for (i = 0; i <= k; ++i) {
+ muladd(left[i], right[k - i], &r0, &r1, &r2);
+ }
+ result[k] = r0;
+ r0 = r1;
+ r1 = r2;
+ r2 = 0;
+ }
+ for (k = num_words; k < num_words * 2 - 1; ++k) {
+ for (i = (k + 1) - num_words; i < num_words; ++i) {
+ muladd(left[i], right[k - i], &r0, &r1, &r2);
+ }
+ result[k] = r0;
+ r0 = r1;
+ r1 = r2;
+ r2 = 0;
+ }
+ result[num_words * 2 - 1] = r0;
+}
+#endif /* !asm_mult */
+
+#if uECC_SQUARE_FUNC
+
+#if !asm_square
+static void mul2add(uECC_word_t a,
+ uECC_word_t b,
+ uECC_word_t *r0,
+ uECC_word_t *r1,
+ uECC_word_t *r2) {
+#if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
+ uint64_t a0 = a & 0xffffffffull;
+ uint64_t a1 = a >> 32;
+ uint64_t b0 = b & 0xffffffffull;
+ uint64_t b1 = b >> 32;
+
+ uint64_t i0 = a0 * b0;
+ uint64_t i1 = a0 * b1;
+ uint64_t i2 = a1 * b0;
+ uint64_t i3 = a1 * b1;
+
+ uint64_t p0, p1;
+
+ i2 += (i0 >> 32);
+ i2 += i1;
+ if (i2 < i1)
+ { /* overflow */
+ i3 += 0x100000000ull;
+ }
+
+ p0 = (i0 & 0xffffffffull) | (i2 << 32);
+ p1 = i3 + (i2 >> 32);
+
+ *r2 += (p1 >> 63);
+ p1 = (p1 << 1) | (p0 >> 63);
+ p0 <<= 1;
+
+ *r0 += p0;
+ *r1 += (p1 + (*r0 < p0));
+ *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
+#else
+ uECC_dword_t p = (uECC_dword_t)a * b;
+ uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
+ *r2 += (p >> (uECC_WORD_BITS * 2 - 1));
+ p *= 2;
+ r01 += p;
+ *r2 += (r01 < p);
+ *r1 = r01 >> uECC_WORD_BITS;
+ *r0 = (uECC_word_t)r01;
+#endif
+}
+
+uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
+ const uECC_word_t *left,
+ wordcount_t num_words) {
+ uECC_word_t r0 = 0;
+ uECC_word_t r1 = 0;
+ uECC_word_t r2 = 0;
+
+ wordcount_t i, k;
+
+ for (k = 0; k < num_words * 2 - 1; ++k) {
+ uECC_word_t min = (k < num_words ? 0 : (k + 1) - num_words);
+ for (i = min; i <= k && i <= k - i; ++i) {
+ if (i < k-i) {
+ mul2add(left[i], left[k - i], &r0, &r1, &r2);
+ } else {
+ muladd(left[i], left[k - i], &r0, &r1, &r2);
+ }
+ }
+ result[k] = r0;
+ r0 = r1;
+ r1 = r2;
+ r2 = 0;
+ }
+
+ result[num_words * 2 - 1] = r0;
+}
+#endif /* !asm_square */
+
+#else /* uECC_SQUARE_FUNC */
+
+#if uECC_ENABLE_VLI_API
+uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
+ const uECC_word_t *left,
+ wordcount_t num_words) {
+ uECC_vli_mult(result, left, left, num_words);
+}
+#endif /* uECC_ENABLE_VLI_API */
+
+#endif /* uECC_SQUARE_FUNC */
+
+/* Computes result = (left + right) % mod.
+ Assumes that left < mod and right < mod, and that result does not overlap mod. */
+uECC_VLI_API void uECC_vli_modAdd(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
+ if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
+ /* result > mod (result = mod + remainder), so subtract mod to get remainder. */
+ uECC_vli_sub(result, result, mod, num_words);
+ }
+}
+
+/* Computes result = (left - right) % mod.
+ Assumes that left < mod and right < mod, and that result does not overlap mod. */
+uECC_VLI_API void uECC_vli_modSub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
+ if (l_borrow) {
+ /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
+ we can get the correct result from result + mod (with overflow). */
+ uECC_vli_add(result, result, mod, num_words);
+ }
+}
+
+/* Computes result = product % mod, where product is 2N words long. */
+/* Currently only designed to work for curve_p or curve_n. */
+uECC_VLI_API void uECC_vli_mmod(uECC_word_t *result,
+ uECC_word_t *product,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t mod_multiple[2 * uECC_MAX_WORDS];
+ uECC_word_t tmp[2 * uECC_MAX_WORDS];
+ uECC_word_t *v[2] = {tmp, product};
+ uECC_word_t index;
+
+ /* Shift mod so its highest set bit is at the maximum position. */
+ bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - uECC_vli_numBits(mod, num_words);
+ wordcount_t word_shift = shift / uECC_WORD_BITS;
+ wordcount_t bit_shift = shift % uECC_WORD_BITS;
+ uECC_word_t carry = 0;
+ uECC_vli_clear(mod_multiple, word_shift);
+ if (bit_shift > 0) {
+ for(index = 0; index < (uECC_word_t)num_words; ++index) {
+ mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
+ carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
+ }
+ } else {
+ uECC_vli_set(mod_multiple + word_shift, mod, num_words);
+ }
+
+ for (index = 1; shift >= 0; --shift) {
+ uECC_word_t borrow = 0;
+ wordcount_t i;
+ for (i = 0; i < num_words * 2; ++i) {
+ uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
+ if (diff != v[index][i]) {
+ borrow = (diff > v[index][i]);
+ }
+ v[1 - index][i] = diff;
+ }
+ index = !(index ^ borrow); /* Swap the index if there was no borrow */
+ uECC_vli_rshift1(mod_multiple, num_words);
+ mod_multiple[num_words - 1] |= mod_multiple[num_words] << (uECC_WORD_BITS - 1);
+ uECC_vli_rshift1(mod_multiple + num_words, num_words);
+ }
+ uECC_vli_set(result, v[index], num_words);
+}
+
+/* Computes result = (left * right) % mod. */
+uECC_VLI_API void uECC_vli_modMult(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t product[2 * uECC_MAX_WORDS];
+ uECC_vli_mult(product, left, right, num_words);
+ uECC_vli_mmod(result, product, mod, num_words);
+}
+
+uECC_VLI_API void uECC_vli_modMult_fast(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ uECC_Curve curve) {
+ uECC_word_t product[2 * uECC_MAX_WORDS];
+ uECC_vli_mult(product, left, right, curve->num_words);
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ curve->mmod_fast(result, product);
+#else
+ uECC_vli_mmod(result, product, curve->p, curve->num_words);
+#endif
+}
+
+#if uECC_SQUARE_FUNC
+
+#if uECC_ENABLE_VLI_API
+/* Computes result = left^2 % mod. */
+uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t product[2 * uECC_MAX_WORDS];
+ uECC_vli_square(product, left, num_words);
+ uECC_vli_mmod(result, product, mod, num_words);
+}
+#endif /* uECC_ENABLE_VLI_API */
+
+uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result,
+ const uECC_word_t *left,
+ uECC_Curve curve) {
+ uECC_word_t product[2 * uECC_MAX_WORDS];
+ uECC_vli_square(product, left, curve->num_words);
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ curve->mmod_fast(result, product);
+#else
+ uECC_vli_mmod(result, product, curve->p, curve->num_words);
+#endif
+}
+
+#else /* uECC_SQUARE_FUNC */
+
+#if uECC_ENABLE_VLI_API
+uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_vli_modMult(result, left, left, mod, num_words);
+}
+#endif /* uECC_ENABLE_VLI_API */
+
+uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result,
+ const uECC_word_t *left,
+ uECC_Curve curve) {
+ uECC_vli_modMult_fast(result, left, left, curve);
+}
+
+#endif /* uECC_SQUARE_FUNC */
+
+#define EVEN(vli) (!(vli[0] & 1))
+static void vli_modInv_update(uECC_word_t *uv,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t carry = 0;
+ if (!EVEN(uv)) {
+ carry = uECC_vli_add(uv, uv, mod, num_words);
+ }
+ uECC_vli_rshift1(uv, num_words);
+ if (carry) {
+ uv[num_words - 1] |= HIGH_BIT_SET;
+ }
+}
+
+/* Computes result = (1 / input) % mod. All VLIs are the same size.
