Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: CAN_TEST SPIne_Plus_DYNO_SENSORS SPIne_Plus_v2 SPIne_Plus_Dyno_v2
Diff: targets/TARGET_STM/stm_spi_api.c
- Revision:
- 0:083111ae2a11
diff -r 000000000000 -r 083111ae2a11 targets/TARGET_STM/stm_spi_api.c
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_STM/stm_spi_api.c Thu Nov 26 04:08:56 2020 +0000
@@ -0,0 +1,665 @@
+/* mbed Microcontroller Library
+ *******************************************************************************
+ * Copyright (c) 2015, STMicroelectronics
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *******************************************************************************
+ */
+#include "mbed_assert.h"
+#include "mbed_error.h"
+#include "spi_api.h"
+
+#if DEVICE_SPI
+#include <stdbool.h>
+#include <math.h>
+#include <string.h>
+#include "cmsis.h"
+#include "pinmap.h"
+#include "PeripheralPins.h"
+#include "spi_device.h"
+
+#if DEVICE_SPI_ASYNCH
+ #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi.spi))
+#else
+ #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi))
+#endif
+
+#if DEVICE_SPI_ASYNCH
+ #define SPI_S(obj) (( struct spi_s *)(&(obj->spi)))
+#else
+ #define SPI_S(obj) (( struct spi_s *)(obj))
+#endif
+
+#ifndef DEBUG_STDIO
+# define DEBUG_STDIO 0
+#endif
+
+#if DEBUG_STDIO
+# include <stdio.h>
+# define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
+#else
+# define DEBUG_PRINTF(...) {}
+#endif
+
+/* Consider 10ms as the default timeout for sending/receving 1 byte */
+#define TIMEOUT_1_BYTE 10
+
+void init_spi(spi_t *obj)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ __HAL_SPI_DISABLE(handle);
+
+ DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance);
+ if (HAL_SPI_Init(handle) != HAL_OK) {
+ error("Cannot initialize SPI");
+ }
+
+ /* In case of standard 4 wires SPI,PI can be kept enabled all time
+ * and SCK will only be generated during the write operations. But in case
+ * of 3 wires, it should be only enabled during rd/wr unitary operations,
+ * which is handled inside STM32 HAL layer.
+ */
+ if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
+ __HAL_SPI_ENABLE(handle);
+ }
+}
+
+void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ // Determine the SPI to use
+ SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
+ SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
+ SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
+ SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
+
+ SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
+ SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
+
+ spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
+ MBED_ASSERT(spiobj->spi != (SPIName)NC);
+
+#if defined SPI1_BASE
+ // Enable SPI clock
+ if (spiobj->spi == SPI_1) {
+ __HAL_RCC_SPI1_CLK_ENABLE();
+ spiobj->spiIRQ = SPI1_IRQn;
+ }
+#endif
+
+#if defined SPI2_BASE
+ if (spiobj->spi == SPI_2) {
+ __HAL_RCC_SPI2_CLK_ENABLE();
+ spiobj->spiIRQ = SPI2_IRQn;
+ }
+#endif
+
+#if defined SPI3_BASE
+ if (spiobj->spi == SPI_3) {
+ __HAL_RCC_SPI3_CLK_ENABLE();
+ spiobj->spiIRQ = SPI3_IRQn;
+ }
+#endif
+
+#if defined SPI4_BASE
+ if (spiobj->spi == SPI_4) {
+ __HAL_RCC_SPI4_CLK_ENABLE();
+ spiobj->spiIRQ = SPI4_IRQn;
+ }
+#endif
+
+#if defined SPI5_BASE
+ if (spiobj->spi == SPI_5) {
+ __HAL_RCC_SPI5_CLK_ENABLE();
+ spiobj->spiIRQ = SPI5_IRQn;
+ }
+#endif
