Simulation of flight pitch control with servo sweep.

Dependencies:   mbed Servo mbed-rtos Motor

Committer:
alevale32
Date:
Thu Dec 13 22:02:40 2018 +0000
Revision:
5:8db82a61e052
RTOS pitch control simulation with servo sweep

Who changed what in which revision?

UserRevisionLine numberNew contents of line
alevale32 5:8db82a61e052 1 /******************************************************************************
alevale32 5:8db82a61e052 2 SFE_LSM9DS1.cpp
alevale32 5:8db82a61e052 3 SFE_LSM9DS1 Library Source File
alevale32 5:8db82a61e052 4 Jim Lindblom @ SparkFun Electronics
alevale32 5:8db82a61e052 5 Original Creation Date: February 27, 2015
alevale32 5:8db82a61e052 6 https://github.com/sparkfun/LSM9DS1_Breakout
alevale32 5:8db82a61e052 7
alevale32 5:8db82a61e052 8 This file implements all functions of the LSM9DS1 class. Functions here range
alevale32 5:8db82a61e052 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
alevale32 5:8db82a61e052 10 hardware reads and writes. Both SPI and I2C handler functions can be found
alevale32 5:8db82a61e052 11 towards the bottom of this file.
alevale32 5:8db82a61e052 12
alevale32 5:8db82a61e052 13 Development environment specifics:
alevale32 5:8db82a61e052 14 IDE: Arduino 1.6
alevale32 5:8db82a61e052 15 Hardware Platform: Arduino Uno
alevale32 5:8db82a61e052 16 LSM9DS1 Breakout Version: 1.0
alevale32 5:8db82a61e052 17
alevale32 5:8db82a61e052 18 This code is beerware; if you see me (or any other SparkFun employee) at the
alevale32 5:8db82a61e052 19 local, and you've found our code helpful, please buy us a round!
alevale32 5:8db82a61e052 20
alevale32 5:8db82a61e052 21 Distributed as-is; no warranty is given.
alevale32 5:8db82a61e052 22 ******************************************************************************/
alevale32 5:8db82a61e052 23
alevale32 5:8db82a61e052 24 #include "LSM9DS1.h"
alevale32 5:8db82a61e052 25 #include "LSM9DS1_Registers.h"
alevale32 5:8db82a61e052 26 #include "LSM9DS1_Types.h"
alevale32 5:8db82a61e052 27 //#include <Wire.h> // Wire library is used for I2C
alevale32 5:8db82a61e052 28 //#include <SPI.h> // SPI library is used for...SPI.
alevale32 5:8db82a61e052 29
alevale32 5:8db82a61e052 30 //#if defined(ARDUINO) && ARDUINO >= 100
alevale32 5:8db82a61e052 31 // #include "Arduino.h"
alevale32 5:8db82a61e052 32 //#else
alevale32 5:8db82a61e052 33 // #include "WProgram.h"
alevale32 5:8db82a61e052 34 //#endif
alevale32 5:8db82a61e052 35
alevale32 5:8db82a61e052 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
alevale32 5:8db82a61e052 37
alevale32 5:8db82a61e052 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
alevale32 5:8db82a61e052 39 extern Serial pc;
alevale32 5:8db82a61e052 40
alevale32 5:8db82a61e052 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
alevale32 5:8db82a61e052 42 :i2c(sda, scl)
alevale32 5:8db82a61e052 43 {
alevale32 5:8db82a61e052 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
alevale32 5:8db82a61e052 45 }
alevale32 5:8db82a61e052 46 /*
alevale32 5:8db82a61e052 47 LSM9DS1::LSM9DS1()
alevale32 5:8db82a61e052 48 {
alevale32 5:8db82a61e052 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
alevale32 5:8db82a61e052 50 }
alevale32 5:8db82a61e052 51
alevale32 5:8db82a61e052 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
alevale32 5:8db82a61e052 53 {
alevale32 5:8db82a61e052 54 init(interface, xgAddr, mAddr);
alevale32 5:8db82a61e052 55 }
alevale32 5:8db82a61e052 56 */
alevale32 5:8db82a61e052 57
alevale32 5:8db82a61e052 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
alevale32 5:8db82a61e052 59 {
alevale32 5:8db82a61e052 60 settings.device.commInterface = interface;
alevale32 5:8db82a61e052 61 settings.device.agAddress = xgAddr;
alevale32 5:8db82a61e052 62 settings.device.mAddress = mAddr;
alevale32 5:8db82a61e052 63
alevale32 5:8db82a61e052 64 settings.gyro.enabled = true;
alevale32 5:8db82a61e052 65 settings.gyro.enableX = true;
alevale32 5:8db82a61e052 66 settings.gyro.enableY = true;
alevale32 5:8db82a61e052 67 settings.gyro.enableZ = true;
alevale32 5:8db82a61e052 68 // gyro scale can be 245, 500, or 2000
alevale32 5:8db82a61e052 69 settings.gyro.scale = 245;
alevale32 5:8db82a61e052 70 // gyro sample rate: value between 1-6
alevale32 5:8db82a61e052 71 // 1 = 14.9 4 = 238
alevale32 5:8db82a61e052 72 // 2 = 59.5 5 = 476
alevale32 5:8db82a61e052 73 // 3 = 119 6 = 952
alevale32 5:8db82a61e052 74 settings.gyro.sampleRate = 6;
alevale32 5:8db82a61e052 75 // gyro cutoff frequency: value between 0-3
alevale32 5:8db82a61e052 76 // Actual value of cutoff frequency depends
alevale32 5:8db82a61e052 77 // on sample rate.
alevale32 5:8db82a61e052 78 settings.gyro.bandwidth = 0;
alevale32 5:8db82a61e052 79 settings.gyro.lowPowerEnable = false;
alevale32 5:8db82a61e052 80 settings.gyro.HPFEnable = false;
alevale32 5:8db82a61e052 81 // Gyro HPF cutoff frequency: value between 0-9
alevale32 5:8db82a61e052 82 // Actual value depends on sample rate. Only applies
alevale32 5:8db82a61e052 83 // if gyroHPFEnable is true.
alevale32 5:8db82a61e052 84 settings.gyro.HPFCutoff = 0;
alevale32 5:8db82a61e052 85 settings.gyro.flipX = false;
alevale32 5:8db82a61e052 86 settings.gyro.flipY = false;
alevale32 5:8db82a61e052 87 settings.gyro.flipZ = false;
alevale32 5:8db82a61e052 88 settings.gyro.orientation = 0;
alevale32 5:8db82a61e052 89 settings.gyro.latchInterrupt = true;
alevale32 5:8db82a61e052 90
alevale32 5:8db82a61e052 91 settings.accel.enabled = true;
alevale32 5:8db82a61e052 92 settings.accel.enableX = true;
alevale32 5:8db82a61e052 93 settings.accel.enableY = true;
alevale32 5:8db82a61e052 94 settings.accel.enableZ = true;
alevale32 5:8db82a61e052 95 // accel scale can be 2, 4, 8, or 16
alevale32 5:8db82a61e052 96 settings.accel.scale = 2;
alevale32 5:8db82a61e052 97 // accel sample rate can be 1-6
alevale32 5:8db82a61e052 98 // 1 = 10 Hz 4 = 238 Hz
alevale32 5:8db82a61e052 99 // 2 = 50 Hz 5 = 476 Hz
alevale32 5:8db82a61e052 100 // 3 = 119 Hz 6 = 952 Hz
alevale32 5:8db82a61e052 101 settings.accel.sampleRate = 6;
alevale32 5:8db82a61e052 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
alevale32 5:8db82a61e052 103 // -1 = bandwidth determined by sample rate
alevale32 5:8db82a61e052 104 // 0 = 408 Hz 2 = 105 Hz
alevale32 5:8db82a61e052 105 // 1 = 211 Hz 3 = 50 Hz
alevale32 5:8db82a61e052 106 settings.accel.bandwidth = -1;
alevale32 5:8db82a61e052 107 settings.accel.highResEnable = false;
alevale32 5:8db82a61e052 108 // accelHighResBandwidth can be any value between 0-3
alevale32 5:8db82a61e052 109 // LP cutoff is set to a factor of sample rate
alevale32 5:8db82a61e052 110 // 0 = ODR/50 2 = ODR/9
alevale32 5:8db82a61e052 111 // 1 = ODR/100 3 = ODR/400
alevale32 5:8db82a61e052 112 settings.accel.highResBandwidth = 0;
alevale32 5:8db82a61e052 113
alevale32 5:8db82a61e052 114 settings.mag.enabled = true;
alevale32 5:8db82a61e052 115 // mag scale can be 4, 8, 12, or 16
alevale32 5:8db82a61e052 116 settings.mag.scale = 4;
alevale32 5:8db82a61e052 117 // mag data rate can be 0-7
alevale32 5:8db82a61e052 118 // 0 = 0.625 Hz 4 = 10 Hz
alevale32 5:8db82a61e052 119 // 1 = 1.25 Hz 5 = 20 Hz
alevale32 5:8db82a61e052 120 // 2 = 2.5 Hz 6 = 40 Hz
alevale32 5:8db82a61e052 121 // 3 = 5 Hz 7 = 80 Hz
alevale32 5:8db82a61e052 122 settings.mag.sampleRate = 7;
alevale32 5:8db82a61e052 123 settings.mag.tempCompensationEnable = false;
alevale32 5:8db82a61e052 124 // magPerformance can be any value between 0-3
alevale32 5:8db82a61e052 125 // 0 = Low power mode 2 = high performance
alevale32 5:8db82a61e052 126 // 1 = medium performance 3 = ultra-high performance
alevale32 5:8db82a61e052 127 settings.mag.XYPerformance = 3;
alevale32 5:8db82a61e052 128 settings.mag.ZPerformance = 3;
alevale32 5:8db82a61e052 129 settings.mag.lowPowerEnable = false;
alevale32 5:8db82a61e052 130 // magOperatingMode can be 0-2
alevale32 5:8db82a61e052 131 // 0 = continuous conversion
alevale32 5:8db82a61e052 132 // 1 = single-conversion
alevale32 5:8db82a61e052 133 // 2 = power down
alevale32 5:8db82a61e052 134 settings.mag.operatingMode = 0;
alevale32 5:8db82a61e052 135
alevale32 5:8db82a61e052 136 settings.temp.enabled = true;
alevale32 5:8db82a61e052 137 for (int i=0; i<3; i++)
alevale32 5:8db82a61e052 138 {
alevale32 5:8db82a61e052 139 gBias[i] = 0;
alevale32 5:8db82a61e052 140 aBias[i] = 0;
alevale32 5:8db82a61e052 141 mBias[i] = 0;
alevale32 5:8db82a61e052 142 gBiasRaw[i] = 0;
alevale32 5:8db82a61e052 143 aBiasRaw[i] = 0;
alevale32 5:8db82a61e052 144 mBiasRaw[i] = 0;
alevale32 5:8db82a61e052 145 }
alevale32 5:8db82a61e052 146 _autoCalc = false;
alevale32 5:8db82a61e052 147 }
alevale32 5:8db82a61e052 148
alevale32 5:8db82a61e052 149
alevale32 5:8db82a61e052 150 uint16_t LSM9DS1::begin()
alevale32 5:8db82a61e052 151 {
alevale32 5:8db82a61e052 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
alevale32 5:8db82a61e052 153 _xgAddress = settings.device.agAddress;
alevale32 5:8db82a61e052 154 _mAddress = settings.device.mAddress;
alevale32 5:8db82a61e052 155
alevale32 5:8db82a61e052 156 constrainScales();
alevale32 5:8db82a61e052 157 // Once we have the scale values, we can calculate the resolution
alevale32 5:8db82a61e052 158 // of each sensor. That's what these functions are for. One for each sensor
alevale32 5:8db82a61e052 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
alevale32 5:8db82a61e052 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
alevale32 5:8db82a61e052 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
alevale32 5:8db82a61e052 162
alevale32 5:8db82a61e052 163 // Now, initialize our hardware interface.