+ See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" */
+uECC_VLI_API void uECC_vli_modInv(uECC_word_t *result,
+ const uECC_word_t *input,
+ const uECC_word_t *mod,
+ wordcount_t num_words) {
+ uECC_word_t a[uECC_MAX_WORDS], b[uECC_MAX_WORDS], u[uECC_MAX_WORDS], v[uECC_MAX_WORDS];
+ cmpresult_t cmpResult;
+
+ if (uECC_vli_isZero(input, num_words)) {
+ uECC_vli_clear(result, num_words);
+ return;
+ }
+
+ uECC_vli_set(a, input, num_words);
+ uECC_vli_set(b, mod, num_words);
+ uECC_vli_clear(u, num_words);
+ u[0] = 1;
+ uECC_vli_clear(v, num_words);
+ while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
+ if (EVEN(a)) {
+ uECC_vli_rshift1(a, num_words);
+ vli_modInv_update(u, mod, num_words);
+ } else if (EVEN(b)) {
+ uECC_vli_rshift1(b, num_words);
+ vli_modInv_update(v, mod, num_words);
+ } else if (cmpResult > 0) {
+ uECC_vli_sub(a, a, b, num_words);
+ uECC_vli_rshift1(a, num_words);
+ if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
+ uECC_vli_add(u, u, mod, num_words);
+ }
+ uECC_vli_sub(u, u, v, num_words);
+ vli_modInv_update(u, mod, num_words);
+ } else {
+ uECC_vli_sub(b, b, a, num_words);
+ uECC_vli_rshift1(b, num_words);
+ if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
+ uECC_vli_add(v, v, mod, num_words);
+ }
+ uECC_vli_sub(v, v, u, num_words);
+ vli_modInv_update(v, mod, num_words);
+ }
+ }
+ uECC_vli_set(result, u, num_words);
+}
+
+/* ------ Point operations ------ */
+
+//#include "curve-specific.inc"
+#include "curve-specific.h"
+
+/* Returns 1 if 'point' is the point at infinity, 0 otherwise. */
+#define EccPoint_isZero(point, curve) uECC_vli_isZero((point), (curve)->num_words * 2)
+
+/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
+From http://eprint.iacr.org/2011/338.pdf
+*/
+
+/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
+static void apply_z(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ const uECC_word_t * const Z,
+ uECC_Curve curve) {
+ uECC_word_t t1[uECC_MAX_WORDS];
+
+ uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
+ uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
+ uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
+ uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
+}
+
+/* P = (x1, y1) => 2P, (x2, y2) => P' */
+static void XYcZ_initial_double(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * X2,
+ uECC_word_t * Y2,
+ const uECC_word_t * const initial_Z,
+ uECC_Curve curve) {
+ uECC_word_t z[uECC_MAX_WORDS];
+ wordcount_t num_words = curve->num_words;
+ if (initial_Z) {
+ uECC_vli_set(z, initial_Z, num_words);
+ } else {
+ uECC_vli_clear(z, num_words);
+ z[0] = 1;
+ }
+
+ uECC_vli_set(X2, X1, num_words);
+ uECC_vli_set(Y2, Y1, num_words);
+
+ apply_z(X1, Y1, z, curve);
+ curve->double_jacobian(X1, Y1, z, curve);
+ apply_z(X2, Y2, z, curve);
+}
+
+/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
+ Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
+ or P => P', Q => P + Q
+*/
+static void XYcZ_add(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * X2,
+ uECC_word_t * Y2,
+ uECC_Curve curve) {
+ /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
+ uECC_word_t t5[uECC_MAX_WORDS];
+ wordcount_t num_words = curve->num_words;
+
+ uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
+ uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
+ uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
+ uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
+ uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
+ uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
+
+ uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
+ uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
+ uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
+ uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
+ uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
+ uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
+ uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
+
+ uECC_vli_set(X2, t5, num_words);
+}
+
+/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
+ Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
+ or P => P - Q, Q => P + Q
+*/
+static void XYcZ_addC(uECC_word_t * X1,
+ uECC_word_t * Y1,
+ uECC_word_t * X2,
+ uECC_word_t * Y2,
+ uECC_Curve curve) {
+ /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
+ uECC_word_t t5[uECC_MAX_WORDS];
+ uECC_word_t t6[uECC_MAX_WORDS];
+ uECC_word_t t7[uECC_MAX_WORDS];
+ wordcount_t num_words = curve->num_words;
+
+ uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
+ uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
+ uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
+ uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
+ uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
+ uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
+
+ uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
+ uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
+ uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
+ uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
+ uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
+
+ uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
+ uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
+ uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = (y2 - y1)*(B - x3) - E = y3 */
+
+ uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
+ uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
+ uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
+ uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
+ uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words); /* t2 = (y2+y1)*(x3' - B) - E = y3' */
+
+ uECC_vli_set(X1, t7, num_words);
+}
+
+/* result may overlap point. */
+static void EccPoint_mult(uECC_word_t * result,
+ const uECC_word_t * point,
+ const uECC_word_t * scalar,
+ const uECC_word_t * initial_Z,
+ bitcount_t num_bits,
+ uECC_Curve curve) {
+ /* R0 and R1 */
+ uECC_word_t Rx[2][uECC_MAX_WORDS];
+ uECC_word_t Ry[2][uECC_MAX_WORDS];
+ uECC_word_t z[uECC_MAX_WORDS];
+ bitcount_t i;
+ uECC_word_t nb;
+ wordcount_t num_words = curve->num_words;
+
+ uECC_vli_set(Rx[1], point, num_words);
+ uECC_vli_set(Ry[1], point + num_words, num_words);
+
+ XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
+
+ for (i = num_bits - 2; i > 0; --i) {
+ nb = !uECC_vli_testBit(scalar, i);
+ XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
+ XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
+ }
+
+ nb = !uECC_vli_testBit(scalar, 0);
+ XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
+
+ /* Find final 1/Z value. */
+ uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
+ uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
+ uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
+ uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0)) */
+ /* yP / (xP * Yb * (X1 - X0)) */
+ uECC_vli_modMult_fast(z, z, point + num_words, curve);
+ uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve); /* Xb * yP / (xP * Yb * (X1 - X0)) */
+ /* End 1/Z calculation */
+
+ XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
+ apply_z(Rx[0], Ry[0], z, curve);
+
+ uECC_vli_set(result, Rx[0], num_words);
