Biomimetics MBED Library w/ Added Support for CAN3

Dependents:   CAN_TEST SPIne_Plus_DYNO_SENSORS SPIne_Plus_v2 SPIne_Plus_Dyno_v2

Committer:
saloutos
Date:
Thu Nov 26 04:08:56 2020 +0000
Revision:
0:083111ae2a11
first commit of leaned mbed dev lib

Who changed what in which revision?

UserRevisionLine numberNew contents of line
saloutos 0:083111ae2a11 1 /* ----------------------------------------------------------------------
saloutos 0:083111ae2a11 2 * Project: CMSIS DSP Library
saloutos 0:083111ae2a11 3 * Title: arm_math.h
saloutos 0:083111ae2a11 4 * Description: Public header file for CMSIS DSP Library
saloutos 0:083111ae2a11 5 *
saloutos 0:083111ae2a11 6 * $Date: 27. January 2017
saloutos 0:083111ae2a11 7 * $Revision: V.1.5.1
saloutos 0:083111ae2a11 8 *
saloutos 0:083111ae2a11 9 * Target Processor: Cortex-M cores
saloutos 0:083111ae2a11 10 * -------------------------------------------------------------------- */
saloutos 0:083111ae2a11 11 /*
saloutos 0:083111ae2a11 12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
saloutos 0:083111ae2a11 13 *
saloutos 0:083111ae2a11 14 * SPDX-License-Identifier: Apache-2.0
saloutos 0:083111ae2a11 15 *
saloutos 0:083111ae2a11 16 * Licensed under the Apache License, Version 2.0 (the License); you may
saloutos 0:083111ae2a11 17 * not use this file except in compliance with the License.
saloutos 0:083111ae2a11 18 * You may obtain a copy of the License at
saloutos 0:083111ae2a11 19 *
saloutos 0:083111ae2a11 20 * www.apache.org/licenses/LICENSE-2.0
saloutos 0:083111ae2a11 21 *
saloutos 0:083111ae2a11 22 * Unless required by applicable law or agreed to in writing, software
saloutos 0:083111ae2a11 23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
saloutos 0:083111ae2a11 24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
saloutos 0:083111ae2a11 25 * See the License for the specific language governing permissions and
saloutos 0:083111ae2a11 26 * limitations under the License.
saloutos 0:083111ae2a11 27 */
saloutos 0:083111ae2a11 28
saloutos 0:083111ae2a11 29 /**
saloutos 0:083111ae2a11 30 \mainpage CMSIS DSP Software Library
saloutos 0:083111ae2a11 31 *
saloutos 0:083111ae2a11 32 * Introduction
saloutos 0:083111ae2a11 33 * ------------
saloutos 0:083111ae2a11 34 *
saloutos 0:083111ae2a11 35 * This user manual describes the CMSIS DSP software library,
saloutos 0:083111ae2a11 36 * a suite of common signal processing functions for use on Cortex-M processor based devices.
saloutos 0:083111ae2a11 37 *
saloutos 0:083111ae2a11 38 * The library is divided into a number of functions each covering a specific category:
saloutos 0:083111ae2a11 39 * - Basic math functions
saloutos 0:083111ae2a11 40 * - Fast math functions
saloutos 0:083111ae2a11 41 * - Complex math functions
saloutos 0:083111ae2a11 42 * - Filters
saloutos 0:083111ae2a11 43 * - Matrix functions
saloutos 0:083111ae2a11 44 * - Transforms
saloutos 0:083111ae2a11 45 * - Motor control functions
saloutos 0:083111ae2a11 46 * - Statistical functions
saloutos 0:083111ae2a11 47 * - Support functions
saloutos 0:083111ae2a11 48 * - Interpolation functions
saloutos 0:083111ae2a11 49 *
saloutos 0:083111ae2a11 50 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
saloutos 0:083111ae2a11 51 * 32-bit integer and 32-bit floating-point values.