alevale32 5:8db82a61e052 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
alevale32 5:8db82a61e052 165 initI2C(); // Initialize I2C
alevale32 5:8db82a61e052 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
alevale32 5:8db82a61e052 167 initSPI(); // Initialize SPI
alevale32 5:8db82a61e052 168
alevale32 5:8db82a61e052 169 // To verify communication, we can read from the WHO_AM_I register of
alevale32 5:8db82a61e052 170 // each device. Store those in a variable so we can return them.
alevale32 5:8db82a61e052 171 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
alevale32 5:8db82a61e052 172 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
alevale32 5:8db82a61e052 173 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
alevale32 5:8db82a61e052 174 uint16_t whoAmICombined = (xgTest << 8) | mTest;
alevale32 5:8db82a61e052 175
alevale32 5:8db82a61e052 176 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
alevale32 5:8db82a61e052 177 return 0;
alevale32 5:8db82a61e052 178
alevale32 5:8db82a61e052 179 // Gyro initialization stuff:
alevale32 5:8db82a61e052 180 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
alevale32 5:8db82a61e052 181
alevale32 5:8db82a61e052 182 // Accelerometer initialization stuff:
alevale32 5:8db82a61e052 183 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
alevale32 5:8db82a61e052 184
alevale32 5:8db82a61e052 185 // Magnetometer initialization stuff:
alevale32 5:8db82a61e052 186 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
alevale32 5:8db82a61e052 187
alevale32 5:8db82a61e052 188 // Once everything is initialized, return the WHO_AM_I registers we read:
alevale32 5:8db82a61e052 189 return whoAmICombined;
alevale32 5:8db82a61e052 190 }
alevale32 5:8db82a61e052 191
alevale32 5:8db82a61e052 192 void LSM9DS1::initGyro()
alevale32 5:8db82a61e052 193 {
alevale32 5:8db82a61e052 194 uint8_t tempRegValue = 0;
alevale32 5:8db82a61e052 195
alevale32 5:8db82a61e052 196 // CTRL_REG1_G (Default value: 0x00)
alevale32 5:8db82a61e052 197 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
alevale32 5:8db82a61e052 198 // ODR_G[2:0] - Output data rate selection
alevale32 5:8db82a61e052 199 // FS_G[1:0] - Gyroscope full-scale selection
alevale32 5:8db82a61e052 200 // BW_G[1:0] - Gyroscope bandwidth selection
alevale32 5:8db82a61e052 201
alevale32 5:8db82a61e052 202 // To disable gyro, set sample rate bits to 0. We'll only set sample
alevale32 5:8db82a61e052 203 // rate if the gyro is enabled.
alevale32 5:8db82a61e052 204 if (settings.gyro.enabled)
alevale32 5:8db82a61e052 205 {
alevale32 5:8db82a61e052 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
alevale32 5:8db82a61e052 207 }
alevale32 5:8db82a61e052 208 switch (settings.gyro.scale)
alevale32 5:8db82a61e052 209 {
alevale32 5:8db82a61e052 210 case 500:
alevale32 5:8db82a61e052 211 tempRegValue |= (0x1 << 3);
alevale32 5:8db82a61e052 212 break;
alevale32 5:8db82a61e052 213 case 2000:
alevale32 5:8db82a61e052 214 tempRegValue |= (0x3 << 3);
alevale32 5:8db82a61e052 215 break;
alevale32 5:8db82a61e052 216 // Otherwise we'll set it to 245 dps (0x0 << 4)
alevale32 5:8db82a61e052 217 }
alevale32 5:8db82a61e052 218 tempRegValue |= (settings.gyro.bandwidth & 0x3);
alevale32 5:8db82a61e052 219 xgWriteByte(CTRL_REG1_G, tempRegValue);
alevale32 5:8db82a61e052 220
alevale32 5:8db82a61e052 221 // CTRL_REG2_G (Default value: 0x00)
alevale32 5:8db82a61e052 222 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
alevale32 5:8db82a61e052 223 // INT_SEL[1:0] - INT selection configuration
alevale32 5:8db82a61e052 224 // OUT_SEL[1:0] - Out selection configuration
alevale32 5:8db82a61e052 225 xgWriteByte(CTRL_REG2_G, 0x00);
alevale32 5:8db82a61e052 226
alevale32 5:8db82a61e052 227 // CTRL_REG3_G (Default value: 0x00)
alevale32 5:8db82a61e052 228 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
alevale32 5:8db82a61e052 229 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
alevale32 5:8db82a61e052 230 // HP_EN - HPF enable (0:disabled, 1: enabled)
alevale32 5:8db82a61e052 231 // HPCF_G[3:0] - HPF cutoff frequency
alevale32 5:8db82a61e052 232 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
alevale32 5:8db82a61e052 233 if (settings.gyro.HPFEnable)
alevale32 5:8db82a61e052 234 {
alevale32 5:8db82a61e052 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
alevale32 5:8db82a61e052 236 }
alevale32 5:8db82a61e052 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
alevale32 5:8db82a61e052 238
alevale32 5:8db82a61e052 239 // CTRL_REG4 (Default value: 0x38)
alevale32 5:8db82a61e052 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
alevale32 5:8db82a61e052 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
alevale32 5:8db82a61e052 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
alevale32 5:8db82a61e052 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
alevale32 5:8db82a61e052 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
alevale32 5:8db82a61e052 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
alevale32 5:8db82a61e052 246 tempRegValue = 0;
alevale32 5:8db82a61e052 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
alevale32 5:8db82a61e052 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
alevale32 5:8db82a61e052 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
alevale32 5:8db82a61e052 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
alevale32 5:8db82a61e052 251 xgWriteByte(CTRL_REG4, tempRegValue);
alevale32 5:8db82a61e052 252
alevale32 5:8db82a61e052 253 // ORIENT_CFG_G (Default value: 0x00)
alevale32 5:8db82a61e052 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
alevale32 5:8db82a61e052 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
alevale32 5:8db82a61e052 256 // Orient [2:0] - Directional user orientation selection
alevale32 5:8db82a61e052 257 tempRegValue = 0;
alevale32 5:8db82a61e052 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
alevale32 5:8db82a61e052 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
alevale32 5:8db82a61e052 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
alevale32 5:8db82a61e052 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
alevale32 5:8db82a61e052 262 }
alevale32 5:8db82a61e052 263
alevale32 5:8db82a61e052 264 void LSM9DS1::initAccel()
alevale32 5:8db82a61e052 265 {
alevale32 5:8db82a61e052 266 uint8_t tempRegValue = 0;
alevale32 5:8db82a61e052 267
alevale32 5:8db82a61e052 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
alevale32 5:8db82a61e052 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
alevale32 5:8db82a61e052 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
alevale32 5:8db82a61e052 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
alevale32 5:8db82a61e052 272 // Zen_XL - Z-axis output enabled
alevale32 5:8db82a61e052 273 // Yen_XL - Y-axis output enabled
alevale32 5:8db82a61e052 274 // Xen_XL - X-axis output enabled
alevale32 5:8db82a61e052 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
alevale32 5:8db82a61e052 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
alevale32 5:8db82a61e052 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
alevale32 5:8db82a61e052 278
alevale32 5:8db82a61e052 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
alevale32 5:8db82a61e052 280
alevale32 5:8db82a61e052 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
alevale32 5:8db82a61e052 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
alevale32 5:8db82a61e052 283 // ODR_XL[2:0] - Output data rate & power mode selection
alevale32 5:8db82a61e052 284 // FS_XL[1:0] - Full-scale selection
alevale32 5:8db82a61e052 285 // BW_SCAL_ODR - Bandwidth selection
alevale32 5:8db82a61e052 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
alevale32 5:8db82a61e052 287 tempRegValue = 0;
alevale32 5:8db82a61e052 288 // To disable the accel, set the sampleRate bits to 0.