+ uECC_vli_set(result + num_words, Ry[0], num_words);
+}
+
+static uECC_word_t regularize_k(const uECC_word_t * const k,
+ uECC_word_t *k0,
+ uECC_word_t *k1,
+ uECC_Curve curve) {
+ wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
+ bitcount_t num_n_bits = curve->num_n_bits;
+ uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
+ (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
+ uECC_vli_testBit(k0, num_n_bits));
+ uECC_vli_add(k1, k0, curve->n, num_n_words);
+ return carry;
+}
+
+static uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
+ uECC_word_t *private_key,
+ uECC_Curve curve) {
+ uECC_word_t tmp1[uECC_MAX_WORDS];
+ uECC_word_t tmp2[uECC_MAX_WORDS];
+ uECC_word_t *p2[2] = {tmp1, tmp2};
+ uECC_word_t carry;
+
+ /* Regularize the bitcount for the private key so that attackers cannot use a side channel
+ attack to learn the number of leading zeros. */
+ carry = regularize_k(private_key, tmp1, tmp2, curve);
+
+ EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
+
+ if (EccPoint_isZero(result, curve)) {
+ return 0;
+ }
+ return 1;
+}
+
+#if uECC_WORD_SIZE == 1
+
+uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes,
+ int num_bytes,
+ const uint8_t *native) {
+ wordcount_t i;
+ for (i = 0; i < num_bytes; ++i) {
+ bytes[i] = native[(num_bytes - 1) - i];
+ }
+}
+
+uECC_VLI_API void uECC_vli_bytesToNative(uint8_t *native,
+ const uint8_t *bytes,
+ int num_bytes) {
+ uECC_vli_nativeToBytes(native, num_bytes, bytes);
+}
+
+#else
+
+uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes,
+ int num_bytes,
+ const uECC_word_t *native) {
+ wordcount_t i;
+ for (i = 0; i < num_bytes; ++i) {
+ unsigned b = num_bytes - 1 - i;
+ bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
+ }
+}
+
+uECC_VLI_API void uECC_vli_bytesToNative(uECC_word_t *native,
+ const uint8_t *bytes,
+ int num_bytes) {
+ wordcount_t i;
+ uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
+ for (i = 0; i < num_bytes; ++i) {
+ unsigned b = num_bytes - 1 - i;
+ native[b / uECC_WORD_SIZE] |=
+ (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
+ }
+}
+
+#endif /* uECC_WORD_SIZE */
+
+/* Generates a random integer in the range 0 < random < top.
+ Both random and top have num_words words. */
+uECC_VLI_API int uECC_generate_random_int(uECC_word_t *random,
+ const uECC_word_t *top,
+ wordcount_t num_words) {
+ uECC_word_t mask = (uECC_word_t)-1;
+ uECC_word_t tries;
+ bitcount_t num_bits = uECC_vli_numBits(top, num_words);
+
+ if (!g_rng_function) {
+ return 0;
+ }
+
+ for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
+ if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
+ return 0;
+ }
+ random[num_words - 1] &= mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
+ if (!uECC_vli_isZero(random, num_words) &&
+ uECC_vli_cmp(top, random, num_words) == 1) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+int uECC_make_key(uint8_t *public_key,
+ uint8_t *private_key,
+ uECC_Curve curve) {
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ uECC_word_t *_private = (uECC_word_t *)private_key;
+ uECC_word_t *_public = (uECC_word_t *)public_key;
+#else
+ uECC_word_t _private[uECC_MAX_WORDS];
+ uECC_word_t _public[uECC_MAX_WORDS * 2];
+#endif
+ uECC_word_t tries;
+
+ for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
+ if (!uECC_generate_random_int(_private, curve->n, BITS_TO_WORDS(curve->num_n_bits))) {
+ return 0;
+ }
+
+ if (EccPoint_compute_public_key(_public, _private, curve)) {
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
+ uECC_vli_nativeToBytes(private_key, BITS_TO_BYTES(curve->num_n_bits), _private);
+ uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
+ uECC_vli_nativeToBytes(
+ public_key + curve->num_bytes, curve->num_bytes, _public + curve->num_words);
+#endif
+ return 1;
+ }
+ }
+ return 0;
+}
+
+int uECC_shared_secret(const uint8_t *public_key,
+ const uint8_t *private_key,
+ uint8_t *secret,
+ uECC_Curve curve) {
+ uECC_word_t _public[uECC_MAX_WORDS * 2];
+ uECC_word_t _private[uECC_MAX_WORDS];
+
+ uECC_word_t tmp[uECC_MAX_WORDS];
+ uECC_word_t *p2[2] = {_private, tmp};
+ uECC_word_t *initial_Z = 0;
+ uECC_word_t carry;
+ wordcount_t num_words = curve->num_words;
+ wordcount_t num_bytes = curve->num_bytes;
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy((uint8_t *) _private, private_key, num_bytes);
+ bcopy((uint8_t *) _public, public_key, num_bytes*2);
+#else
+ uECC_vli_bytesToNative(_private, private_key, BITS_TO_BYTES(curve->num_n_bits));
+ uECC_vli_bytesToNative(_public, public_key, num_bytes);
+ uECC_vli_bytesToNative(_public + num_words, public_key + num_bytes, num_bytes);
+#endif
+
+ /* Regularize the bitcount for the private key so that attackers cannot use a side channel
+ attack to learn the number of leading zeros. */
+ carry = regularize_k(_private, _private, tmp, curve);
+
+ /* If an RNG function was specified, try to get a random initial Z value to improve
+ protection against side-channel attacks. */
+ if (g_rng_function) {
+ if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) {
+ return 0;
+ }
+ initial_Z = p2[carry];
+ }
+
+ EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1, curve);
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy((uint8_t *) secret, (uint8_t *) _public, num_bytes);
+#else
+ uECC_vli_nativeToBytes(secret, num_bytes, _public);
+#endif
+ return !EccPoint_isZero(_public, curve);
+}
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+void uECC_compress(const uint8_t *public_key, uint8_t *compressed, uECC_Curve curve) {
+ wordcount_t i;
+ for (i = 0; i < curve->num_bytes; ++i) {
+ compressed[i+1] = public_key[i];
+ }
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ compressed[0] = 2 + (public_key[curve->num_bytes] & 0x01);
+#else
+ compressed[0] = 2 + (public_key[curve->num_bytes * 2 - 1] & 0x01);
+#endif
+}
+
+void uECC_decompress(const uint8_t *compressed, uint8_t *public_key, uECC_Curve curve) {
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ uECC_word_t *point = (uECC_word_t *)public_key;
+#else
+ uECC_word_t point[uECC_MAX_WORDS * 2];
+#endif
+ uECC_word_t *y = point + curve->num_words;
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy(public_key, compressed+1, curve->num_bytes);
+#else
+ uECC_vli_bytesToNative(point, compressed + 1, curve->num_bytes);
+#endif
+ curve->x_side(y, point, curve);
+ curve->mod_sqrt(y, curve);
+
+ if ((y[0] & 0x01) != (compressed[0] & 0x01)) {
+ uECC_vli_sub(y, curve->p, y, curve->num_words);
+ }
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
+ uECC_vli_nativeToBytes(public_key, curve->num_bytes, point);
+ uECC_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes, y);
+#endif
+}
+#endif /* uECC_SUPPORT_COMPRESSED_POINT */
+
+int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve) {
+ uECC_word_t tmp1[uECC_MAX_WORDS];
+ uECC_word_t tmp2[uECC_MAX_WORDS];
+ wordcount_t num_words = curve->num_words;
+
+ /* The point at infinity is invalid. */
+ if (EccPoint_isZero(point, curve)) {
+ return 0;
+ }
+
+ /* x and y must be smaller than p. */
+ if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
+ uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
+ return 0;
+ }
+
+ uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
+ curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
+
+ /* Make sure that y^2 == x^3 + ax + b */
+ return (int)(uECC_vli_equal(tmp1, tmp2, num_words));
+}
+
+int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve) {
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ uECC_word_t *_public = (uECC_word_t *)public_key;
+#else
+ uECC_word_t _public[uECC_MAX_WORDS * 2];
+#endif
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
+ uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
+ uECC_vli_bytesToNative(
+ _public + curve->num_words, public_key + curve->num_bytes, curve->num_bytes);
+#endif
+ return uECC_valid_point(_public, curve);
+}
+
+int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve) {
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ uECC_word_t *_private = (uECC_word_t *)private_key;
+ uECC_word_t *_public = (uECC_word_t *)public_key;
+#else
+ uECC_word_t _private[uECC_MAX_WORDS];
+ uECC_word_t _public[uECC_MAX_WORDS * 2];
+#endif
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
+ uECC_vli_bytesToNative(_private, private_key, BITS_TO_BYTES(curve->num_n_bits));
+#endif
+
+ /* Make sure the private key is in the range [1, n-1]. */
+ if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
+ return 0;
+ }
+
+ if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
+ return 0;
+ }
+
+ /* Compute public key. */
+ if (!EccPoint_compute_public_key(_public, _private, curve)) {
+ return 0;
+ }
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
+ uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
+ uECC_vli_nativeToBytes(
+ public_key + curve->num_bytes, curve->num_bytes, _public + curve->num_words);
+#endif
+ return 1;
+}
+
+
+/* -------- ECDSA code -------- */
+
+static void bits2int(uECC_word_t *native,
+ const uint8_t *bits,
+ unsigned bits_size,
+ uECC_Curve curve) {
+ unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
+ unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
+ int shift;
+ uECC_word_t carry;
+ uECC_word_t *ptr;
+
+ if (bits_size > num_n_bytes) {
+ bits_size = num_n_bytes;
+ }
+
+ uECC_vli_clear(native, num_n_words);
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy((uint8_t *) native, bits, bits_size);
+#else
+ uECC_vli_bytesToNative(native, bits, bits_size);
+#endif
+ if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
+ return;
+ }
+ shift = bits_size * 8 - curve->num_n_bits;
+ carry = 0;
+ ptr = native + num_n_words;
+ while (ptr-- > native) {
+ uECC_word_t temp = *ptr;
+ *ptr = (temp >> shift) | carry;
+ carry = temp << (uECC_WORD_BITS - shift);
+ }
+
+ /* Reduce mod curve_n */
+ if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
+ uECC_vli_sub(native, native, curve->n, num_n_words);
+ }
+}
+
+static int uECC_sign_with_k(const uint8_t *private_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ uECC_word_t *k,
+ uint8_t *signature,
+ uECC_Curve curve) {
+
+ uECC_word_t tmp[uECC_MAX_WORDS];
+ uECC_word_t s[uECC_MAX_WORDS];
+ uECC_word_t *k2[2] = {tmp, s};
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ uECC_word_t *p = (uECC_word_t *)signature;
+#else
+ uECC_word_t p[uECC_MAX_WORDS * 2];
+#endif
+ uECC_word_t carry;
+ wordcount_t num_words = curve->num_words;
+ wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
+ bitcount_t num_n_bits = curve->num_n_bits;
+
+ /* Make sure 0 < k < curve_n */
+ if (uECC_vli_isZero(k, num_words) || uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
+ return 0;
+ }
+
+ carry = regularize_k(k, tmp, s, curve);
+ EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
+ if (uECC_vli_isZero(p, num_words)) {
+ return 0;
+ }
+
+ /* If an RNG function was specified, get a random number
+ to prevent side channel analysis of k. */
+ if (!g_rng_function) {
+ uECC_vli_clear(tmp, num_n_words);
+ tmp[0] = 1;
+ } else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
+ return 0;
+ }
+
+ /* Prevent side channel analysis of uECC_vli_modInv() to determine
+ bits of k / the private key by premultiplying by a random number */
+ uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
+ uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
+ uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0
+ uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
+#endif
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy((uint8_t *) tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
+#else
+ uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); /* tmp = d */
+#endif
+
+ s[num_n_words - 1] = 0;
+ uECC_vli_set(s, p, num_words);
+ uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
+
+ bits2int(tmp, message_hash, hash_size, curve);
+ uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
+ uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
+ if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
+ return 0;
+ }
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy((uint8_t *) signature + curve->num_bytes, (uint8_t *) s, curve->num_bytes);
+#else
+ uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
+#endif
+ return 1;
+}
+
+int uECC_sign(const uint8_t *private_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ uint8_t *signature,
+ uECC_Curve curve) {
+ uECC_word_t k[uECC_MAX_WORDS];
+ uECC_word_t tries;
+
+ for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
+ if (!uECC_generate_random_int(k, curve->n, BITS_TO_WORDS(curve->num_n_bits))) {
+ return 0;
+ }
+
+ if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature, curve)) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always
+ the same size as the hash result size. */
+static void HMAC_init(const uECC_HashContext *hash_context, const uint8_t *K) {
+ uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
+ unsigned i;
+ for (i = 0; i < hash_context->result_size; ++i)
+ pad[i] = K[i] ^ 0x36;
+ for (; i < hash_context->block_size; ++i)
+ pad[i] = 0x36;
+
+ hash_context->init_hash(hash_context);
+ hash_context->update_hash(hash_context, pad, hash_context->block_size);
+}
+
+static void HMAC_update(const uECC_HashContext *hash_context,
+ const uint8_t *message,
+ unsigned message_size) {
+ hash_context->update_hash(hash_context, message, message_size);
+}
+
+static void HMAC_finish(const uECC_HashContext *hash_context,
+ const uint8_t *K,
+ uint8_t *result) {
+ uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
+ unsigned i;
+ for (i = 0; i < hash_context->result_size; ++i)
+ pad[i] = K[i] ^ 0x5c;
+ for (; i < hash_context->block_size; ++i)
+ pad[i] = 0x5c;
+
+ hash_context->finish_hash(hash_context, result);
+
+ hash_context->init_hash(hash_context);
+ hash_context->update_hash(hash_context, pad, hash_context->block_size);
+ hash_context->update_hash(hash_context, result, hash_context->result_size);
+ hash_context->finish_hash(hash_context, result);
+}
+
+/* V = HMAC_K(V) */
+static void update_V(const uECC_HashContext *hash_context, uint8_t *K, uint8_t *V) {
+ HMAC_init(hash_context, K);
+ HMAC_update(hash_context, V, hash_context->result_size);
+ HMAC_finish(hash_context, K, V);
+}
+
+/* Deterministic signing, similar to RFC 6979. Differences are:
+ * We just use H(m) directly rather than bits2octets(H(m))
+ (it is not reduced modulo curve_n).