saloutos 0:083111ae2a11 52 *
saloutos 0:083111ae2a11 53 * Using the Library
saloutos 0:083111ae2a11 54 * ------------
saloutos 0:083111ae2a11 55 *
saloutos 0:083111ae2a11 56 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
saloutos 0:083111ae2a11 57 * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit)
saloutos 0:083111ae2a11 58 * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit)
saloutos 0:083111ae2a11 59 * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit)
saloutos 0:083111ae2a11 60 * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on)
saloutos 0:083111ae2a11 61 * - arm_cortexM7l_math.lib (Cortex-M7, Little endian)
saloutos 0:083111ae2a11 62 * - arm_cortexM7b_math.lib (Cortex-M7, Big endian)
saloutos 0:083111ae2a11 63 * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit)
saloutos 0:083111ae2a11 64 * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit)
saloutos 0:083111ae2a11 65 * - arm_cortexM4l_math.lib (Cortex-M4, Little endian)
saloutos 0:083111ae2a11 66 * - arm_cortexM4b_math.lib (Cortex-M4, Big endian)
saloutos 0:083111ae2a11 67 * - arm_cortexM3l_math.lib (Cortex-M3, Little endian)
saloutos 0:083111ae2a11 68 * - arm_cortexM3b_math.lib (Cortex-M3, Big endian)
saloutos 0:083111ae2a11 69 * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian)
saloutos 0:083111ae2a11 70 * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian)
saloutos 0:083111ae2a11 71 * - arm_ARMv8MBLl_math.lib (ARMv8M Baseline, Little endian)
saloutos 0:083111ae2a11 72 * - arm_ARMv8MMLl_math.lib (ARMv8M Mainline, Little endian)
saloutos 0:083111ae2a11 73 * - arm_ARMv8MMLlfsp_math.lib (ARMv8M Mainline, Little endian, Single Precision Floating Point Unit)
saloutos 0:083111ae2a11 74 * - arm_ARMv8MMLld_math.lib (ARMv8M Mainline, Little endian, DSP instructions)
saloutos 0:083111ae2a11 75 * - arm_ARMv8MMLldfsp_math.lib (ARMv8M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit)
saloutos 0:083111ae2a11 76 *
saloutos 0:083111ae2a11 77 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
saloutos 0:083111ae2a11 78 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
saloutos 0:083111ae2a11 79 * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
saloutos 0:083111ae2a11 80 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
saloutos 0:083111ae2a11 81 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
saloutos 0:083111ae2a11 82 * For ARMv8M cores define pre processor MACRO ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML.
saloutos 0:083111ae2a11 83 * Set Pre processor MACRO __DSP_PRESENT if ARMv8M Mainline core supports DSP instructions.
saloutos 0:083111ae2a11 84 *
saloutos 0:083111ae2a11 85 *
saloutos 0:083111ae2a11 86 * Examples
saloutos 0:083111ae2a11 87 * --------
saloutos 0:083111ae2a11 88 *
saloutos 0:083111ae2a11 89 * The library ships with a number of examples which demonstrate how to use the library functions.
saloutos 0:083111ae2a11 90 *
saloutos 0:083111ae2a11 91 * Toolchain Support
saloutos 0:083111ae2a11 92 * ------------
saloutos 0:083111ae2a11 93 *
saloutos 0:083111ae2a11 94 * The library has been developed and tested with MDK-ARM version 5.14.0.0
saloutos 0:083111ae2a11 95 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
saloutos 0:083111ae2a11 96 *
saloutos 0:083111ae2a11 97 * Building the Library
saloutos 0:083111ae2a11 98 * ------------
saloutos 0:083111ae2a11 99 *
saloutos 0:083111ae2a11 100 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
saloutos 0:083111ae2a11 101 * - arm_cortexM_math.uvprojx
saloutos 0:083111ae2a11 102 *
saloutos 0:083111ae2a11 103 *
saloutos 0:083111ae2a11 104 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
saloutos 0:083111ae2a11 105 *
saloutos 0:083111ae2a11 106 * Pre-processor Macros
saloutos 0:083111ae2a11 107 * ------------
saloutos 0:083111ae2a11 108 *
saloutos 0:083111ae2a11 109 * Each library project have differant pre-processor macros.