alevale32 5:8db82a61e052 289 if (settings.accel.enabled)
alevale32 5:8db82a61e052 290 {
alevale32 5:8db82a61e052 291 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
alevale32 5:8db82a61e052 292 }
alevale32 5:8db82a61e052 293 switch (settings.accel.scale)
alevale32 5:8db82a61e052 294 {
alevale32 5:8db82a61e052 295 case 4:
alevale32 5:8db82a61e052 296 tempRegValue |= (0x2 << 3);
alevale32 5:8db82a61e052 297 break;
alevale32 5:8db82a61e052 298 case 8:
alevale32 5:8db82a61e052 299 tempRegValue |= (0x3 << 3);
alevale32 5:8db82a61e052 300 break;
alevale32 5:8db82a61e052 301 case 16:
alevale32 5:8db82a61e052 302 tempRegValue |= (0x1 << 3);
alevale32 5:8db82a61e052 303 break;
alevale32 5:8db82a61e052 304 // Otherwise it'll be set to 2g (0x0 << 3)
alevale32 5:8db82a61e052 305 }
alevale32 5:8db82a61e052 306 if (settings.accel.bandwidth >= 0)
alevale32 5:8db82a61e052 307 {
alevale32 5:8db82a61e052 308 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
alevale32 5:8db82a61e052 309 tempRegValue |= (settings.accel.bandwidth & 0x03);
alevale32 5:8db82a61e052 310 }
alevale32 5:8db82a61e052 311 xgWriteByte(CTRL_REG6_XL, tempRegValue);
alevale32 5:8db82a61e052 312
alevale32 5:8db82a61e052 313 // CTRL_REG7_XL (0x21) (Default value: 0x00)
alevale32 5:8db82a61e052 314 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
alevale32 5:8db82a61e052 315 // HR - High resolution mode (0: disable, 1: enable)
alevale32 5:8db82a61e052 316 // DCF[1:0] - Digital filter cutoff frequency
alevale32 5:8db82a61e052 317 // FDS - Filtered data selection
alevale32 5:8db82a61e052 318 // HPIS1 - HPF enabled for interrupt function
alevale32 5:8db82a61e052 319 tempRegValue = 0;
alevale32 5:8db82a61e052 320 if (settings.accel.highResEnable)
alevale32 5:8db82a61e052 321 {
alevale32 5:8db82a61e052 322 tempRegValue |= (1<<7); // Set HR bit
alevale32 5:8db82a61e052 323 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
alevale32 5:8db82a61e052 324 }
alevale32 5:8db82a61e052 325 xgWriteByte(CTRL_REG7_XL, tempRegValue);
alevale32 5:8db82a61e052 326 }
alevale32 5:8db82a61e052 327
alevale32 5:8db82a61e052 328 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
alevale32 5:8db82a61e052 329 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
alevale32 5:8db82a61e052 330 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
alevale32 5:8db82a61e052 331 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
alevale32 5:8db82a61e052 332 // subtract the biases ourselves. This results in a more accurate measurement in general and can
alevale32 5:8db82a61e052 333 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
alevale32 5:8db82a61e052 334 // is good practice.
alevale32 5:8db82a61e052 335 void LSM9DS1::calibrate(bool autoCalc)
alevale32 5:8db82a61e052 336 {
alevale32 5:8db82a61e052 337 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
alevale32 5:8db82a61e052 338 uint8_t samples = 0;
alevale32 5:8db82a61e052 339 int ii;
alevale32 5:8db82a61e052 340 int32_t aBiasRawTemp[3] = {0, 0, 0};
alevale32 5:8db82a61e052 341 int32_t gBiasRawTemp[3] = {0, 0, 0};
alevale32 5:8db82a61e052 342
alevale32 5:8db82a61e052 343 // Turn on FIFO and set threshold to 32 samples
alevale32 5:8db82a61e052 344 enableFIFO(true);
alevale32 5:8db82a61e052 345 setFIFO(FIFO_THS, 0x1F);
alevale32 5:8db82a61e052 346 while (samples < 0x1F)
alevale32 5:8db82a61e052 347 {
alevale32 5:8db82a61e052 348 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
alevale32 5:8db82a61e052 349 }
alevale32 5:8db82a61e052 350 for(ii = 0; ii < samples ; ii++)
alevale32 5:8db82a61e052 351 { // Read the gyro data stored in the FIFO
alevale32 5:8db82a61e052 352 readGyro();
alevale32 5:8db82a61e052 353 gBiasRawTemp[0] += gx;
alevale32 5:8db82a61e052 354 gBiasRawTemp[1] += gy;
alevale32 5:8db82a61e052 355 gBiasRawTemp[2] += gz;
alevale32 5:8db82a61e052 356 readAccel();
alevale32 5:8db82a61e052 357 aBiasRawTemp[0] += ax;
alevale32 5:8db82a61e052 358 aBiasRawTemp[1] += ay;
alevale32 5:8db82a61e052 359 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
alevale32 5:8db82a61e052 360 }
alevale32 5:8db82a61e052 361 for (ii = 0; ii < 3; ii++)
alevale32 5:8db82a61e052 362 {
alevale32 5:8db82a61e052 363 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
alevale32 5:8db82a61e052 364 gBias[ii] = calcGyro(gBiasRaw[ii]);
alevale32 5:8db82a61e052 365 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
alevale32 5:8db82a61e052 366 aBias[ii] = calcAccel(aBiasRaw[ii]);
alevale32 5:8db82a61e052 367 }
alevale32 5:8db82a61e052 368
alevale32 5:8db82a61e052 369 enableFIFO(false);
alevale32 5:8db82a61e052 370 setFIFO(FIFO_OFF, 0x00);
alevale32 5:8db82a61e052 371
alevale32 5:8db82a61e052 372 if (autoCalc) _autoCalc = true;
alevale32 5:8db82a61e052 373 }
alevale32 5:8db82a61e052 374
alevale32 5:8db82a61e052 375 void LSM9DS1::calibrateMag(bool loadIn)
alevale32 5:8db82a61e052 376 {
alevale32 5:8db82a61e052 377 int i, j;
alevale32 5:8db82a61e052 378 int16_t magMin[3] = {0, 0, 0};
alevale32 5:8db82a61e052 379 int16_t magMax[3] = {0, 0, 0}; // The road warrior
alevale32 5:8db82a61e052 380
alevale32 5:8db82a61e052 381 for (i=0; i<128; i++)
alevale32 5:8db82a61e052 382 {
alevale32 5:8db82a61e052 383 while (!magAvailable())
alevale32 5:8db82a61e052 384 ;
alevale32 5:8db82a61e052 385 readMag();
alevale32 5:8db82a61e052 386 int16_t magTemp[3] = {0, 0, 0};
alevale32 5:8db82a61e052 387 magTemp[0] = mx;
alevale32 5:8db82a61e052 388 magTemp[1] = my;
alevale32 5:8db82a61e052 389 magTemp[2] = mz;
alevale32 5:8db82a61e052 390 for (j = 0; j < 3; j++)
alevale32 5:8db82a61e052 391 {
alevale32 5:8db82a61e052 392 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
alevale32 5:8db82a61e052 393 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
alevale32 5:8db82a61e052 394 }
alevale32 5:8db82a61e052 395 }
alevale32 5:8db82a61e052 396 for (j = 0; j < 3; j++)
alevale32 5:8db82a61e052 397 {
alevale32 5:8db82a61e052 398 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
alevale32 5:8db82a61e052 399 mBias[j] = calcMag(mBiasRaw[j]);
alevale32 5:8db82a61e052 400 if (loadIn)
alevale32 5:8db82a61e052 401 magOffset(j, mBiasRaw[j]);
alevale32 5:8db82a61e052 402 }
alevale32 5:8db82a61e052 403
alevale32 5:8db82a61e052 404 }
alevale32 5:8db82a61e052 405 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
alevale32 5:8db82a61e052 406 {
alevale32 5:8db82a61e052 407 if (axis > 2)
alevale32 5:8db82a61e052 408 return;
alevale32 5:8db82a61e052 409 uint8_t msb, lsb;
alevale32 5:8db82a61e052 410 msb = (offset & 0xFF00) >> 8;
alevale32 5:8db82a61e052 411 lsb = offset & 0x00FF;
alevale32 5:8db82a61e052 412 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
alevale32 5:8db82a61e052 413 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
alevale32 5:8db82a61e052 414 }
alevale32 5:8db82a61e052 415
alevale32 5:8db82a61e052 416 void LSM9DS1::initMag()
alevale32 5:8db82a61e052 417 {
alevale32 5:8db82a61e052 418 uint8_t tempRegValue = 0;
alevale32 5:8db82a61e052 419
alevale32 5:8db82a61e052 420 // CTRL_REG1_M (Default value: 0x10)
alevale32 5:8db82a61e052 421 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
alevale32 5:8db82a61e052 422 // TEMP_COMP - Temperature compensation
alevale32 5:8db82a61e052 423 // OM[1:0] - X & Y axes op mode selection
alevale32 5:8db82a61e052 424 // 00:low-power, 01:medium performance
alevale32 5:8db82a61e052 425 // 10: high performance, 11:ultra-high performance
alevale32 5:8db82a61e052 426 // DO[2:0] - Output data rate selection
alevale32 5:8db82a61e052 427 // ST - Self-test enable
alevale32 5:8db82a61e052 428 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
alevale32 5:8db82a61e052 429 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
alevale32 5:8db82a61e052 430 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
alevale32 5:8db82a61e052 431 mWriteByte(CTRL_REG1_M, tempRegValue);
alevale32 5:8db82a61e052 432
alevale32 5:8db82a61e052 433 // CTRL_REG2_M (Default value 0x00)
alevale32 5:8db82a61e052 434 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
alevale32 5:8db82a61e052 435 // FS[1:0] - Full-scale configuration
alevale32 5:8db82a61e052 436 // REBOOT - Reboot memory content (0:normal, 1:reboot)
alevale32 5:8db82a61e052 437 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
alevale32 5:8db82a61e052 438 tempRegValue = 0;
alevale32 5:8db82a61e052 439 switch (settings.mag.scale)
alevale32 5:8db82a61e052 440 {
alevale32 5:8db82a61e052 441 case 8:
alevale32 5:8db82a61e052 442 tempRegValue |= (0x1 << 5);
alevale32 5:8db82a61e052 443 break;
alevale32 5:8db82a61e052 444 case 12:
alevale32 5:8db82a61e052 445 tempRegValue |= (0x2 << 5);
alevale32 5:8db82a61e052 446 break;
alevale32 5:8db82a61e052 447 case 16:
alevale32 5:8db82a61e052 448 tempRegValue |= (0x3 << 5);
alevale32 5:8db82a61e052 449 break;
alevale32 5:8db82a61e052 450 // Otherwise we'll default to 4 gauss (00)