+
+#if defined SPI6_BASE
+ if (spiobj->spi == SPI_6) {
+ __HAL_RCC_SPI6_CLK_ENABLE();
+ spiobj->spiIRQ = SPI6_IRQn;
+ }
+#endif
+
+ // Configure the SPI pins
+ pinmap_pinout(mosi, PinMap_SPI_MOSI);
+ pinmap_pinout(miso, PinMap_SPI_MISO);
+ pinmap_pinout(sclk, PinMap_SPI_SCLK);
+ spiobj->pin_miso = miso;
+ spiobj->pin_mosi = mosi;
+ spiobj->pin_sclk = sclk;
+ spiobj->pin_ssel = ssel;
+ if (ssel != NC) {
+ pinmap_pinout(ssel, PinMap_SPI_SSEL);
+ } else {
+ handle->Init.NSS = SPI_NSS_SOFT;
+ }
+
+ /* Fill default value */
+ handle->Instance = SPI_INST(obj);
+ handle->Init.Mode = SPI_MODE_MASTER;
+ handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
+
+ if (miso != NC) {
+ handle->Init.Direction = SPI_DIRECTION_2LINES;
+ } else {
+ handle->Init.Direction = SPI_DIRECTION_1LINE;
+ }
+
+ handle->Init.CLKPhase = SPI_PHASE_1EDGE;
+ handle->Init.CLKPolarity = SPI_POLARITY_LOW;
+ handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
+ handle->Init.CRCPolynomial = 7;
+ handle->Init.DataSize = SPI_DATASIZE_8BIT;
+ handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
+ handle->Init.TIMode = SPI_TIMODE_DISABLE;
+
+ init_spi(obj);
+}
+
+void spi_free(spi_t *obj)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ DEBUG_PRINTF("spi_free\r\n");
+
+ __HAL_SPI_DISABLE(handle);
+ HAL_SPI_DeInit(handle);
+
+#if defined SPI1_BASE
+ // Reset SPI and disable clock
+ if (spiobj->spi == SPI_1) {
+ __HAL_RCC_SPI1_FORCE_RESET();
+ __HAL_RCC_SPI1_RELEASE_RESET();
+ __HAL_RCC_SPI1_CLK_DISABLE();
+ }
+#endif
+#if defined SPI2_BASE
+ if (spiobj->spi == SPI_2) {
+ __HAL_RCC_SPI2_FORCE_RESET();
+ __HAL_RCC_SPI2_RELEASE_RESET();
+ __HAL_RCC_SPI2_CLK_DISABLE();
+ }
+#endif
+
+#if defined SPI3_BASE
+ if (spiobj->spi == SPI_3) {
+ __HAL_RCC_SPI3_FORCE_RESET();
+ __HAL_RCC_SPI3_RELEASE_RESET();
+ __HAL_RCC_SPI3_CLK_DISABLE();
+ }
+#endif
+
+#if defined SPI4_BASE
+ if (spiobj->spi == SPI_4) {
+ __HAL_RCC_SPI4_FORCE_RESET();
+ __HAL_RCC_SPI4_RELEASE_RESET();
+ __HAL_RCC_SPI4_CLK_DISABLE();
+ }
+#endif
+
+#if defined SPI5_BASE
+ if (spiobj->spi == SPI_5) {
+ __HAL_RCC_SPI5_FORCE_RESET();
+ __HAL_RCC_SPI5_RELEASE_RESET();
+ __HAL_RCC_SPI5_CLK_DISABLE();
+ }
+#endif
+
+#if defined SPI6_BASE
+ if (spiobj->spi == SPI_6) {
+ __HAL_RCC_SPI6_FORCE_RESET();
+ __HAL_RCC_SPI6_RELEASE_RESET();
+ __HAL_RCC_SPI6_CLK_DISABLE();
+ }
+#endif
+
+ // Configure GPIOs
+ pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+ pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+ pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+ if (handle->Init.NSS != SPI_NSS_SOFT) {
+ pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
+ }
+}
+
+void spi_format(spi_t *obj, int bits, int mode, int slave)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave);
+
+ // Save new values
+ handle->Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
+
+ switch (mode) {
+ case 0:
+ handle->Init.CLKPolarity = SPI_POLARITY_LOW;
+ handle->Init.CLKPhase = SPI_PHASE_1EDGE;
+ break;
+ case 1:
+ handle->Init.CLKPolarity = SPI_POLARITY_LOW;
+ handle->Init.CLKPhase = SPI_PHASE_2EDGE;
+ break;
+ case 2:
+ handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
+ handle->Init.CLKPhase = SPI_PHASE_1EDGE;
+ break;
+ default:
+ handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
+ handle->Init.CLKPhase = SPI_PHASE_2EDGE;
+ break;
+ }
+