saloutos 0:083111ae2a11 110 *
saloutos 0:083111ae2a11 111 * - UNALIGNED_SUPPORT_DISABLE:
saloutos 0:083111ae2a11 112 *
saloutos 0:083111ae2a11 113 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
saloutos 0:083111ae2a11 114 *
saloutos 0:083111ae2a11 115 * - ARM_MATH_BIG_ENDIAN:
saloutos 0:083111ae2a11 116 *
saloutos 0:083111ae2a11 117 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
saloutos 0:083111ae2a11 118 *
saloutos 0:083111ae2a11 119 * - ARM_MATH_MATRIX_CHECK:
saloutos 0:083111ae2a11 120 *
saloutos 0:083111ae2a11 121 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
saloutos 0:083111ae2a11 122 *
saloutos 0:083111ae2a11 123 * - ARM_MATH_ROUNDING:
saloutos 0:083111ae2a11 124 *
saloutos 0:083111ae2a11 125 * Define macro ARM_MATH_ROUNDING for rounding on support functions
saloutos 0:083111ae2a11 126 *
saloutos 0:083111ae2a11 127 * - ARM_MATH_CMx:
saloutos 0:083111ae2a11 128 *
saloutos 0:083111ae2a11 129 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
saloutos 0:083111ae2a11 130 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
saloutos 0:083111ae2a11 131 * ARM_MATH_CM7 for building the library on cortex-M7.
saloutos 0:083111ae2a11 132 *
saloutos 0:083111ae2a11 133 * - ARM_MATH_ARMV8MxL:
saloutos 0:083111ae2a11 134 *
saloutos 0:083111ae2a11 135 * Define macro ARM_MATH_ARMV8MBL for building the library on ARMv8M Baseline target, ARM_MATH_ARMV8MBL for building library
saloutos 0:083111ae2a11 136 * on ARMv8M Mainline target.
saloutos 0:083111ae2a11 137 *
saloutos 0:083111ae2a11 138 * - __FPU_PRESENT:
saloutos 0:083111ae2a11 139 *
saloutos 0:083111ae2a11 140 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries.
saloutos 0:083111ae2a11 141 *
saloutos 0:083111ae2a11 142 * - __DSP_PRESENT:
saloutos 0:083111ae2a11 143 *
saloutos 0:083111ae2a11 144 * Initialize macro __DSP_PRESENT = 1 when ARMv8M Mainline core supports DSP instructions.
saloutos 0:083111ae2a11 145 *
saloutos 0:083111ae2a11 146 * <hr>
saloutos 0:083111ae2a11 147 * CMSIS-DSP in ARM::CMSIS Pack
saloutos 0:083111ae2a11 148 * -----------------------------
saloutos 0:083111ae2a11 149 *
saloutos 0:083111ae2a11 150 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
saloutos 0:083111ae2a11 151 * |File/Folder |Content |
saloutos 0:083111ae2a11 152 * |------------------------------|------------------------------------------------------------------------|
saloutos 0:083111ae2a11 153 * |\b CMSIS\\Documentation\\DSP | This documentation |
saloutos 0:083111ae2a11 154 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
saloutos 0:083111ae2a11 155 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
saloutos 0:083111ae2a11 156 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
saloutos 0:083111ae2a11 157 *
saloutos 0:083111ae2a11 158 * <hr>
saloutos 0:083111ae2a11 159 * Revision History of CMSIS-DSP
saloutos 0:083111ae2a11 160 * ------------
saloutos 0:083111ae2a11 161 * Please refer to \ref ChangeLog_pg.
saloutos 0:083111ae2a11 162 *
saloutos 0:083111ae2a11 163 * Copyright Notice
saloutos 0:083111ae2a11 164 * ------------
saloutos 0:083111ae2a11 165 *
saloutos 0:083111ae2a11 166 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
saloutos 0:083111ae2a11 167 */
saloutos 0:083111ae2a11 168
saloutos 0:083111ae2a11 169
saloutos 0:083111ae2a11 170 /**
saloutos 0:083111ae2a11 171 * @defgroup groupMath Basic Math Functions
saloutos 0:083111ae2a11 172 */
saloutos 0:083111ae2a11 173
saloutos 0:083111ae2a11 174 /**
saloutos 0:083111ae2a11 175 * @defgroup groupFastMath Fast Math Functions
saloutos 0:083111ae2a11 176 * This set of functions provides a fast approximation to sine, cosine, and square root.