alevale32 5:8db82a61e052 451 }
alevale32 5:8db82a61e052 452 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
alevale32 5:8db82a61e052 453
alevale32 5:8db82a61e052 454 // CTRL_REG3_M (Default value: 0x03)
alevale32 5:8db82a61e052 455 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
alevale32 5:8db82a61e052 456 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
alevale32 5:8db82a61e052 457 // LP - Low-power mode cofiguration (1:enable)
alevale32 5:8db82a61e052 458 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
alevale32 5:8db82a61e052 459 // MD[1:0] - Operating mode
alevale32 5:8db82a61e052 460 // 00:continuous conversion, 01:single-conversion,
alevale32 5:8db82a61e052 461 // 10,11: Power-down
alevale32 5:8db82a61e052 462 tempRegValue = 0;
alevale32 5:8db82a61e052 463 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
alevale32 5:8db82a61e052 464 tempRegValue |= (settings.mag.operatingMode & 0x3);
alevale32 5:8db82a61e052 465 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
alevale32 5:8db82a61e052 466
alevale32 5:8db82a61e052 467 // CTRL_REG4_M (Default value: 0x00)
alevale32 5:8db82a61e052 468 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
alevale32 5:8db82a61e052 469 // OMZ[1:0] - Z-axis operative mode selection
alevale32 5:8db82a61e052 470 // 00:low-power mode, 01:medium performance
alevale32 5:8db82a61e052 471 // 10:high performance, 10:ultra-high performance
alevale32 5:8db82a61e052 472 // BLE - Big/little endian data
alevale32 5:8db82a61e052 473 tempRegValue = 0;
alevale32 5:8db82a61e052 474 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
alevale32 5:8db82a61e052 475 mWriteByte(CTRL_REG4_M, tempRegValue);
alevale32 5:8db82a61e052 476
alevale32 5:8db82a61e052 477 // CTRL_REG5_M (Default value: 0x00)
alevale32 5:8db82a61e052 478 // [0][BDU][0][0][0][0][0][0]
alevale32 5:8db82a61e052 479 // BDU - Block data update for magnetic data
alevale32 5:8db82a61e052 480 // 0:continuous, 1:not updated until MSB/LSB are read
alevale32 5:8db82a61e052 481 tempRegValue = 0;
alevale32 5:8db82a61e052 482 mWriteByte(CTRL_REG5_M, tempRegValue);
alevale32 5:8db82a61e052 483 }
alevale32 5:8db82a61e052 484
alevale32 5:8db82a61e052 485 uint8_t LSM9DS1::accelAvailable()
alevale32 5:8db82a61e052 486 {
alevale32 5:8db82a61e052 487 uint8_t status = xgReadByte(STATUS_REG_1);
alevale32 5:8db82a61e052 488
alevale32 5:8db82a61e052 489 return (status & (1<<0));
alevale32 5:8db82a61e052 490 }
alevale32 5:8db82a61e052 491
alevale32 5:8db82a61e052 492 uint8_t LSM9DS1::gyroAvailable()
alevale32 5:8db82a61e052 493 {
alevale32 5:8db82a61e052 494 uint8_t status = xgReadByte(STATUS_REG_1);
alevale32 5:8db82a61e052 495
alevale32 5:8db82a61e052 496 return ((status & (1<<1)) >> 1);
alevale32 5:8db82a61e052 497 }
alevale32 5:8db82a61e052 498
alevale32 5:8db82a61e052 499 uint8_t LSM9DS1::tempAvailable()
alevale32 5:8db82a61e052 500 {
alevale32 5:8db82a61e052 501 uint8_t status = xgReadByte(STATUS_REG_1);
alevale32 5:8db82a61e052 502
alevale32 5:8db82a61e052 503 return ((status & (1<<2)) >> 2);
alevale32 5:8db82a61e052 504 }
alevale32 5:8db82a61e052 505
alevale32 5:8db82a61e052 506 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
alevale32 5:8db82a61e052 507 {
alevale32 5:8db82a61e052 508 uint8_t status;
alevale32 5:8db82a61e052 509 status = mReadByte(STATUS_REG_M);
alevale32 5:8db82a61e052 510
alevale32 5:8db82a61e052 511 return ((status & (1<<axis)) >> axis);
alevale32 5:8db82a61e052 512 }
alevale32 5:8db82a61e052 513
alevale32 5:8db82a61e052 514 void LSM9DS1::readAccel()
alevale32 5:8db82a61e052 515 {
alevale32 5:8db82a61e052 516 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
alevale32 5:8db82a61e052 517 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
alevale32 5:8db82a61e052 518 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
alevale32 5:8db82a61e052 519 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
alevale32 5:8db82a61e052 520 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
alevale32 5:8db82a61e052 521 if (_autoCalc)
alevale32 5:8db82a61e052 522 {
alevale32 5:8db82a61e052 523 ax -= aBiasRaw[X_AXIS];
alevale32 5:8db82a61e052 524 ay -= aBiasRaw[Y_AXIS];
alevale32 5:8db82a61e052 525 az -= aBiasRaw[Z_AXIS];
alevale32 5:8db82a61e052 526 }
alevale32 5:8db82a61e052 527 }
alevale32 5:8db82a61e052 528
alevale32 5:8db82a61e052 529 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
alevale32 5:8db82a61e052 530 {
alevale32 5:8db82a61e052 531 uint8_t temp[2];
alevale32 5:8db82a61e052 532 int16_t value;
alevale32 5:8db82a61e052 533 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
alevale32 5:8db82a61e052 534 value = (temp[1] << 8) | temp[0];
alevale32 5:8db82a61e052 535
alevale32 5:8db82a61e052 536 if (_autoCalc)
alevale32 5:8db82a61e052 537 value -= aBiasRaw[axis];
alevale32 5:8db82a61e052 538
alevale32 5:8db82a61e052 539 return value;
alevale32 5:8db82a61e052 540 }
alevale32 5:8db82a61e052 541
alevale32 5:8db82a61e052 542 void LSM9DS1::readMag()
alevale32 5:8db82a61e052 543 {
alevale32 5:8db82a61e052 544 uint8_t temp[6]; // We'll read six bytes from the mag into temp
alevale32 5:8db82a61e052 545 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
alevale32 5:8db82a61e052 546 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
alevale32 5:8db82a61e052 547 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
alevale32 5:8db82a61e052 548 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
alevale32 5:8db82a61e052 549 }
alevale32 5:8db82a61e052 550
alevale32 5:8db82a61e052 551 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
alevale32 5:8db82a61e052 552 {
alevale32 5:8db82a61e052 553 uint8_t temp[2];
alevale32 5:8db82a61e052 554 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
alevale32 5:8db82a61e052 555 return (temp[1] << 8) | temp[0];
alevale32 5:8db82a61e052 556 }
alevale32 5:8db82a61e052 557
alevale32 5:8db82a61e052 558 void LSM9DS1::readTemp()
alevale32 5:8db82a61e052 559 {
alevale32 5:8db82a61e052 560 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
alevale32 5:8db82a61e052 561 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
alevale32 5:8db82a61e052 562 temperature = ((int16_t)temp[1] << 8) | temp[0];
alevale32 5:8db82a61e052 563 }
alevale32 5:8db82a61e052 564
alevale32 5:8db82a61e052 565 void LSM9DS1::readGyro()
alevale32 5:8db82a61e052 566 {
alevale32 5:8db82a61e052 567 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
alevale32 5:8db82a61e052 568 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
alevale32 5:8db82a61e052 569 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
alevale32 5:8db82a61e052 570 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
alevale32 5:8db82a61e052 571 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
alevale32 5:8db82a61e052 572 if (_autoCalc)
alevale32 5:8db82a61e052 573 {
alevale32 5:8db82a61e052 574 gx -= gBiasRaw[X_AXIS];
alevale32 5:8db82a61e052 575 gy -= gBiasRaw[Y_AXIS];
alevale32 5:8db82a61e052 576 gz -= gBiasRaw[Z_AXIS];
alevale32 5:8db82a61e052 577 }
alevale32 5:8db82a61e052 578 }
alevale32 5:8db82a61e052 579
alevale32 5:8db82a61e052 580 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
alevale32 5:8db82a61e052 581 {
alevale32 5:8db82a61e052 582 uint8_t temp[2];
alevale32 5:8db82a61e052 583 int16_t value;
alevale32 5:8db82a61e052 584
alevale32 5:8db82a61e052 585 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
alevale32 5:8db82a61e052 586
alevale32 5:8db82a61e052 587 value = (temp[1] << 8) | temp[0];
alevale32 5:8db82a61e052 588
alevale32 5:8db82a61e052 589 if (_autoCalc)
alevale32 5:8db82a61e052 590 value -= gBiasRaw[axis];
alevale32 5:8db82a61e052 591
alevale32 5:8db82a61e052 592 return value;
alevale32 5:8db82a61e052 593 }
alevale32 5:8db82a61e052 594
alevale32 5:8db82a61e052 595 float LSM9DS1::calcGyro(int16_t gyro)
alevale32 5:8db82a61e052 596 {
alevale32 5:8db82a61e052 597 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
alevale32 5:8db82a61e052 598 return gRes * gyro;
alevale32 5:8db82a61e052 599 }
alevale32 5:8db82a61e052 600
alevale32 5:8db82a61e052 601 float LSM9DS1::calcAccel(int16_t accel)
alevale32 5:8db82a61e052 602 {
alevale32 5:8db82a61e052 603 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
alevale32 5:8db82a61e052 604 return aRes * accel;
alevale32 5:8db82a61e052 605 }
alevale32 5:8db82a61e052 606
alevale32 5:8db82a61e052 607 float LSM9DS1::calcMag(int16_t mag)
alevale32 5:8db82a61e052 608 {
alevale32 5:8db82a61e052 609 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
alevale32 5:8db82a61e052 610 return mRes * mag;
alevale32 5:8db82a61e052 611 }
alevale32 5:8db82a61e052 612
alevale32 5:8db82a61e052 613 void LSM9DS1::setGyroScale(uint16_t gScl)
alevale32 5:8db82a61e052 614 {
alevale32 5:8db82a61e052 615 // Read current value of CTRL_REG1_G:
alevale32 5:8db82a61e052 616 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
alevale32 5:8db82a61e052 617 // Mask out scale bits (3 & 4):
alevale32 5:8db82a61e052 618 ctrl1RegValue &= 0xE7;
alevale32 5:8db82a61e052 619 switch (gScl)
alevale32 5:8db82a61e052 620 {
alevale32 5:8db82a61e052 621 case 500:
alevale32 5:8db82a61e052 622 ctrl1RegValue |= (0x1 << 3);
alevale32 5:8db82a61e052 623 settings.gyro.scale = 500;
alevale32 5:8db82a61e052 624 break;
alevale32 5:8db82a61e052 625 case 2000:
alevale32 5:8db82a61e052 626 ctrl1RegValue |= (0x3 << 3);
alevale32 5:8db82a61e052 627 settings.gyro.scale = 2000;
alevale32 5:8db82a61e052 628 break;
alevale32 5:8db82a61e052 629 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
alevale32 5:8db82a61e052 630 settings.gyro.scale = 245;
alevale32 5:8db82a61e052 631 break;
alevale32 5:8db82a61e052 632 }
alevale32 5:8db82a61e052 633 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
alevale32 5:8db82a61e052 634
alevale32 5:8db82a61e052 635 calcgRes();
alevale32 5:8db82a61e052 636 }
alevale32 5:8db82a61e052 637
alevale32 5:8db82a61e052 638 void LSM9DS1::setAccelScale(uint8_t aScl)
alevale32 5:8db82a61e052 639 {
alevale32 5:8db82a61e052 640 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
alevale32 5:8db82a61e052 641 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
alevale32 5:8db82a61e052 642 // Mask out accel scale bits:
alevale32 5:8db82a61e052 643 tempRegValue &= 0xE7;
alevale32 5:8db82a61e052 644
alevale32 5:8db82a61e052 645 switch (aScl)
alevale32 5:8db82a61e052 646 {
alevale32 5:8db82a61e052 647 case 4:
alevale32 5:8db82a61e052 648 tempRegValue |= (0x2 << 3);
alevale32 5:8db82a61e052 649 settings.accel.scale = 4;
alevale32 5:8db82a61e052 650 break;
alevale32 5:8db82a61e052 651 case 8:
alevale32 5:8db82a61e052 652 tempRegValue |= (0x3 << 3);
alevale32 5:8db82a61e052 653 settings.accel.scale = 8;
alevale32 5:8db82a61e052 654 break;
alevale32 5:8db82a61e052 655 case 16:
alevale32 5:8db82a61e052 656 tempRegValue |= (0x1 << 3);
alevale32 5:8db82a61e052 657 settings.accel.scale = 16;
alevale32 5:8db82a61e052 658 break;
alevale32 5:8db82a61e052 659 default: // Otherwise it'll be set to 2g (0x0 << 3)
alevale32 5:8db82a61e052 660 settings.accel.scale = 2;
alevale32 5:8db82a61e052 661 break;
alevale32 5:8db82a61e052 662 }
alevale32 5:8db82a61e052 663 xgWriteByte(CTRL_REG6_XL, tempRegValue);
alevale32 5:8db82a61e052 664
alevale32 5:8db82a61e052 665 // Then calculate a new aRes, which relies on aScale being set correctly:
alevale32 5:8db82a61e052 666 calcaRes();
alevale32 5:8db82a61e052 667 }
alevale32 5:8db82a61e052 668
alevale32 5:8db82a61e052 669 void LSM9DS1::setMagScale(uint8_t mScl)
alevale32 5:8db82a61e052 670 {
alevale32 5:8db82a61e052 671 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
alevale32 5:8db82a61e052 672 uint8_t temp = mReadByte(CTRL_REG2_M);
alevale32 5:8db82a61e052 673 // Then mask out the mag scale bits:
alevale32 5:8db82a61e052 674 temp &= 0xFF^(0x3 << 5);
alevale32 5:8db82a61e052 675
alevale32 5:8db82a61e052 676 switch (mScl)
alevale32 5:8db82a61e052 677 {
alevale32 5:8db82a61e052 678 case 8:
alevale32 5:8db82a61e052 679 temp |= (0x1 << 5);
alevale32 5:8db82a61e052 680 settings.mag.scale = 8;
alevale32 5:8db82a61e052 681 break;
alevale32 5:8db82a61e052 682 case 12:
alevale32 5:8db82a61e052 683 temp |= (0x2 << 5);
alevale32 5:8db82a61e052 684 settings.mag.scale = 12;
alevale32 5:8db82a61e052 685 break;
alevale32 5:8db82a61e052 686 case 16:
alevale32 5:8db82a61e052 687 temp |= (0x3 << 5);
alevale32 5:8db82a61e052 688 settings.mag.scale = 16;
alevale32 5:8db82a61e052 689 break;
alevale32 5:8db82a61e052 690 default: // Otherwise we'll default to 4 gauss (00)
alevale32 5:8db82a61e052 691 settings.mag.scale = 4;
alevale32 5:8db82a61e052 692 break;
alevale32 5:8db82a61e052 693 }
alevale32 5:8db82a61e052 694
alevale32 5:8db82a61e052 695 // And write the new register value back into CTRL_REG6_XM:
alevale32 5:8db82a61e052 696 mWriteByte(CTRL_REG2_M, temp);
alevale32 5:8db82a61e052 697
alevale32 5:8db82a61e052 698 // We've updated the sensor, but we also need to update our class variables
alevale32 5:8db82a61e052 699 // First update mScale:
alevale32 5:8db82a61e052 700 //mScale = mScl;
alevale32 5:8db82a61e052 701 // Then calculate a new mRes, which relies on mScale being set correctly:
alevale32 5:8db82a61e052 702 calcmRes();
alevale32 5:8db82a61e052 703 }
alevale32 5:8db82a61e052 704
alevale32 5:8db82a61e052 705 void LSM9DS1::setGyroODR(uint8_t gRate)
alevale32 5:8db82a61e052 706 {
alevale32 5:8db82a61e052 707 // Only do this if gRate is not 0 (which would disable the gyro)
alevale32 5:8db82a61e052 708 if ((gRate & 0x07) != 0)
alevale32 5:8db82a61e052 709 {
alevale32 5:8db82a61e052 710 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
alevale32 5:8db82a61e052 711 uint8_t temp = xgReadByte(CTRL_REG1_G);
alevale32 5:8db82a61e052 712 // Then mask out the gyro ODR bits:
alevale32 5:8db82a61e052 713 temp &= 0xFF^(0x7 << 5);
alevale32 5:8db82a61e052 714 temp |= (gRate & 0x07) << 5;
alevale32 5:8db82a61e052 715 // Update our settings struct
alevale32 5:8db82a61e052 716 settings.gyro.sampleRate = gRate & 0x07;
alevale32 5:8db82a61e052 717 // And write the new register value back into CTRL_REG1_G:
alevale32 5:8db82a61e052 718 xgWriteByte(CTRL_REG1_G, temp);
alevale32 5:8db82a61e052 719 }
alevale32 5:8db82a61e052 720 }
alevale32 5:8db82a61e052 721
alevale32 5:8db82a61e052 722 void LSM9DS1::setAccelODR(uint8_t aRate)
alevale32 5:8db82a61e052 723 {
alevale32 5:8db82a61e052 724 // Only do this if aRate is not 0 (which would disable the accel)
alevale32 5:8db82a61e052 725 if ((aRate & 0x07) != 0)
alevale32 5:8db82a61e052 726 {
alevale32 5:8db82a61e052 727 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
alevale32 5:8db82a61e052 728 uint8_t temp = xgReadByte(CTRL_REG6_XL);
alevale32 5:8db82a61e052 729 // Then mask out the accel ODR bits:
alevale32 5:8db82a61e052 730 temp &= 0x1F;
alevale32 5:8db82a61e052 731 // Then shift in our new ODR bits:
alevale32 5:8db82a61e052 732 temp |= ((aRate & 0x07) << 5);
alevale32 5:8db82a61e052 733 settings.accel.sampleRate = aRate & 0x07;
alevale32 5:8db82a61e052 734 // And write the new register value back into CTRL_REG1_XM:
alevale32 5:8db82a61e052 735 xgWriteByte(CTRL_REG6_XL, temp);
alevale32 5:8db82a61e052 736 }
alevale32 5:8db82a61e052 737 }
alevale32 5:8db82a61e052 738
alevale32 5:8db82a61e052 739 void LSM9DS1::setMagODR(uint8_t mRate)
alevale32 5:8db82a61e052 740 {
alevale32 5:8db82a61e052 741 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
alevale32 5:8db82a61e052 742 uint8_t temp = mReadByte(CTRL_REG1_M);
alevale32 5:8db82a61e052 743 // Then mask out the mag ODR bits:
alevale32 5:8db82a61e052 744 temp &= 0xFF^(0x7 << 2);
alevale32 5:8db82a61e052 745 // Then shift in our new ODR bits:
alevale32 5:8db82a61e052 746 temp |= ((mRate & 0x07) << 2);
alevale32 5:8db82a61e052 747 settings.mag.sampleRate = mRate & 0x07;
alevale32 5:8db82a61e052 748 // And write the new register value back into CTRL_REG5_XM:
alevale32 5:8db82a61e052 749 mWriteByte(CTRL_REG1_M, temp);
alevale32 5:8db82a61e052 750 }
alevale32 5:8db82a61e052 751
alevale32 5:8db82a61e052 752 void LSM9DS1::calcgRes()
alevale32 5:8db82a61e052 753 {
alevale32 5:8db82a61e052 754 gRes = ((float) settings.gyro.scale) / 32768.0;
alevale32 5:8db82a61e052 755 }
alevale32 5:8db82a61e052 756
alevale32 5:8db82a61e052 757 void LSM9DS1::calcaRes()
alevale32 5:8db82a61e052 758 {
alevale32 5:8db82a61e052 759 aRes = ((float) settings.accel.scale) / 32768.0;
alevale32 5:8db82a61e052 760 }
alevale32 5:8db82a61e052 761
alevale32 5:8db82a61e052 762 void LSM9DS1::calcmRes()
alevale32 5:8db82a61e052 763 {
alevale32 5:8db82a61e052 764 //mRes = ((float) settings.mag.scale) / 32768.0;
alevale32 5:8db82a61e052 765 switch (settings.mag.scale)
alevale32 5:8db82a61e052 766 {
alevale32 5:8db82a61e052 767 case 4:
alevale32 5:8db82a61e052 768 mRes = magSensitivity[0];
alevale32 5:8db82a61e052 769 break;
alevale32 5:8db82a61e052 770 case 8:
alevale32 5:8db82a61e052 771 mRes = magSensitivity[1];
alevale32 5:8db82a61e052 772 break;
alevale32 5:8db82a61e052 773 case 12:
alevale32 5:8db82a61e052 774 mRes = magSensitivity[2];
alevale32 5:8db82a61e052 775 break;
alevale32 5:8db82a61e052 776 case 16:
alevale32 5:8db82a61e052 777 mRes = magSensitivity[3];
alevale32 5:8db82a61e052 778 break;
alevale32 5:8db82a61e052 779 }
alevale32 5:8db82a61e052 780
alevale32 5:8db82a61e052 781 }
alevale32 5:8db82a61e052 782
alevale32 5:8db82a61e052 783 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
alevale32 5:8db82a61e052 784 h_lactive activeLow, pp_od pushPull)
alevale32 5:8db82a61e052 785 {
alevale32 5:8db82a61e052 786 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
alevale32 5:8db82a61e052 787 // those two values.