+ if (handle->Init.NSS != SPI_NSS_SOFT) {
+ handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT;
+ }
+
+ handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;
+
+ init_spi(obj);
+}
+
+/*
+ * Only the IP clock input is family dependant so it computed
+ * separately in spi_get_clock_freq
+ */
+extern int spi_get_clock_freq(spi_t *obj);
+
+static const uint16_t baudrate_prescaler_table[] = {SPI_BAUDRATEPRESCALER_2,
+ SPI_BAUDRATEPRESCALER_4,
+ SPI_BAUDRATEPRESCALER_8,
+ SPI_BAUDRATEPRESCALER_16,
+ SPI_BAUDRATEPRESCALER_32,
+ SPI_BAUDRATEPRESCALER_64,
+ SPI_BAUDRATEPRESCALER_128,
+ SPI_BAUDRATEPRESCALER_256};
+
+void spi_frequency(spi_t *obj, int hz) {
+ struct spi_s *spiobj = SPI_S(obj);
+ int spi_hz = 0;
+ uint8_t prescaler_rank = 0;
+ uint8_t last_index = (sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) - 1;
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ /* Calculate the spi clock for prescaler_rank 0: SPI_BAUDRATEPRESCALER_2 */
+ spi_hz = spi_get_clock_freq(obj) / 2;
+
+ /* Define pre-scaler in order to get highest available frequency below requested frequency */
+ while ((spi_hz > hz) && (prescaler_rank < last_index)) {
+ spi_hz = spi_hz / 2;
+ prescaler_rank++;
+ }
+
+ /* Use the best fit pre-scaler */
+ handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank];
+
+ /* In case maximum pre-scaler still gives too high freq, raise an error */
+ if (spi_hz > hz) {
+ DEBUG_PRINTF("WARNING: lowest SPI freq (%d) higher than requested (%d)\r\n", spi_hz, hz);
+ }
+
+ DEBUG_PRINTF("spi_frequency, request:%d, select:%d\r\n", hz, spi_hz);
+
+ init_spi(obj);
+}
+
+static inline int ssp_readable(spi_t *obj)
+{
+ int status;
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ // Check if data is received
+ status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
+ return status;
+}
+
+static inline int ssp_writeable(spi_t *obj)
+{
+ int status;
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ // Check if data is transmitted
+ status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
+ return status;
+}
+
+static inline int ssp_busy(spi_t *obj)
+{
+ int status;
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+ status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
+ return status;
+}
+
+int spi_master_write(spi_t *obj, int value)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ if (handle->Init.Direction == SPI_DIRECTION_1LINE) {
+ return HAL_SPI_Transmit(handle, (uint8_t*)&value, 1, TIMEOUT_1_BYTE);
+ }
+
+#if defined(LL_SPI_RX_FIFO_TH_HALF)
+ /* Configure the default data size */
+ if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
+ LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_HALF);
+ } else {
+ LL_SPI_SetRxFIFOThreshold(SPI_INST(obj), LL_SPI_RX_FIFO_TH_QUARTER);
+ }
+#endif
+
+ /* Here we're using LL which means direct registers access
+ * There is no error management, so we may end up looping
+ * infinitely here in case of faulty device for insatnce,
+ * but this will increase performances significantly
+ */
+
+ /* Wait TXE flag to transmit data */
+ while (!LL_SPI_IsActiveFlag_TXE(SPI_INST(obj)));
+
+ if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
+ LL_SPI_TransmitData16(SPI_INST(obj), value);
+ } else {
+ LL_SPI_TransmitData8(SPI_INST(obj), (uint8_t) value);
+ }
+
+ /* Then wait RXE flag before reading */