+ * We generate a value for k (aka T) directly rather than converting endianness.
+
+ Layout of hash_context->tmp: <K> | <V> | (1 byte overlapped 0x00 or 0x01) / <HMAC pad> */
+int uECC_sign_deterministic(const uint8_t *private_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ const uECC_HashContext *hash_context,
+ uint8_t *signature,
+ uECC_Curve curve) {
+ uint8_t *K = hash_context->tmp;
+ uint8_t *V = K + hash_context->result_size;
+ wordcount_t num_bytes = curve->num_bytes;
+ wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
+ bitcount_t num_n_bits = curve->num_n_bits;
+ uECC_word_t tries;
+ unsigned i;
+ for (i = 0; i < hash_context->result_size; ++i) {
+ V[i] = 0x01;
+ K[i] = 0;
+ }
+
+ /* K = HMAC_K(V || 0x00 || int2octets(x) || h(m)) */
+ HMAC_init(hash_context, K);
+ V[hash_context->result_size] = 0x00;
+ HMAC_update(hash_context, V, hash_context->result_size + 1);
+ HMAC_update(hash_context, private_key, num_bytes);
+ HMAC_update(hash_context, message_hash, hash_size);
+ HMAC_finish(hash_context, K, K);
+
+ update_V(hash_context, K, V);
+
+ /* K = HMAC_K(V || 0x01 || int2octets(x) || h(m)) */
+ HMAC_init(hash_context, K);
+ V[hash_context->result_size] = 0x01;
+ HMAC_update(hash_context, V, hash_context->result_size + 1);
+ HMAC_update(hash_context, private_key, num_bytes);
+ HMAC_update(hash_context, message_hash, hash_size);
+ HMAC_finish(hash_context, K, K);
+
+ update_V(hash_context, K, V);
+
+ for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
+ uECC_word_t T[uECC_MAX_WORDS];
+ uint8_t *T_ptr = (uint8_t *)T;
+ wordcount_t T_bytes = 0;
+ for (;;) {
+ update_V(hash_context, K, V);
+ for (i = 0; i < hash_context->result_size; ++i) {
+ T_ptr[T_bytes++] = V[i];
+ if (T_bytes >= num_n_words * uECC_WORD_SIZE) {
+ goto filled;
+ }
+ }
+ }
+ filled:
+ if ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8 > num_n_bits) {
+ uECC_word_t mask = (uECC_word_t)-1;
+ T[num_n_words - 1] &=
+ mask >> ((bitcount_t)(num_n_words * uECC_WORD_SIZE * 8 - num_n_bits));
+ }
+
+ if (uECC_sign_with_k(private_key, message_hash, hash_size, T, signature, curve)) {
+ return 1;
+ }
+
+ /* K = HMAC_K(V || 0x00) */
+ HMAC_init(hash_context, K);
+ V[hash_context->result_size] = 0x00;
+ HMAC_update(hash_context, V, hash_context->result_size + 1);
+ HMAC_finish(hash_context, K, K);
+
+ update_V(hash_context, K, V);
+ }
+ return 0;
+}
+
+static bitcount_t smax(bitcount_t a, bitcount_t b) {
+ return (a > b ? a : b);
+}
+
+int uECC_verify(const uint8_t *public_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ const uint8_t *signature,
+ uECC_Curve curve) {
+ uECC_word_t u1[uECC_MAX_WORDS], u2[uECC_MAX_WORDS];
+ uECC_word_t z[uECC_MAX_WORDS];
+ uECC_word_t sum[uECC_MAX_WORDS * 2];
+ uECC_word_t rx[uECC_MAX_WORDS];
+ uECC_word_t ry[uECC_MAX_WORDS];
+ uECC_word_t tx[uECC_MAX_WORDS];
+ uECC_word_t ty[uECC_MAX_WORDS];
+ uECC_word_t tz[uECC_MAX_WORDS];
+ const uECC_word_t *points[4];
+ const uECC_word_t *point;
+ bitcount_t num_bits;
+ bitcount_t i;
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ uECC_word_t *_public = (uECC_word_t *)public_key;
+#else
+ uECC_word_t _public[uECC_MAX_WORDS * 2];
+#endif
+ uECC_word_t r[uECC_MAX_WORDS], s[uECC_MAX_WORDS];
+ wordcount_t num_words = curve->num_words;
+ wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
+
+ rx[num_n_words - 1] = 0;
+ r[num_n_words - 1] = 0;
+ s[num_n_words - 1] = 0;
+
+#if uECC_VLI_NATIVE_LITTLE_ENDIAN
+ bcopy((uint8_t *) r, signature, curve->num_bytes);
+ bcopy((uint8_t *) s, signature + curve->num_bytes, curve->num_bytes);
+#else
+ uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
+ uECC_vli_bytesToNative(
+ _public + num_words, public_key + curve->num_bytes, curve->num_bytes);
+ uECC_vli_bytesToNative(r, signature, curve->num_bytes);
+ uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
+#endif
+
+ /* r, s must not be 0. */
+ if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
+ return 0;
+ }
+
+ /* r, s must be < n. */
+ if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
+ uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
+ return 0;
+ }
+
+ /* Calculate u1 and u2. */
+ uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
+ u1[num_n_words - 1] = 0;
+ bits2int(u1, message_hash, hash_size, curve);
+ uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
+ uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
+
+ /* Calculate sum = G + Q. */
+ uECC_vli_set(sum, _public, num_words);
+ uECC_vli_set(sum + num_words, _public + num_words, num_words);
+ uECC_vli_set(tx, curve->G, num_words);
+ uECC_vli_set(ty, curve->G + num_words, num_words);
+ uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
+ XYcZ_add(tx, ty, sum, sum + num_words, curve);
+ uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
+ apply_z(sum, sum + num_words, z, curve);
+
+ /* Use Shamir's trick to calculate u1*G + u2*Q */
+ points[0] = 0;
+ points[1] = curve->G;
+ points[2] = _public;
+ points[3] = sum;
+ num_bits = smax(uECC_vli_numBits(u1, num_n_words),
+ uECC_vli_numBits(u2, num_n_words));
+
+ point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
+ ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
+ uECC_vli_set(rx, point, num_words);
+ uECC_vli_set(ry, point + num_words, num_words);
+ uECC_vli_clear(z, num_words);
+ z[0] = 1;
+
+ for (i = num_bits - 2; i >= 0; --i) {
+ uECC_word_t index;
+ curve->double_jacobian(rx, ry, z, curve);
+
+ index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
+ point = points[index];
+ if (point) {
+ uECC_vli_set(tx, point, num_words);
+ uECC_vli_set(ty, point + num_words, num_words);
+ apply_z(tx, ty, z, curve);
+ uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
+ XYcZ_add(tx, ty, rx, ry, curve);
+ uECC_vli_modMult_fast(z, z, tz, curve);
+ }
+ }
+
+ uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
+ apply_z(rx, ry, z, curve);
+
+ /* v = x1 (mod n) */