alevale32 5:8db82a61e052 788 // [generator] should be an OR'd list of values from the interrupt_generators enum
alevale32 5:8db82a61e052 789 xgWriteByte(interrupt, generator);
alevale32 5:8db82a61e052 790
alevale32 5:8db82a61e052 791 // Configure CTRL_REG8
alevale32 5:8db82a61e052 792 uint8_t temp;
alevale32 5:8db82a61e052 793 temp = xgReadByte(CTRL_REG8);
alevale32 5:8db82a61e052 794
alevale32 5:8db82a61e052 795 if (activeLow) temp |= (1<<5);
alevale32 5:8db82a61e052 796 else temp &= ~(1<<5);
alevale32 5:8db82a61e052 797
alevale32 5:8db82a61e052 798 if (pushPull) temp &= ~(1<<4);
alevale32 5:8db82a61e052 799 else temp |= (1<<4);
alevale32 5:8db82a61e052 800
alevale32 5:8db82a61e052 801 xgWriteByte(CTRL_REG8, temp);
alevale32 5:8db82a61e052 802 }
alevale32 5:8db82a61e052 803
alevale32 5:8db82a61e052 804 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
alevale32 5:8db82a61e052 805 {
alevale32 5:8db82a61e052 806 uint8_t temp = 0;
alevale32 5:8db82a61e052 807
alevale32 5:8db82a61e052 808 temp = threshold & 0x7F;
alevale32 5:8db82a61e052 809 if (sleepOn) temp |= (1<<7);
alevale32 5:8db82a61e052 810 xgWriteByte(ACT_THS, temp);
alevale32 5:8db82a61e052 811
alevale32 5:8db82a61e052 812 xgWriteByte(ACT_DUR, duration);
alevale32 5:8db82a61e052 813 }
alevale32 5:8db82a61e052 814
alevale32 5:8db82a61e052 815 uint8_t LSM9DS1::getInactivity()
alevale32 5:8db82a61e052 816 {
alevale32 5:8db82a61e052 817 uint8_t temp = xgReadByte(STATUS_REG_0);
alevale32 5:8db82a61e052 818 temp &= (0x10);
alevale32 5:8db82a61e052 819 return temp;
alevale32 5:8db82a61e052 820 }
alevale32 5:8db82a61e052 821
alevale32 5:8db82a61e052 822 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
alevale32 5:8db82a61e052 823 {
alevale32 5:8db82a61e052 824 // Use variables from accel_interrupt_generator, OR'd together to create
alevale32 5:8db82a61e052 825 // the [generator]value.
alevale32 5:8db82a61e052 826 uint8_t temp = generator;
alevale32 5:8db82a61e052 827 if (andInterrupts) temp |= 0x80;
alevale32 5:8db82a61e052 828 xgWriteByte(INT_GEN_CFG_XL, temp);
alevale32 5:8db82a61e052 829 }
alevale32 5:8db82a61e052 830
alevale32 5:8db82a61e052 831 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
alevale32 5:8db82a61e052 832 {
alevale32 5:8db82a61e052 833 // Write threshold value to INT_GEN_THS_?_XL.
alevale32 5:8db82a61e052 834 // axis will be 0, 1, or 2 (x, y, z respectively)
alevale32 5:8db82a61e052 835 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
alevale32 5:8db82a61e052 836
alevale32 5:8db82a61e052 837 // Write duration and wait to INT_GEN_DUR_XL
alevale32 5:8db82a61e052 838 uint8_t temp;
alevale32 5:8db82a61e052 839 temp = (duration & 0x7F);
alevale32 5:8db82a61e052 840 if (wait) temp |= 0x80;
alevale32 5:8db82a61e052 841 xgWriteByte(INT_GEN_DUR_XL, temp);
alevale32 5:8db82a61e052 842 }
alevale32 5:8db82a61e052 843
alevale32 5:8db82a61e052 844 uint8_t LSM9DS1::getAccelIntSrc()
alevale32 5:8db82a61e052 845 {
alevale32 5:8db82a61e052 846 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
alevale32 5:8db82a61e052 847
alevale32 5:8db82a61e052 848 // Check if the IA_XL (interrupt active) bit is set
alevale32 5:8db82a61e052 849 if (intSrc & (1<<6))
alevale32 5:8db82a61e052 850 {
alevale32 5:8db82a61e052 851 return (intSrc & 0x3F);
alevale32 5:8db82a61e052 852 }
alevale32 5:8db82a61e052 853
alevale32 5:8db82a61e052 854 return 0;
alevale32 5:8db82a61e052 855 }
alevale32 5:8db82a61e052 856
alevale32 5:8db82a61e052 857 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
alevale32 5:8db82a61e052 858 {
alevale32 5:8db82a61e052 859 // Use variables from accel_interrupt_generator, OR'd together to create
alevale32 5:8db82a61e052 860 // the [generator]value.
alevale32 5:8db82a61e052 861 uint8_t temp = generator;
alevale32 5:8db82a61e052 862 if (aoi) temp |= 0x80;
alevale32 5:8db82a61e052 863 if (latch) temp |= 0x40;
alevale32 5:8db82a61e052 864 xgWriteByte(INT_GEN_CFG_G, temp);
alevale32 5:8db82a61e052 865 }
alevale32 5:8db82a61e052 866
alevale32 5:8db82a61e052 867 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
alevale32 5:8db82a61e052 868 {
alevale32 5:8db82a61e052 869 uint8_t buffer[2];
alevale32 5:8db82a61e052 870 buffer[0] = (threshold & 0x7F00) >> 8;
alevale32 5:8db82a61e052 871 buffer[1] = (threshold & 0x00FF);
alevale32 5:8db82a61e052 872 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
alevale32 5:8db82a61e052 873 // axis will be 0, 1, or 2 (x, y, z respectively)
alevale32 5:8db82a61e052 874 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
alevale32 5:8db82a61e052 875 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
alevale32 5:8db82a61e052 876
alevale32 5:8db82a61e052 877 // Write duration and wait to INT_GEN_DUR_XL
alevale32 5:8db82a61e052 878 uint8_t temp;
alevale32 5:8db82a61e052 879 temp = (duration & 0x7F);
alevale32 5:8db82a61e052 880 if (wait) temp |= 0x80;
alevale32 5:8db82a61e052 881 xgWriteByte(INT_GEN_DUR_G, temp);
alevale32 5:8db82a61e052 882 }
alevale32 5:8db82a61e052 883
alevale32 5:8db82a61e052 884 uint8_t LSM9DS1::getGyroIntSrc()
alevale32 5:8db82a61e052 885 {
alevale32 5:8db82a61e052 886 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
alevale32 5:8db82a61e052 887
alevale32 5:8db82a61e052 888 // Check if the IA_G (interrupt active) bit is set
alevale32 5:8db82a61e052 889 if (intSrc & (1<<6))
alevale32 5:8db82a61e052 890 {
alevale32 5:8db82a61e052 891 return (intSrc & 0x3F);
alevale32 5:8db82a61e052 892 }
alevale32 5:8db82a61e052 893
alevale32 5:8db82a61e052 894 return 0;
alevale32 5:8db82a61e052 895 }
alevale32 5:8db82a61e052 896
alevale32 5:8db82a61e052 897 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
alevale32 5:8db82a61e052 898 {
alevale32 5:8db82a61e052 899 // Mask out non-generator bits (0-4)
alevale32 5:8db82a61e052 900 uint8_t config = (generator & 0xE0);
alevale32 5:8db82a61e052 901 // IEA bit is 0 for active-low, 1 for active-high.
