micro-ECC for mbed, ported from GCC version from Github,

Dependents:   mbed_microECC Wallet_v1

Revision:
0:b6fdeddc0bc9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/uECC_vli.h	Thu Sep 07 12:10:11 2017 +0000
@@ -0,0 +1,172 @@
+/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
+
+#ifndef _UECC_VLI_H_
+#define _UECC_VLI_H_
+
+#include "uECC.h"
+#include "types.h"
+
+/* Functions for raw large-integer manipulation. These are only available
+   if uECC.c is compiled with uECC_ENABLE_VLI_API defined to 1. */
+#ifndef uECC_ENABLE_VLI_API
+    #define uECC_ENABLE_VLI_API 0
+#endif
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if uECC_ENABLE_VLI_API
+
+void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
+
+/* Constant-time comparison to zero - secure way to compare long integers */
+/* Returns 1 if vli == 0, 0 otherwise. */
+uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
+
+/* Returns nonzero if bit 'bit' of vli is set. */
+uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
+
+/* Counts the number of bits required to represent vli. */
+bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words);
+
+/* Sets dest = src. */
+void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words);
+
+/* Constant-time comparison function - secure way to compare long integers */
+/* Returns one if left == right, zero otherwise */
+uECC_word_t uECC_vli_equal(const uECC_word_t *left,
+                           const uECC_word_t *right,
+                           wordcount_t num_words);
+
+/* Constant-time comparison function - secure way to compare long integers */
+/* Returns sign of left - right, in constant time. */
+cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right, wordcount_t num_words);
+
+/* Computes vli = vli >> 1. */
+void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words);
+
+/* Computes result = left + right, returning carry. Can modify in place. */
+uECC_word_t uECC_vli_add(uECC_word_t *result,
+                         const uECC_word_t *left,
+                         const uECC_word_t *right,
+                         wordcount_t num_words);
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+uECC_word_t uECC_vli_sub(uECC_word_t *result,
+                         const uECC_word_t *left,
+                         const uECC_word_t *right,
+                         wordcount_t num_words);
+
+/* Computes result = left * right. Result must be 2 * num_words long. */
+void uECC_vli_mult(uECC_word_t *result,
+                   const uECC_word_t *left,
+                   const uECC_word_t *right,
+                   wordcount_t num_words);
+
+/* Computes result = left^2. Result must be 2 * num_words long. */
+void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left, wordcount_t num_words);
+
+/* Computes result = (left + right) % mod.
+   Assumes that left < mod and right < mod, and that result does not overlap mod. */
+void uECC_vli_modAdd(uECC_word_t *result,
+                     const uECC_word_t *left,
+                     const uECC_word_t *right,
+                     const uECC_word_t *mod,
+                     wordcount_t num_words);
+
+/* Computes result = (left - right) % mod.
+   Assumes that left < mod and right < mod, and that result does not overlap mod. */
+void uECC_vli_modSub(uECC_word_t *result,
+                     const uECC_word_t *left,
+                     const uECC_word_t *right,
+                     const uECC_word_t *mod,
+                     wordcount_t num_words);
+
+/* Computes result = product % mod, where product is 2N words long.
+   Currently only designed to work for mod == curve->p or curve_n. */
+void uECC_vli_mmod(uECC_word_t *result,
+                   uECC_word_t *product,
+                   const uECC_word_t *mod,
+                   wordcount_t num_words);
+
+/* Calculates result = product (mod curve->p), where product is up to
+   2 * curve->num_words long. */
+void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve);
+
+/* Computes result = (left * right) % mod.
+   Currently only designed to work for mod == curve->p or curve_n. */
+void uECC_vli_modMult(uECC_word_t *result,
+                      const uECC_word_t *left,
+                      const uECC_word_t *right,
+                      const uECC_word_t *mod,
+                      wordcount_t num_words);
+
+/* Computes result = (left * right) % curve->p. */
+void uECC_vli_modMult_fast(uECC_word_t *result,
+                           const uECC_word_t *left,
+                           const uECC_word_t *right,
+                           uECC_Curve curve);
+
+/* Computes result = left^2 % mod.
+   Currently only designed to work for mod == curve->p or curve_n. */
+void uECC_vli_modSquare(uECC_word_t *result,
+                        const uECC_word_t *left,
+                        const uECC_word_t *mod,
+                        wordcount_t num_words);
+
+/* Computes result = left^2 % curve->p. */
+void uECC_vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left, uECC_Curve curve);
+
+/* Computes result = (1 / input) % mod.*/
+void uECC_vli_modInv(uECC_word_t *result,
+                     const uECC_word_t *input,
+                     const uECC_word_t *mod,
+                     wordcount_t num_words);
+
+#if uECC_SUPPORT_COMPRESSED_POINT
+/* Calculates a = sqrt(a) (mod curve->p) */
+void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve);
+#endif
+
+/* Converts an integer in uECC native format to big-endian bytes. */
+void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, const uECC_word_t *native);
+/* Converts big-endian bytes to an integer in uECC native format. */
+void uECC_vli_bytesToNative(uECC_word_t *native, const uint8_t *bytes, int num_bytes);
+
+unsigned uECC_curve_num_words(uECC_Curve curve);
+unsigned uECC_curve_num_bytes(uECC_Curve curve);
+unsigned uECC_curve_num_bits(uECC_Curve curve);
+unsigned uECC_curve_num_n_words(uECC_Curve curve);
+unsigned uECC_curve_num_n_bytes(uECC_Curve curve);
+unsigned uECC_curve_num_n_bits(uECC_Curve curve);
+
+const uECC_word_t *uECC_curve_p(uECC_Curve curve);
+const uECC_word_t *uECC_curve_n(uECC_Curve curve);
+const uECC_word_t *uECC_curve_G(uECC_Curve curve);
+const uECC_word_t *uECC_curve_b(uECC_Curve curve);
+
+int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
+
+/* Multiplies a point by a scalar. Points are represented by the X coordinate followed by
+   the Y coordinate in the same array, both coordinates are curve->num_words long. Note
+   that scalar must be curve->num_n_words long (NOT curve->num_words). */
+void uECC_point_mult(uECC_word_t *result,
+                     const uECC_word_t *point,
+                     const uECC_word_t *scalar,
+                     uECC_Curve curve);
+
+/* Generates a random integer in the range 0 < random < top.
+   Both random and top have num_words words. */
+int uECC_generate_random_int(uECC_word_t *random,
+                             const uECC_word_t *top,
+                             wordcount_t num_words);
+
+#endif /* uECC_ENABLE_VLI_API */
+
+#ifdef __cplusplus
+} /* end of extern "C" */
+#endif
+
+#endif /* _UECC_VLI_H_ */