saloutos 0:083111ae2a11 177 * As compared to most of the other functions in the CMSIS math library, the fast math functions
saloutos 0:083111ae2a11 178 * operate on individual values and not arrays.
saloutos 0:083111ae2a11 179 * There are separate functions for Q15, Q31, and floating-point data.
saloutos 0:083111ae2a11 180 *
saloutos 0:083111ae2a11 181 */
saloutos 0:083111ae2a11 182
saloutos 0:083111ae2a11 183 /**
saloutos 0:083111ae2a11 184 * @defgroup groupCmplxMath Complex Math Functions
saloutos 0:083111ae2a11 185 * This set of functions operates on complex data vectors.
saloutos 0:083111ae2a11 186 * The data in the complex arrays is stored in an interleaved fashion
saloutos 0:083111ae2a11 187 * (real, imag, real, imag, ...).
saloutos 0:083111ae2a11 188 * In the API functions, the number of samples in a complex array refers
saloutos 0:083111ae2a11 189 * to the number of complex values; the array contains twice this number of
saloutos 0:083111ae2a11 190 * real values.
saloutos 0:083111ae2a11 191 */
saloutos 0:083111ae2a11 192
saloutos 0:083111ae2a11 193 /**
saloutos 0:083111ae2a11 194 * @defgroup groupFilters Filtering Functions
saloutos 0:083111ae2a11 195 */
saloutos 0:083111ae2a11 196
saloutos 0:083111ae2a11 197 /**
saloutos 0:083111ae2a11 198 * @defgroup groupMatrix Matrix Functions
saloutos 0:083111ae2a11 199 *
saloutos 0:083111ae2a11 200 * This set of functions provides basic matrix math operations.
saloutos 0:083111ae2a11 201 * The functions operate on matrix data structures. For example,
saloutos 0:083111ae2a11 202 * the type
saloutos 0:083111ae2a11 203 * definition for the floating-point matrix structure is shown
saloutos 0:083111ae2a11 204 * below:
saloutos 0:083111ae2a11 205 * <pre>
saloutos 0:083111ae2a11 206 * typedef struct
saloutos 0:083111ae2a11 207 * {
saloutos 0:083111ae2a11 208 * uint16_t numRows; // number of rows of the matrix.
saloutos 0:083111ae2a11 209 * uint16_t numCols; // number of columns of the matrix.
saloutos 0:083111ae2a11 210 * float32_t *pData; // points to the data of the matrix.
saloutos 0:083111ae2a11 211 * } arm_matrix_instance_f32;
saloutos 0:083111ae2a11 212 * </pre>
saloutos 0:083111ae2a11 213 * There are similar definitions for Q15 and Q31 data types.
saloutos 0:083111ae2a11 214 *
saloutos 0:083111ae2a11 215 * The structure specifies the size of the matrix and then points to
saloutos 0:083111ae2a11 216 * an array of data. The array is of size <code>numRows X numCols</code>
saloutos 0:083111ae2a11 217 * and the values are arranged in row order. That is, the
saloutos 0:083111ae2a11 218 * matrix element (i, j) is stored at:
saloutos 0:083111ae2a11 219 * <pre>
saloutos 0:083111ae2a11 220 * pData[i*numCols + j]
saloutos 0:083111ae2a11 221 * </pre>
saloutos 0:083111ae2a11 222 *
saloutos 0:083111ae2a11 223 * \par Init Functions
saloutos 0:083111ae2a11 224 * There is an associated initialization function for each type of matrix
saloutos 0:083111ae2a11 225 * data structure.
saloutos 0:083111ae2a11 226 * The initialization function sets the values of the internal structure fields.
saloutos 0:083111ae2a11 227 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
saloutos 0:083111ae2a11 228 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
saloutos 0:083111ae2a11 229 *
saloutos 0:083111ae2a11 230 * \par
saloutos 0:083111ae2a11 231 * Use of the initialization function is optional. However, if initialization function is used
saloutos 0:083111ae2a11 232 * then the instance structure cannot be placed into a const data section.