+ if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
+ uECC_vli_sub(rx, rx, curve->n, num_n_words);
+ }
+
+ /* Accept only if v == r. */
+ return (int)(uECC_vli_equal(rx, r, num_words));
+}
+
+#if uECC_ENABLE_VLI_API
+
+unsigned uECC_curve_num_words(uECC_Curve curve) {
+ return curve->num_words;
+}
+
+unsigned uECC_curve_num_bytes(uECC_Curve curve) {
+ return curve->num_bytes;
+}
+
+unsigned uECC_curve_num_bits(uECC_Curve curve) {
+ return curve->num_bytes * 8;
+}
+
+unsigned uECC_curve_num_n_words(uECC_Curve curve) {
+ return BITS_TO_WORDS(curve->num_n_bits);
+}
+
+unsigned uECC_curve_num_n_bytes(uECC_Curve curve) {
+ return BITS_TO_BYTES(curve->num_n_bits);
+}
+
+unsigned uECC_curve_num_n_bits(uECC_Curve curve) {
+ return curve->num_n_bits;
+}
+
+const uECC_word_t *uECC_curve_p(uECC_Curve curve) {
+ return curve->p;
+}
+
+const uECC_word_t *uECC_curve_n(uECC_Curve curve) {
+ return curve->n;
+}
+
+const uECC_word_t *uECC_curve_G(uECC_Curve curve) {
+ return curve->G;
+}
+
+const uECC_word_t *uECC_curve_b(uECC_Curve curve) {
+ return curve->b;
+}
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve) {
+ curve->mod_sqrt(a, curve);
+}
+#endif
+
+void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve) {
+#if (uECC_OPTIMIZATION_LEVEL > 0)
+ curve->mmod_fast(result, product);
+#else
+ uECC_vli_mmod(result, product, curve->p, curve->num_words);
+#endif
+}
+
+void uECC_point_mult(uECC_word_t *result,
+ const uECC_word_t *point,
+ const uECC_word_t *scalar,
+ uECC_Curve curve) {
+ uECC_word_t tmp1[uECC_MAX_WORDS];
+ uECC_word_t tmp2[uECC_MAX_WORDS];
+ uECC_word_t *p2[2] = {tmp1, tmp2};
+ uECC_word_t carry = regularize_k(scalar, tmp1, tmp2, curve);
+
+ EccPoint_mult(result, point, p2[!carry], 0, curve->num_n_bits + 1, curve);
+}
+
+#endif /* uECC_ENABLE_VLI_API */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/uECC.h Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,368 @@
+/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_H_
+#define _UECC_H_
+
+#include <stdint.h>
+
+/* Platform selection options.
+If uECC_PLATFORM is not defined, the code will try to guess it based on compiler macros.
+Possible values for uECC_PLATFORM are defined below: */
+#define uECC_arch_other 0
+#define uECC_x86 1
+#define uECC_x86_64 2
+#define uECC_arm 3
+#define uECC_arm_thumb 4
+#define uECC_arm_thumb2 5
+#define uECC_arm64 6
+#define uECC_avr 7
+
+/* Defined arch to others to allow mbed compiler go through building first */
+#define uECC_PLATFORM uECC_arch_other
+
+/* If desired, you can define uECC_WORD_SIZE as appropriate for your platform (1, 4, or 8 bytes).
+If uECC_WORD_SIZE is not explicitly defined then it will be automatically set based on your
+platform. */
+
+/* Optimization level; trade speed for code size.
+ Larger values produce code that is faster but larger.
+ Currently supported values are 0 - 4; 0 is unusably slow for most applications.
+ Optimization level 4 currently only has an effect ARM platforms where more than one
+ curve is enabled. */
+#ifndef uECC_OPTIMIZATION_LEVEL
+ #define uECC_OPTIMIZATION_LEVEL 2
+#endif
+
+/* uECC_SQUARE_FUNC - If enabled (defined as nonzero), this will cause a specific function to be
+used for (scalar) squaring instead of the generic multiplication function. This can make things
+faster somewhat faster, but increases the code size. */
+#ifndef uECC_SQUARE_FUNC
+ #define uECC_SQUARE_FUNC 0
+#endif
+
+/* uECC_VLI_NATIVE_LITTLE_ENDIAN - If enabled (defined as nonzero), this will switch to native
+little-endian format for *all* arrays passed in and out of the public API. This includes public
+and private keys, shared secrets, signatures and message hashes.
+Using this switch reduces the amount of call stack memory used by uECC, since less intermediate
+translations are required.
+Note that this will *only* work on native little-endian processors and it will treat the uint8_t
+arrays passed into the public API as word arrays, therefore requiring the provided byte arrays
+to be word aligned on architectures that do not support unaligned accesses.
+IMPORTANT: Keys and signatures generated with uECC_VLI_NATIVE_LITTLE_ENDIAN=1 are incompatible
+with keys and signatures generated with uECC_VLI_NATIVE_LITTLE_ENDIAN=0; all parties must use
+the same endianness. */
+#ifndef uECC_VLI_NATIVE_LITTLE_ENDIAN
+ #define uECC_VLI_NATIVE_LITTLE_ENDIAN 0
+#endif
+
+/* Curve support selection. Set to 0 to remove that curve. */
+#ifndef uECC_SUPPORTS_secp160r1
+ #define uECC_SUPPORTS_secp160r1 1
+#endif
+#ifndef uECC_SUPPORTS_secp192r1
+ #define uECC_SUPPORTS_secp192r1 1
+#endif
+#ifndef uECC_SUPPORTS_secp224r1
+ #define uECC_SUPPORTS_secp224r1 1
+#endif
+#ifndef uECC_SUPPORTS_secp256r1
+ #define uECC_SUPPORTS_secp256r1 1
+#endif
+#ifndef uECC_SUPPORTS_secp256k1
+ #define uECC_SUPPORTS_secp256k1 1
+#endif
+
+/* Specifies whether compressed point format is supported.
+ Set to 0 to disable point compression/decompression functions. */
+#ifndef uECC_SUPPORT_COMPRESSED_POINT
+ #define uECC_SUPPORT_COMPRESSED_POINT 1
+#endif
+
+struct uECC_Curve_t;
+typedef const struct uECC_Curve_t * uECC_Curve;
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if uECC_SUPPORTS_secp160r1
+uECC_Curve uECC_secp160r1(void);
+#endif
+#if uECC_SUPPORTS_secp192r1
+uECC_Curve uECC_secp192r1(void);
+#endif
+#if uECC_SUPPORTS_secp224r1
+uECC_Curve uECC_secp224r1(void);
+#endif
+#if uECC_SUPPORTS_secp256r1
+uECC_Curve uECC_secp256r1(void);
+#endif
+#if uECC_SUPPORTS_secp256k1
+uECC_Curve uECC_secp256k1(void);
+#endif
+
+/* uECC_RNG_Function type
+The RNG function should fill 'size' random bytes into 'dest'. It should return 1 if
+'dest' was filled with random data, or 0 if the random data could not be generated.
+The filled-in values should be either truly random, or from a cryptographically-secure PRNG.
+
+A correctly functioning RNG function must be set (using uECC_set_rng()) before calling
+uECC_make_key() or uECC_sign().