alevale32 5:8db82a61e052 902 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
alevale32 5:8db82a61e052 903 // IEL bit is 0 for latched, 1 for not-latched
alevale32 5:8db82a61e052 904 if (!latch) config |= (1<<1);
alevale32 5:8db82a61e052 905 // As long as we have at least 1 generator, enable the interrupt
alevale32 5:8db82a61e052 906 if (generator != 0) config |= (1<<0);
alevale32 5:8db82a61e052 907
alevale32 5:8db82a61e052 908 mWriteByte(INT_CFG_M, config);
alevale32 5:8db82a61e052 909 }
alevale32 5:8db82a61e052 910
alevale32 5:8db82a61e052 911 void LSM9DS1::configMagThs(uint16_t threshold)
alevale32 5:8db82a61e052 912 {
alevale32 5:8db82a61e052 913 // Write high eight bits of [threshold] to INT_THS_H_M
alevale32 5:8db82a61e052 914 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
alevale32 5:8db82a61e052 915 // Write low eight bits of [threshold] to INT_THS_L_M
alevale32 5:8db82a61e052 916 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
alevale32 5:8db82a61e052 917 }
alevale32 5:8db82a61e052 918
alevale32 5:8db82a61e052 919 uint8_t LSM9DS1::getMagIntSrc()
alevale32 5:8db82a61e052 920 {
alevale32 5:8db82a61e052 921 uint8_t intSrc = mReadByte(INT_SRC_M);
alevale32 5:8db82a61e052 922
alevale32 5:8db82a61e052 923 // Check if the INT (interrupt active) bit is set
alevale32 5:8db82a61e052 924 if (intSrc & (1<<0))
alevale32 5:8db82a61e052 925 {
alevale32 5:8db82a61e052 926 return (intSrc & 0xFE);
alevale32 5:8db82a61e052 927 }
alevale32 5:8db82a61e052 928
alevale32 5:8db82a61e052 929 return 0;
alevale32 5:8db82a61e052 930 }
alevale32 5:8db82a61e052 931
alevale32 5:8db82a61e052 932 void LSM9DS1::sleepGyro(bool enable)
alevale32 5:8db82a61e052 933 {
alevale32 5:8db82a61e052 934 uint8_t temp = xgReadByte(CTRL_REG9);
alevale32 5:8db82a61e052 935 if (enable) temp |= (1<<6);
alevale32 5:8db82a61e052 936 else temp &= ~(1<<6);
alevale32 5:8db82a61e052 937 xgWriteByte(CTRL_REG9, temp);
alevale32 5:8db82a61e052 938 }
alevale32 5:8db82a61e052 939
alevale32 5:8db82a61e052 940 void LSM9DS1::enableFIFO(bool enable)
alevale32 5:8db82a61e052 941 {
alevale32 5:8db82a61e052 942 uint8_t temp = xgReadByte(CTRL_REG9);
alevale32 5:8db82a61e052 943 if (enable) temp |= (1<<1);
alevale32 5:8db82a61e052 944 else temp &= ~(1<<1);
alevale32 5:8db82a61e052 945 xgWriteByte(CTRL_REG9, temp);
alevale32 5:8db82a61e052 946 }
alevale32 5:8db82a61e052 947
alevale32 5:8db82a61e052 948 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
alevale32 5:8db82a61e052 949 {
alevale32 5:8db82a61e052 950 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
alevale32 5:8db82a61e052 951 // limit it to the maximum.
alevale32 5:8db82a61e052 952 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
alevale32 5:8db82a61e052 953 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
alevale32 5:8db82a61e052 954 }
alevale32 5:8db82a61e052 955
alevale32 5:8db82a61e052 956 uint8_t LSM9DS1::getFIFOSamples()
alevale32 5:8db82a61e052 957 {
alevale32 5:8db82a61e052 958 return (xgReadByte(FIFO_SRC) & 0x3F);
alevale32 5:8db82a61e052 959 }
alevale32 5:8db82a61e052 960
alevale32 5:8db82a61e052 961 void LSM9DS1::constrainScales()
alevale32 5:8db82a61e052 962 {
alevale32 5:8db82a61e052 963 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
alevale32 5:8db82a61e052 964 (settings.gyro.scale != 2000))
alevale32 5:8db82a61e052 965 {
alevale32 5:8db82a61e052 966 settings.gyro.scale = 245;
alevale32 5:8db82a61e052 967 }
alevale32 5:8db82a61e052 968
alevale32 5:8db82a61e052 969 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
alevale32 5:8db82a61e052 970 (settings.accel.scale != 8) && (settings.accel.scale != 16))
alevale32 5:8db82a61e052 971 {
alevale32 5:8db82a61e052 972 settings.accel.scale = 2;
alevale32 5:8db82a61e052 973 }
alevale32 5:8db82a61e052 974
alevale32 5:8db82a61e052 975 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
alevale32 5:8db82a61e052 976 (settings.mag.scale != 12) && (settings.mag.scale != 16))
alevale32 5:8db82a61e052 977 {
alevale32 5:8db82a61e052 978 settings.mag.scale = 4;
alevale32 5:8db82a61e052 979 }
alevale32 5:8db82a61e052 980 }
alevale32 5:8db82a61e052 981
alevale32 5:8db82a61e052 982 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
alevale32 5:8db82a61e052 983 {
alevale32 5:8db82a61e052 984 // Whether we're using I2C or SPI, write a byte using the
alevale32 5:8db82a61e052 985 // gyro-specific I2C address or SPI CS pin.
alevale32 5:8db82a61e052 986 if (settings.device.commInterface == IMU_MODE_I2C) {
alevale32 5:8db82a61e052 987 printf("yo");
alevale32 5:8db82a61e052 988 I2CwriteByte(_xgAddress, subAddress, data);
alevale32 5:8db82a61e052 989 } else if (settings.device.commInterface == IMU_MODE_SPI) {
alevale32 5:8db82a61e052 990 SPIwriteByte(_xgAddress, subAddress, data);
alevale32 5:8db82a61e052 991 }
alevale32 5:8db82a61e052 992 }
alevale32 5:8db82a61e052 993
alevale32 5:8db82a61e052 994 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
alevale32 5:8db82a61e052 995 {
alevale32 5:8db82a61e052 996 // Whether we're using I2C or SPI, write a byte using the
alevale32 5:8db82a61e052 997 // accelerometer-specific I2C address or SPI CS pin.
alevale32 5:8db82a61e052 998 if (settings.device.commInterface == IMU_MODE_I2C)
alevale32 5:8db82a61e052 999 return I2CwriteByte(_mAddress, subAddress, data);
alevale32 5:8db82a61e052 1000 else if (settings.device.commInterface == IMU_MODE_SPI)
alevale32 5:8db82a61e052 1001 return SPIwriteByte(_mAddress, subAddress, data);
alevale32 5:8db82a61e052 1002 }
alevale32 5:8db82a61e052 1003
alevale32 5:8db82a61e052 1004 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
alevale32 5:8db82a61e052 1005 {
alevale32 5:8db82a61e052 1006 // Whether we're using I2C or SPI, read a byte using the
alevale32 5:8db82a61e052 1007 // gyro-specific I2C address or SPI CS pin.
alevale32 5:8db82a61e052 1008 if (settings.device.commInterface == IMU_MODE_I2C)
alevale32 5:8db82a61e052 1009 return I2CreadByte(_xgAddress, subAddress);
alevale32 5:8db82a61e052 1010 else if (settings.device.commInterface == IMU_MODE_SPI)
alevale32 5:8db82a61e052 1011 return SPIreadByte(_xgAddress, subAddress);
alevale32 5:8db82a61e052 1012 }
alevale32 5:8db82a61e052 1013
alevale32 5:8db82a61e052 1014 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
alevale32 5:8db82a61e052 1015 {
alevale32 5:8db82a61e052 1016 // Whether we're using I2C or SPI, read multiple bytes using the
alevale32 5:8db82a61e052 1017 // gyro-specific I2C address or SPI CS pin.
alevale32 5:8db82a61e052 1018 if (settings.device.commInterface == IMU_MODE_I2C) {
alevale32 5:8db82a61e052 1019 I2CreadBytes(_xgAddress, subAddress, dest, count);
alevale32 5:8db82a61e052 1020 } else if (settings.device.commInterface == IMU_MODE_SPI) {
alevale32 5:8db82a61e052 1021 SPIreadBytes(_xgAddress, subAddress, dest, count);
alevale32 5:8db82a61e052 1022 }
alevale32 5:8db82a61e052 1023 }
alevale32 5:8db82a61e052 1024
alevale32 5:8db82a61e052 1025 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
alevale32 5:8db82a61e052 1026 {
alevale32 5:8db82a61e052 1027 // Whether we're using I2C or SPI, read a byte using the
alevale32 5:8db82a61e052 1028 // accelerometer-specific I2C address or SPI CS pin.
alevale32 5:8db82a61e052 1029 if (settings.device.commInterface == IMU_MODE_I2C)
alevale32 5:8db82a61e052 1030 return I2CreadByte(_mAddress, subAddress);
alevale32 5:8db82a61e052 1031 else if (settings.device.commInterface == IMU_MODE_SPI)
alevale32 5:8db82a61e052 1032 return SPIreadByte(_mAddress, subAddress);
alevale32 5:8db82a61e052 1033 }
alevale32 5:8db82a61e052 1034
alevale32 5:8db82a61e052 1035 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
alevale32 5:8db82a61e052 1036 {
alevale32 5:8db82a61e052 1037 // Whether we're using I2C or SPI, read multiple bytes using the
alevale32 5:8db82a61e052 1038 // accelerometer-specific I2C address or SPI CS pin.
alevale32 5:8db82a61e052 1039 if (settings.device.commInterface == IMU_MODE_I2C)
alevale32 5:8db82a61e052 1040 I2CreadBytes(_mAddress, subAddress, dest, count);
alevale32 5:8db82a61e052 1041 else if (settings.device.commInterface == IMU_MODE_SPI)
alevale32 5:8db82a61e052 1042 SPIreadBytes(_mAddress, subAddress, dest, count);
alevale32 5:8db82a61e052 1043 }
alevale32 5:8db82a61e052 1044
alevale32 5:8db82a61e052 1045 void LSM9DS1::initSPI()
alevale32 5:8db82a61e052 1046 {
alevale32 5:8db82a61e052 1047 /*
alevale32 5:8db82a61e052 1048 pinMode(_xgAddress, OUTPUT);
alevale32 5:8db82a61e052 1049 digitalWrite(_xgAddress, HIGH);
alevale32 5:8db82a61e052 1050 pinMode(_mAddress, OUTPUT);
alevale32 5:8db82a61e052 1051 digitalWrite(_mAddress, HIGH);
alevale32 5:8db82a61e052 1052
alevale32 5:8db82a61e052 1053 SPI.begin();
alevale32 5:8db82a61e052 1054 // Maximum SPI frequency is 10MHz, could divide by 2 here:
alevale32 5:8db82a61e052 1055 SPI.setClockDivider(SPI_CLOCK_DIV2);
alevale32 5:8db82a61e052 1056 // Data is read and written MSb first.