+ while (!LL_SPI_IsActiveFlag_RXNE(SPI_INST(obj)));
+
+ if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
+ return LL_SPI_ReceiveData16(SPI_INST(obj));
+ } else {
+ return LL_SPI_ReceiveData8(SPI_INST(obj));
+ }
+}
+
+int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
+ char *rx_buffer, int rx_length, char write_fill)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+ int total = (tx_length > rx_length) ? tx_length : rx_length;
+ int i = 0;
+ if (handle->Init.Direction == SPI_DIRECTION_2LINES) {
+ for (i = 0; i < total; i++) {
+ char out = (i < tx_length) ? tx_buffer[i] : write_fill;
+ char in = spi_master_write(obj, out);
+ if (i < rx_length) {
+ rx_buffer[i] = in;
+ }
+ }
+ } else {
+ /* In case of 1 WIRE only, first handle TX, then Rx */
+ if (tx_length != 0) {
+ if (HAL_OK != HAL_SPI_Transmit(handle, (uint8_t*)tx_buffer, tx_length, tx_length*TIMEOUT_1_BYTE)) {
+ /* report an error */
+ total = 0;
+ }
+ }
+ if (rx_length != 0) {
+ if (HAL_OK != HAL_SPI_Receive(handle, (uint8_t*)rx_buffer, rx_length, rx_length*TIMEOUT_1_BYTE)) {
+ /* report an error */
+ total = 0;
+ }
+ }
+ }
+
+ return total;
+}
+
+int spi_slave_receive(spi_t *obj)
+{
+ return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
+};
+
+int spi_slave_read(spi_t *obj)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+ while (!ssp_readable(obj));
+ if (handle->Init.DataSize == SPI_DATASIZE_16BIT) {
+ return LL_SPI_ReceiveData16(SPI_INST(obj));
+ } else {
+ return LL_SPI_ReceiveData8(SPI_INST(obj));
+ }
+}
+
+void spi_slave_write(spi_t *obj, int value)
+{
+ SPI_TypeDef *spi = SPI_INST(obj);
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+ while (!ssp_writeable(obj));
+ if (handle->Init.DataSize == SPI_DATASIZE_8BIT) {
+ // Force 8-bit access to the data register
+ uint8_t *p_spi_dr = 0;
+ p_spi_dr = (uint8_t *) & (spi->DR);
+ *p_spi_dr = (uint8_t)value;
+ } else { // SPI_DATASIZE_16BIT
+ spi->DR = (uint16_t)value;
+ }
+}
+
+int spi_busy(spi_t *obj)
+{
+ return ssp_busy(obj);
+}
+
+#ifdef DEVICE_SPI_ASYNCH
+typedef enum {
+ SPI_TRANSFER_TYPE_NONE = 0,
+ SPI_TRANSFER_TYPE_TX = 1,
+ SPI_TRANSFER_TYPE_RX = 2,
+ SPI_TRANSFER_TYPE_TXRX = 3,
+} transfer_type_t;
+
+
+/// @returns the number of bytes transferred, or `0` if nothing transferred
+static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+ bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
+ // the HAL expects number of transfers instead of number of bytes
+ // so for 16 bit transfer width the count needs to be halved
+ size_t words;
+
+ DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length);
+
+ obj->spi.transfer_type = transfer_type;
+
+ if (is16bit) {
+ words = length / 2;
+ } else {
+ words = length;
+ }
+
+ // enable the interrupt
+ IRQn_Type irq_n = spiobj->spiIRQ;
+ NVIC_DisableIRQ(irq_n);
+ NVIC_ClearPendingIRQ(irq_n);
+ NVIC_SetPriority(irq_n, 1);
+ NVIC_EnableIRQ(irq_n);
+
+ // enable the right hal transfer
+ int rc = 0;
+ switch(transfer_type) {
+ case SPI_TRANSFER_TYPE_TXRX:
+ rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t*)tx, (uint8_t*)rx, words);
+ break;
+ case SPI_TRANSFER_TYPE_TX:
+ rc = HAL_SPI_Transmit_IT(handle, (uint8_t*)tx, words);
+ break;
+ case SPI_TRANSFER_TYPE_RX:
+ // the receive function also "transmits" the receive buffer so in order
+ // to guarantee that 0xff is on the line, we explicitly memset it here