+
+Setting a correctly functioning RNG function improves the resistance to side-channel attacks
+for uECC_shared_secret() and uECC_sign_deterministic().
+
+A correct RNG function is set by default when building for Windows, Linux, or OS X.
+If you are building on another POSIX-compliant system that supports /dev/random or /dev/urandom,
+you can define uECC_POSIX to use the predefined RNG. For embedded platforms there is no predefined
+RNG function; you must provide your own.
+*/
+typedef int (*uECC_RNG_Function)(uint8_t *dest, unsigned size);
+
+/* uECC_set_rng() function.
+Set the function that will be used to generate random bytes. The RNG function should
+return 1 if the random data was generated, or 0 if the random data could not be generated.
+
+On platforms where there is no predefined RNG function (eg embedded platforms), this must
+be called before uECC_make_key() or uECC_sign() are used.
+
+Inputs:
+ rng_function - The function that will be used to generate random bytes.
+*/
+void uECC_set_rng(uECC_RNG_Function rng_function);
+
+/* uECC_get_rng() function.
+
+Returns the function that will be used to generate random bytes.
+*/
+uECC_RNG_Function uECC_get_rng(void);
+
+/* uECC_curve_private_key_size() function.
+
+Returns the size of a private key for the curve in bytes.
+*/
+int uECC_curve_private_key_size(uECC_Curve curve);
+
+/* uECC_curve_public_key_size() function.
+
+Returns the size of a public key for the curve in bytes.
+*/
+int uECC_curve_public_key_size(uECC_Curve curve);
+
+/* uECC_make_key() function.
+Create a public/private key pair.
+
+Outputs:
+ public_key - Will be filled in with the public key. Must be at least 2 * the curve size
+ (in bytes) long. For example, if the curve is secp256r1, public_key must be 64
+ bytes long.
+ private_key - Will be filled in with the private key. Must be as long as the curve order; this
+ is typically the same as the curve size, except for secp160r1. For example, if the
+ curve is secp256r1, private_key must be 32 bytes long.
+
+ For secp160r1, private_key must be 21 bytes long! Note that the first byte will
+ almost always be 0 (there is about a 1 in 2^80 chance of it being non-zero).
+
+Returns 1 if the key pair was generated successfully, 0 if an error occurred.
+*/
+int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve);
+
+/* uECC_shared_secret() function.
+Compute a shared secret given your secret key and someone else's public key.
+Note: It is recommended that you hash the result of uECC_shared_secret() before using it for
+symmetric encryption or HMAC.
+
+Inputs:
+ public_key - The public key of the remote party.
+ private_key - Your private key.
+
+Outputs:
+ secret - Will be filled in with the shared secret value. Must be the same size as the
+ curve size; for example, if the curve is secp256r1, secret must be 32 bytes long.
+
+Returns 1 if the shared secret was generated successfully, 0 if an error occurred.
+*/
+int uECC_shared_secret(const uint8_t *public_key,
+ const uint8_t *private_key,
+ uint8_t *secret,
+ uECC_Curve curve);
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+/* uECC_compress() function.
+Compress a public key.
+
+Inputs:
+ public_key - The public key to compress.
+
+Outputs:
+ compressed - Will be filled in with the compressed public key. Must be at least
+ (curve size + 1) bytes long; for example, if the curve is secp256r1,
+ compressed must be 33 bytes long.
+*/
+void uECC_compress(const uint8_t *public_key, uint8_t *compressed, uECC_Curve curve);
+
+/* uECC_decompress() function.
+Decompress a compressed public key.
+
+Inputs:
+ compressed - The compressed public key.
+
+Outputs:
+ public_key - Will be filled in with the decompressed public key.
+*/
+void uECC_decompress(const uint8_t *compressed, uint8_t *public_key, uECC_Curve curve);
+#endif /* uECC_SUPPORT_COMPRESSED_POINT */
+
+/* uECC_valid_public_key() function.
+Check to see if a public key is valid.
+
+Note that you are not required to check for a valid public key before using any other uECC
+functions. However, you may wish to avoid spending CPU time computing a shared secret or
+verifying a signature using an invalid public key.
+
+Inputs:
+ public_key - The public key to check.
+
+Returns 1 if the public key is valid, 0 if it is invalid.
+*/
+int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
+
+/* uECC_compute_public_key() function.
+Compute the corresponding public key for a private key.
+
+Inputs:
+ private_key - The private key to compute the public key for
+
+Outputs:
+ public_key - Will be filled in with the corresponding public key
+
+Returns 1 if the key was computed successfully, 0 if an error occurred.
+*/
+int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve);
+
+/* uECC_sign() function.
+Generate an ECDSA signature for a given hash value.
+
+Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and pass it in to
+this function along with your private key.
+
+Inputs:
+ private_key - Your private key.
+ message_hash - The hash of the message to sign.
+ hash_size - The size of message_hash in bytes.
+
+Outputs:
+ signature - Will be filled in with the signature value. Must be at least 2 * curve size long.
+ For example, if the curve is secp256r1, signature must be 64 bytes long.
+
+Returns 1 if the signature generated successfully, 0 if an error occurred.
+*/
+int uECC_sign(const uint8_t *private_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ uint8_t *signature,
+ uECC_Curve curve);
+
+/* uECC_HashContext structure.
+This is used to pass in an arbitrary hash function to uECC_sign_deterministic().
+The structure will be used for multiple hash computations; each time a new hash
+is computed, init_hash() will be called, followed by one or more calls to
+update_hash(), and finally a call to finish_hash() to produce the resulting hash.
+
+The intention is that you will create a structure that includes uECC_HashContext
+followed by any hash-specific data. For example:
+
+typedef struct SHA256_HashContext {
+ uECC_HashContext uECC;
+ SHA256_CTX ctx;
+} SHA256_HashContext;
+
+void init_SHA256(uECC_HashContext *base) {
+ SHA256_HashContext *context = (SHA256_HashContext *)base;
+ SHA256_Init(&context->ctx);
+}
+
+void update_SHA256(uECC_HashContext *base,
+ const uint8_t *message,
+ unsigned message_size) {
+ SHA256_HashContext *context = (SHA256_HashContext *)base;
+ SHA256_Update(&context->ctx, message, message_size);
+}
+
+void finish_SHA256(uECC_HashContext *base, uint8_t *hash_result) {
+ SHA256_HashContext *context = (SHA256_HashContext *)base;
+ SHA256_Final(hash_result, &context->ctx);
+}
+
+... when signing ...
+{
+ uint8_t tmp[32 + 32 + 64];
+ SHA256_HashContext ctx = {{&init_SHA256, &update_SHA256, &finish_SHA256, 64, 32, tmp}};
+ uECC_sign_deterministic(key, message_hash, &ctx.uECC, signature);
+}
+*/
+typedef struct uECC_HashContext {
+ void (*init_hash)(const struct uECC_HashContext *context);
+ void (*update_hash)(const struct uECC_HashContext *context,
+ const uint8_t *message,
+ unsigned message_size);
+ void (*finish_hash)(const struct uECC_HashContext *context, uint8_t *hash_result);
+ unsigned block_size; /* Hash function block size in bytes, eg 64 for SHA-256. */
+ unsigned result_size; /* Hash function result size in bytes, eg 32 for SHA-256. */
+ uint8_t *tmp; /* Must point to a buffer of at least (2 * result_size + block_size) bytes. */
+} uECC_HashContext;
+
+/* uECC_sign_deterministic() function.
