Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed MS5837 LSM9DS1project SDFileSystemproject SCI_SENSORproject
main.cpp
- Committer:
- alekboving
- Date:
- 2020-12-01
- Revision:
- 0:47a98d724c30
- Child:
- 1:90d5de35324c
File content as of revision 0:47a98d724c30:
/* Author Mingxi Zhou OCE360 underwater float template program */ #include "mbed.h" #include "LSM9DS1.h" //IMU library #include "MS5837.h" //pressure sensor library #include "SCI_SENSOR.h" //science sensor #include "SDFileSystem.h" // SD card DigitalOut myled(LED1); Serial pc(USBTX, USBRX); //initial serial Serial BLE(p13,p14); //Bluetooth LSM9DS1 IMU(p28, p27, 0xD6, 0x3C); //initial IMU LM19 temp(p19); PhotoCell light(p20); MS5837 p_sensor(p9, p10, ms5837_addr_no_CS); //pressure sensor PwmOut thruster(p21); //set PWM pin //max 1.3ms min 1.1ms PwmOut thruster2(p22); //set PWM pin SDFileSystem sd(p5, p6, p7, p8, "sd"); // the pinout on the mbed Cool Components workshop board //global ticker Ticker log_ticker; Ticker imu_ticker; // global timer Timer t; //MS5837 p_sensor(p9, p10, ms5837_addr_no_CS); ///File FILE *fp; char fname[100]; float PI = 3.14159265358979323846f; //float operation parameters float target_depth=0; //global target depth default 0 int yo_num=0; //global yo_num default 0 float thrust_on_time=0; //global thrust_on time default 0 float accel[3], mag[3], gyro[3], euler[3]; //global IMU data //functions void welcome(); void log_data(); //IMU related void IMU_update(); //update IMU related varibles. we use imu_ticker to call this function void mag_correction(float mx, float my, float mz, float mag_c[3]); //raw mag -> mag[3], mag_c[3] calibrated void pose_estimate(float euler[3], float accel[3], float gyro[3], float mag[3]); //pose estimation function //Control related functions void thrust_on(float pw, float on_time); //input is pulse width //-------------Main functions----------------------------------------------------------------------------------------- int main() { //-----Initialization realted code-------// //inital set the thruster esc to 1ms duty cycle thruster.period(0.002); // 2 ms period thruster.pulsewidth(1.0/1000.000); /////IMU initial and begin thruster2.period(0.002); // 2 ms period thruster2.pulsewidth(1.0/1000.000); /////IMU initial and begin IMU.begin(); IMU.calibrate(true); myled=1; //initialize pressure sensor pc.printf("setting the pressure sensor\r\n"); p_sensor.MS5837Reset(); p_sensor.MS5837Init(); pc.printf("settting the tickers\r\n"); t.start(); myled=0; welcome(); //-----setup ticker-------// //setup ticker to separate log and IMU data update. //so we could have all our control code in the while loop // //log at 2 Hz imu_ticker.attach(&IMU_update,0.1); //10Hz log_ticker.attach(&log_data,0.5); wait(1); while(1) { // put your main control code here } } //-------------Customized functions---------------------------------------------//---------------------------------------- ///-----------Welcome menu---------------------/// void welcome() { char buffer[100]= {0}; int flag=1; //Flush the port while(BLE.readable()) { BLE.getc(); } while(flag) { BLE.printf("### I am alive\r\n"); BLE.printf("### Please enter the log file name you want\r\n"); if(BLE.readable()) { BLE.scanf("%s",buffer); sprintf(fname,"/sd/mydir/%s.txt",buffer); //make file name flag = 0; //set the flag to 0 to break the while } myled=!myled; wait(1); } //print name BLE.printf("### name received\r\n"); BLE.printf("### file name and directory is: \r\n %s\r\n",fname); //file name and location //open file test mkdir("/sd/mydir",0777); //keep 0777, this is magic # fp = fopen(fname, "a"); if(fp == NULL) { BLE.printf("Could not open file for write\n"); } else { BLE.printf("##file open good \n"); //open file and tell if open fprintf(fp, "Hello\r\n"); fclose(fp); } BLE.printf("### The main program will start in 10 seconds\r\n"); wait(5); } ///-----------log functions---------------------/// void log_data() { //log system time t.read() // log imu data, log sciene data // log pulse width // log pressure sensor data. //science sensor: temp.temp(), light.light() //IMU sensor } ///-----------IMU related functions---------------------/// void IMU_update() { IMU.readMag(); IMU.readGyro(); IMU.readAccel(); accel[0] = IMU.calcAccel(IMU.ax); accel[1] = IMU.calcAccel(IMU.ay); accel[2] = -IMU.calcAccel(IMU.az); gyro[0] = IMU.calcGyro(IMU.gx); gyro[1] = IMU.calcGyro(IMU.gy); gyro[2] = -IMU.calcGyro(IMU.gz); mag_correction(IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz), mag); //mag correction mag[2] = - mag[2]; pose_estimate(euler, accel, gyro, mag); //pose update } void mag_correction(float mx, float my, float mz, float mag_c[3]) { float bias[3] = {0.0793,0.0357,0.2333}; float scale[3][3] = {{1.0070, 0.0705, 0.0368}, {0.0705, 1.0807, 0.0265}, {0.0368, 0.0265, 0.9250} }; //mag_c = (mag-bias)*scale mag_c[0] = (mx - bias[0]) *scale[0][0] + (my - bias[1]) *scale[1][0] + (mz - bias[2]) *scale[2][0]; mag_c[1] = (mx - bias[0]) *scale[0][1] + (my - bias[1]) *scale[1][1] + (mz - bias[2]) *scale[2][1]; mag_c[2] = (mx - bias[0]) *scale[0][2] + (my - bias[1]) *scale[1][2] + (mz - bias[2]) *scale[2][2]; } void pose_estimate(float euler[3], float accel[3], float gyro[3], float mag[3]) //pose estimation function { euler[0] = atan2 (accel[1], accel[2]/abs(accel[2])*(sqrt ((accel[0] * accel[0]) + (accel[2] * accel[2])))); euler[1] = - atan2( -accel[0],( sqrt((accel[1] * accel[1]) + (accel[2] * accel[2])))); float Yh = (mag[1] * cos(euler[0])) - (mag[2] * sin(euler[0])); float Xh = (mag[0] * cos(euler[1]))+(mag[1] * sin(euler[0])*sin(euler[1])) + (mag[2] * cos(euler[0]) * sin(euler[1])); euler[2] = atan2(Yh, Xh); //convert into degrees euler[0] *= 180.0f / PI; euler[1] *= 180.0f / PI; euler[2] *= 180.0f / PI; //wrap the values to be within 0 to 360. for (int i=0; i<3; i++) { if(euler[i]<=0) { euler[i]=euler[i]+360; } if(euler[i]>360) { euler[i]=euler[i]-360; } } } ///-----------Control related functions---------------------/// ////Thruster on control, pw->pulse width in milli-second// //// pw range between 1 to 1.5// //// on_time-> thruster on time. void thrust_on(float pw, float on_time) //input is pulse width { float pw_max=2.0; if(pw>pw_max) { pw=pw_max; //hard limitation } Timer tt; tt.reset(); tt.start(); // lets set the pulse width //thruster.period(20.0/1000.00); // 20 ms period thruster.pulsewidth(pw/1000.00); thruster2.pulsewidth(pw/1000.00); //PWM will be kept until time out while(tt.read()<=on_time) { } //stop the timer tt.stop(); //turn off the thruster thruster.pulsewidth(1.0/1000.00); thruster2.pulsewidth(1.0/1000.00); }