alevale32 5:8db82a61e052 1057 SPI.setBitOrder(MSBFIRST);
alevale32 5:8db82a61e052 1058 // Data is captured on rising edge of clock (CPHA = 0)
alevale32 5:8db82a61e052 1059 // Base value of the clock is HIGH (CPOL = 1)
alevale32 5:8db82a61e052 1060 SPI.setDataMode(SPI_MODE0);
alevale32 5:8db82a61e052 1061 */
alevale32 5:8db82a61e052 1062 }
alevale32 5:8db82a61e052 1063
alevale32 5:8db82a61e052 1064 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
alevale32 5:8db82a61e052 1065 {
alevale32 5:8db82a61e052 1066 /*
alevale32 5:8db82a61e052 1067 digitalWrite(csPin, LOW); // Initiate communication
alevale32 5:8db82a61e052 1068
alevale32 5:8db82a61e052 1069 // If write, bit 0 (MSB) should be 0
alevale32 5:8db82a61e052 1070 // If single write, bit 1 should be 0
alevale32 5:8db82a61e052 1071 SPI.transfer(subAddress & 0x3F); // Send Address
alevale32 5:8db82a61e052 1072 SPI.transfer(data); // Send data
alevale32 5:8db82a61e052 1073
alevale32 5:8db82a61e052 1074 digitalWrite(csPin, HIGH); // Close communication
alevale32 5:8db82a61e052 1075 */
alevale32 5:8db82a61e052 1076 }
alevale32 5:8db82a61e052 1077
alevale32 5:8db82a61e052 1078 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
alevale32 5:8db82a61e052 1079 {
alevale32 5:8db82a61e052 1080 uint8_t temp;
alevale32 5:8db82a61e052 1081 // Use the multiple read function to read 1 byte.
alevale32 5:8db82a61e052 1082 // Value is returned to `temp`.
alevale32 5:8db82a61e052 1083 SPIreadBytes(csPin, subAddress, &temp, 1);
alevale32 5:8db82a61e052 1084 return temp;
alevale32 5:8db82a61e052 1085 }
alevale32 5:8db82a61e052 1086
alevale32 5:8db82a61e052 1087 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
alevale32 5:8db82a61e052 1088 uint8_t * dest, uint8_t count)
alevale32 5:8db82a61e052 1089 {
alevale32 5:8db82a61e052 1090 // To indicate a read, set bit 0 (msb) of first byte to 1
alevale32 5:8db82a61e052 1091 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
alevale32 5:8db82a61e052 1092 // Mag SPI port is different. If we're reading multiple bytes,
alevale32 5:8db82a61e052 1093 // set bit 1 to 1. The remaining six bytes are the address to be read
alevale32 5:8db82a61e052 1094 if ((csPin == _mAddress) && count > 1)
alevale32 5:8db82a61e052 1095 rAddress |= 0x40;
alevale32 5:8db82a61e052 1096
alevale32 5:8db82a61e052 1097 /*
alevale32 5:8db82a61e052 1098 digitalWrite(csPin, LOW); // Initiate communication
alevale32 5:8db82a61e052 1099 SPI.transfer(rAddress);
alevale32 5:8db82a61e052 1100 for (int i=0; i<count; i++)
alevale32 5:8db82a61e052 1101 {
alevale32 5:8db82a61e052 1102 dest[i] = SPI.transfer(0x00); // Read into destination array
alevale32 5:8db82a61e052 1103 }
alevale32 5:8db82a61e052 1104 digitalWrite(csPin, HIGH); // Close communication
alevale32 5:8db82a61e052 1105 */
alevale32 5:8db82a61e052 1106 }
alevale32 5:8db82a61e052 1107
alevale32 5:8db82a61e052 1108 void LSM9DS1::initI2C()
alevale32 5:8db82a61e052 1109 {
alevale32 5:8db82a61e052 1110 /*
alevale32 5:8db82a61e052 1111 Wire.begin(); // Initialize I2C library
alevale32 5:8db82a61e052 1112 */
alevale32 5:8db82a61e052 1113
alevale32 5:8db82a61e052 1114 //already initialized in constructor!
alevale32 5:8db82a61e052 1115 }
alevale32 5:8db82a61e052 1116
alevale32 5:8db82a61e052 1117 // Wire.h read and write protocols
alevale32 5:8db82a61e052 1118 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
alevale32 5:8db82a61e052 1119 {
alevale32 5:8db82a61e052 1120 /*
alevale32 5:8db82a61e052 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
alevale32 5:8db82a61e052 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
alevale32 5:8db82a61e052 1123 Wire.write(data); // Put data in Tx buffer
alevale32 5:8db82a61e052 1124 Wire.endTransmission(); // Send the Tx buffer
alevale32 5:8db82a61e052 1125 */
alevale32 5:8db82a61e052 1126 char temp_data[2] = {subAddress, data};
alevale32 5:8db82a61e052 1127 i2c.write(address, temp_data, 2);
alevale32 5:8db82a61e052 1128 }
alevale32 5:8db82a61e052 1129
alevale32 5:8db82a61e052 1130 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
alevale32 5:8db82a61e052 1131 {
alevale32 5:8db82a61e052 1132 /*
alevale32 5:8db82a61e052 1133 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
alevale32 5:8db82a61e052 1134 uint8_t data; // `data` will store the register data
alevale32 5:8db82a61e052 1135
alevale32 5:8db82a61e052 1136 Wire.beginTransmission(address); // Initialize the Tx buffer
alevale32 5:8db82a61e052 1137 Wire.write(subAddress); // Put slave register address in Tx buffer
alevale32 5:8db82a61e052 1138 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
alevale32 5:8db82a61e052 1139 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
alevale32 5:8db82a61e052 1140 while ((Wire.available() < 1) && (timeout-- > 0))
alevale32 5:8db82a61e052 1141 delay(1);
alevale32 5:8db82a61e052 1142
alevale32 5:8db82a61e052 1143 if (timeout <= 0)
alevale32 5:8db82a61e052 1144 return 255; //! Bad! 255 will be misinterpreted as a good value.
alevale32 5:8db82a61e052 1145
alevale32 5:8db82a61e052 1146 data = Wire.read(); // Fill Rx buffer with result
alevale32 5:8db82a61e052 1147 return data; // Return data read from slave register
alevale32 5:8db82a61e052 1148 */
alevale32 5:8db82a61e052 1149 char data;
alevale32 5:8db82a61e052 1150 char temp[1] = {subAddress};
alevale32 5:8db82a61e052 1151
alevale32 5:8db82a61e052 1152 i2c.write(address, temp, 1);
alevale32 5:8db82a61e052 1153 //i2c.write(address & 0xFE);
alevale32 5:8db82a61e052 1154 temp[1] = 0x00;
alevale32 5:8db82a61e052 1155 i2c.write(address, temp, 1);
alevale32 5:8db82a61e052 1156 //i2c.write( address | 0x01);
alevale32 5:8db82a61e052 1157 int a = i2c.read(address, &data, 1);
alevale32 5:8db82a61e052 1158 return data;
alevale32 5:8db82a61e052 1159 }
alevale32 5:8db82a61e052 1160
alevale32 5:8db82a61e052 1161 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
alevale32 5:8db82a61e052 1162 {
alevale32 5:8db82a61e052 1163 /*
alevale32 5:8db82a61e052 1164 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
alevale32 5:8db82a61e052 1165 Wire.beginTransmission(address); // Initialize the Tx buffer
alevale32 5:8db82a61e052 1166 // Next send the register to be read. OR with 0x80 to indicate multi-read.
alevale32 5:8db82a61e052 1167 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
alevale32 5:8db82a61e052 1168
alevale32 5:8db82a61e052 1169 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
alevale32 5:8db82a61e052 1170 uint8_t i = 0;
alevale32 5:8db82a61e052 1171 Wire.requestFrom(address, count); // Read bytes from slave register address
alevale32 5:8db82a61e052 1172 while ((Wire.available() < count) && (timeout-- > 0))
alevale32 5:8db82a61e052 1173 delay(1);
alevale32 5:8db82a61e052 1174 if (timeout <= 0)
alevale32 5:8db82a61e052 1175 return -1;
alevale32 5:8db82a61e052 1176
alevale32 5:8db82a61e052 1177 for (int i=0; i<count;)
alevale32 5:8db82a61e052 1178 {
alevale32 5:8db82a61e052 1179 if (Wire.available())
alevale32 5:8db82a61e052 1180 {
alevale32 5:8db82a61e052 1181 dest[i++] = Wire.read();
alevale32 5:8db82a61e052 1182 }
alevale32 5:8db82a61e052 1183 }
alevale32 5:8db82a61e052 1184 return count;
alevale32 5:8db82a61e052 1185 */
alevale32 5:8db82a61e052 1186 int i;
alevale32 5:8db82a61e052 1187 char temp_dest[count];
alevale32 5:8db82a61e052 1188 char temp[1] = {subAddress};
alevale32 5:8db82a61e052 1189 i2c.write(address, temp, 1);
alevale32 5:8db82a61e052 1190 i2c.read(address, temp_dest, count);
alevale32 5:8db82a61e052 1191
alevale32 5:8db82a61e052 1192 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
alevale32 5:8db82a61e052 1193 for (i=0; i < count; i++) {
alevale32 5:8db82a61e052 1194 dest[i] = temp_dest[i];
alevale32 5:8db82a61e052 1195 }
alevale32 5:8db82a61e052 1196 return count;
alevale32 5:8db82a61e052 1197 }