+Generate an ECDSA signature for a given hash value, using a deterministic algorithm
+(see RFC 6979). You do not need to set the RNG using uECC_set_rng() before calling
+this function; however, if the RNG is defined it will improve resistance to side-channel
+attacks.
+
+Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and pass it to
+this function along with your private key and a hash context. Note that the message_hash
+does not need to be computed with the same hash function used by hash_context.
+
+Inputs:
+ private_key - Your private key.
+ message_hash - The hash of the message to sign.
+ hash_size - The size of message_hash in bytes.
+ hash_context - A hash context to use.
+
+Outputs:
+ signature - Will be filled in with the signature value.
+
+Returns 1 if the signature generated successfully, 0 if an error occurred.
+*/
+int uECC_sign_deterministic(const uint8_t *private_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ const uECC_HashContext *hash_context,
+ uint8_t *signature,
+ uECC_Curve curve);
+
+/* uECC_verify() function.
+Verify an ECDSA signature.
+
+Usage: Compute the hash of the signed data using the same hash as the signer and
+pass it to this function along with the signer's public key and the signature values (r and s).
+
+Inputs:
+ public_key - The signer's public key.
+ message_hash - The hash of the signed data.
+ hash_size - The size of message_hash in bytes.
+ signature - The signature value.
+
+Returns 1 if the signature is valid, 0 if it is invalid.
+*/
+int uECC_verify(const uint8_t *public_key,
+ const uint8_t *message_hash,
+ unsigned hash_size,
+ const uint8_t *signature,
+ uECC_Curve curve);
+
+#ifdef __cplusplus
+} /* end of extern "C" */
+#endif
+
+#endif /* _UECC_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/uECC_vli.h Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,172 @@
+/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_VLI_H_
+#define _UECC_VLI_H_
+
+#include "uECC.h"
+#include "types.h"
+
+/* Functions for raw large-integer manipulation. These are only available
+ if uECC.c is compiled with uECC_ENABLE_VLI_API defined to 1. */
+#ifndef uECC_ENABLE_VLI_API
+ #define uECC_ENABLE_VLI_API 0
+#endif
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if uECC_ENABLE_VLI_API
+
+void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
+
+/* Constant-time comparison to zero - secure way to compare long integers */
+/* Returns 1 if vli == 0, 0 otherwise. */
+uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
+
+/* Returns nonzero if bit 'bit' of vli is set. */
+uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
+
+/* Counts the number of bits required to represent vli. */
+bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words);
+
+/* Sets dest = src. */
+void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words);
+
+/* Constant-time comparison function - secure way to compare long integers */
+/* Returns one if left == right, zero otherwise */
+uECC_word_t uECC_vli_equal(const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words);
+
+/* Constant-time comparison function - secure way to compare long integers */
+/* Returns sign of left - right, in constant time. */
+cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words);
+
+/* Computes vli = vli >> 1. */
+void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words);
+
+/* Computes result = left + right, returning carry. Can modify in place. */
+uECC_word_t uECC_vli_add(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words);
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+uECC_word_t uECC_vli_sub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words);
+
+/* Computes result = left * right. Result must be 2 * num_words long. */
+void uECC_vli_mult(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ wordcount_t num_words);
+
+/* Computes result = left^2. Result must be 2 * num_words long. */
+void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left, wordcount_t num_words);
+
+/* Computes result = (left + right) % mod.
+ Assumes that left < mod and right < mod, and that result does not overlap mod. */
+void uECC_vli_modAdd(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ const uECC_word_t *mod,
+ wordcount_t num_words);
+
+/* Computes result = (left - right) % mod.
+ Assumes that left < mod and right < mod, and that result does not overlap mod. */
+void uECC_vli_modSub(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ const uECC_word_t *mod,
+ wordcount_t num_words);
+
+/* Computes result = product % mod, where product is 2N words long.
+ Currently only designed to work for mod == curve->p or curve_n. */
+void uECC_vli_mmod(uECC_word_t *result,
+ uECC_word_t *product,
+ const uECC_word_t *mod,
+ wordcount_t num_words);
+
+/* Calculates result = product (mod curve->p), where product is up to
+ 2 * curve->num_words long. */
+void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve);
+
+/* Computes result = (left * right) % mod.
+ Currently only designed to work for mod == curve->p or curve_n. */
+void uECC_vli_modMult(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ const uECC_word_t *mod,
+ wordcount_t num_words);
+
+/* Computes result = (left * right) % curve->p. */
+void uECC_vli_modMult_fast(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *right,
+ uECC_Curve curve);
+
+/* Computes result = left^2 % mod.
+ Currently only designed to work for mod == curve->p or curve_n. */
+void uECC_vli_modSquare(uECC_word_t *result,
+ const uECC_word_t *left,
+ const uECC_word_t *mod,
+ wordcount_t num_words);
+
+/* Computes result = left^2 % curve->p. */
+void uECC_vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left, uECC_Curve curve);
+
+/* Computes result = (1 / input) % mod.*/
+void uECC_vli_modInv(uECC_word_t *result,
+ const uECC_word_t *input,
+ const uECC_word_t *mod,
+ wordcount_t num_words);
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+/* Calculates a = sqrt(a) (mod curve->p) */
+void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve);
+#endif
+
+/* Converts an integer in uECC native format to big-endian bytes. */
+void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, const uECC_word_t *native);
+/* Converts big-endian bytes to an integer in uECC native format. */
+void uECC_vli_bytesToNative(uECC_word_t *native, const uint8_t *bytes, int num_bytes);
+
+unsigned uECC_curve_num_words(uECC_Curve curve);
+unsigned uECC_curve_num_bytes(uECC_Curve curve);
+unsigned uECC_curve_num_bits(uECC_Curve curve);
+unsigned uECC_curve_num_n_words(uECC_Curve curve);
+unsigned uECC_curve_num_n_bytes(uECC_Curve curve);
+unsigned uECC_curve_num_n_bits(uECC_Curve curve);
+
+const uECC_word_t *uECC_curve_p(uECC_Curve curve);
+const uECC_word_t *uECC_curve_n(uECC_Curve curve);
+const uECC_word_t *uECC_curve_G(uECC_Curve curve);
+const uECC_word_t *uECC_curve_b(uECC_Curve curve);
+
+int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
+
+/* Multiplies a point by a scalar. Points are represented by the X coordinate followed by
+ the Y coordinate in the same array, both coordinates are curve->num_words long. Note
+ that scalar must be curve->num_n_words long (NOT curve->num_words). */
+void uECC_point_mult(uECC_word_t *result,
+ const uECC_word_t *point,
+ const uECC_word_t *scalar,
+ uECC_Curve curve);
+
+/* Generates a random integer in the range 0 < random < top.
+ Both random and top have num_words words. */
+int uECC_generate_random_int(uECC_word_t *random,
+ const uECC_word_t *top,
+ wordcount_t num_words);
+
+#endif /* uECC_ENABLE_VLI_API */
+
+#ifdef __cplusplus
+} /* end of extern "C" */
+#endif
+
+#endif /* _UECC_VLI_H_ */