+ memset(rx, SPI_FILL_WORD, length);
+ rc = HAL_SPI_Receive_IT(handle, (uint8_t*)rx, words);
+ break;
+ default:
+ length = 0;
+ }
+
+ if (rc) {
+ DEBUG_PRINTF("SPI: RC=%u\n", rc);
+ length = 0;
+ }
+
+ return length;
+}
+
+// asynchronous API
+void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ // TODO: DMA usage is currently ignored
+ (void) hint;
+
+ // check which use-case we have
+ bool use_tx = (tx != NULL && tx_length > 0);
+ bool use_rx = (rx != NULL && rx_length > 0);
+ bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT);
+
+ // don't do anything, if the buffers aren't valid
+ if (!use_tx && !use_rx)
+ return;
+
+ // copy the buffers to the SPI object
+ obj->tx_buff.buffer = (void *) tx;
+ obj->tx_buff.length = tx_length;
+ obj->tx_buff.pos = 0;
+ obj->tx_buff.width = is16bit ? 16 : 8;
+
+ obj->rx_buff.buffer = rx;
+ obj->rx_buff.length = rx_length;
+ obj->rx_buff.pos = 0;
+ obj->rx_buff.width = obj->tx_buff.width;
+
+ obj->spi.event = event;
+
+ DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length);
+
+ // register the thunking handler
+ IRQn_Type irq_n = spiobj->spiIRQ;
+ NVIC_SetVector(irq_n, (uint32_t)handler);
+
+ // enable the right hal transfer
+ if (use_tx && use_rx) {
+ // we cannot manage different rx / tx sizes, let's use smaller one
+ size_t size = (tx_length < rx_length)? tx_length : rx_length;
+ if(tx_length != rx_length) {
+ DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size);
+ obj->tx_buff.length = size;
+ obj->rx_buff.length = size;
+ }
+ spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size);
+ } else if (use_tx) {
+ spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length);
+ } else if (use_rx) {
+ spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length);
+ }
+}
+
+inline uint32_t spi_irq_handler_asynch(spi_t *obj)
+{
+ int event = 0;
+
+ // call the CubeF4 handler, this will update the handle
+ HAL_SPI_IRQHandler(&obj->spi.handle);
+
+ if (obj->spi.handle.State == HAL_SPI_STATE_READY) {
+ // When HAL SPI is back to READY state, check if there was an error
+ int error = obj->spi.handle.ErrorCode;
+ if(error != HAL_SPI_ERROR_NONE) {
+ // something went wrong and the transfer has definitely completed
+ event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
+
+ if (error & HAL_SPI_ERROR_OVR) {
+ // buffer overrun
+ event |= SPI_EVENT_RX_OVERFLOW;
+ }
+ } else {
+ // else we're done
+ event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
+ }
+ // enable the interrupt
+ NVIC_DisableIRQ(obj->spi.spiIRQ);
+ NVIC_ClearPendingIRQ(obj->spi.spiIRQ);
+ }
+
+
+ return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE));
+}
+
+uint8_t spi_active(spi_t *obj)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+ HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle);
+
+ switch(state) {
+ case HAL_SPI_STATE_RESET:
+ case HAL_SPI_STATE_READY:
+ case HAL_SPI_STATE_ERROR:
+ return 0;
+ default:
+ return 1;
+ }
+}
+
+void spi_abort_asynch(spi_t *obj)
+{
+ struct spi_s *spiobj = SPI_S(obj);
+ SPI_HandleTypeDef *handle = &(spiobj->handle);
+
+ // disable interrupt
+ IRQn_Type irq_n = spiobj->spiIRQ;
+ NVIC_ClearPendingIRQ(irq_n);
+ NVIC_DisableIRQ(irq_n);
+
+ // clean-up
+ __HAL_SPI_DISABLE(handle);
+ HAL_SPI_DeInit(handle);
+ HAL_SPI_Init(handle);
+ __HAL_SPI_ENABLE(handle);
+}
+
+#endif //DEVICE_SPI_ASYNCH
+
+#endif