saloutos 0:083111ae2a11 233 * To place the instance structure in a const data
saloutos 0:083111ae2a11 234 * section, manually initialize the data structure. For example:
saloutos 0:083111ae2a11 235 * <pre>
saloutos 0:083111ae2a11 236 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
saloutos 0:083111ae2a11 237 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
saloutos 0:083111ae2a11 238 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
saloutos 0:083111ae2a11 239 * </pre>
saloutos 0:083111ae2a11 240 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
saloutos 0:083111ae2a11 241 * specifies the number of columns, and <code>pData</code> points to the
saloutos 0:083111ae2a11 242 * data array.
saloutos 0:083111ae2a11 243 *
saloutos 0:083111ae2a11 244 * \par Size Checking
saloutos 0:083111ae2a11 245 * By default all of the matrix functions perform size checking on the input and
saloutos 0:083111ae2a11 246 * output matrices. For example, the matrix addition function verifies that the
saloutos 0:083111ae2a11 247 * two input matrices and the output matrix all have the same number of rows and
saloutos 0:083111ae2a11 248 * columns. If the size check fails the functions return:
saloutos 0:083111ae2a11 249 * <pre>
saloutos 0:083111ae2a11 250 * ARM_MATH_SIZE_MISMATCH
saloutos 0:083111ae2a11 251 * </pre>
saloutos 0:083111ae2a11 252 * Otherwise the functions return
saloutos 0:083111ae2a11 253 * <pre>
saloutos 0:083111ae2a11 254 * ARM_MATH_SUCCESS
saloutos 0:083111ae2a11 255 * </pre>
saloutos 0:083111ae2a11 256 * There is some overhead associated with this matrix size checking.
saloutos 0:083111ae2a11 257 * The matrix size checking is enabled via the \#define
saloutos 0:083111ae2a11 258 * <pre>
saloutos 0:083111ae2a11 259 * ARM_MATH_MATRIX_CHECK
saloutos 0:083111ae2a11 260 * </pre>
saloutos 0:083111ae2a11 261 * within the library project settings. By default this macro is defined
saloutos 0:083111ae2a11 262 * and size checking is enabled. By changing the project settings and
saloutos 0:083111ae2a11 263 * undefining this macro size checking is eliminated and the functions
saloutos 0:083111ae2a11 264 * run a bit faster. With size checking disabled the functions always
saloutos 0:083111ae2a11 265 * return <code>ARM_MATH_SUCCESS</code>.
saloutos 0:083111ae2a11 266 */
saloutos 0:083111ae2a11 267
saloutos 0:083111ae2a11 268 /**
saloutos 0:083111ae2a11 269 * @defgroup groupTransforms Transform Functions
saloutos 0:083111ae2a11 270 */
saloutos 0:083111ae2a11 271
saloutos 0:083111ae2a11 272 /**
saloutos 0:083111ae2a11 273 * @defgroup groupController Controller Functions
saloutos 0:083111ae2a11 274 */
saloutos 0:083111ae2a11 275
saloutos 0:083111ae2a11 276 /**
saloutos 0:083111ae2a11 277 * @defgroup groupStats Statistics Functions
saloutos 0:083111ae2a11 278 */
saloutos 0:083111ae2a11 279 /**
saloutos 0:083111ae2a11 280 * @defgroup groupSupport Support Functions
saloutos 0:083111ae2a11 281 */
saloutos 0:083111ae2a11 282
saloutos 0:083111ae2a11 283 /**
saloutos 0:083111ae2a11 284 * @defgroup groupInterpolation Interpolation Functions
saloutos 0:083111ae2a11 285 * These functions perform 1- and 2-dimensional interpolation of data.
saloutos 0:083111ae2a11 286 * Linear interpolation is used for 1-dimensional data and
saloutos 0:083111ae2a11 287 * bilinear interpolation is used for 2-dimensional data.
saloutos 0:083111ae2a11 288 */
saloutos 0:083111ae2a11 289
saloutos 0:083111ae2a11 290 /**
saloutos 0:083111ae2a11 291 * @defgroup groupExamples Examples
saloutos 0:083111ae2a11 292 */
saloutos 0:083111ae2a11 293 #ifndef _ARM_MATH_H
saloutos 0:083111ae2a11 294 #define _ARM_MATH_H
saloutos 0:083111ae2a11 295
saloutos 0:083111ae2a11 296 /* Compiler specific diagnostic adjustment */
saloutos 0:083111ae2a11 297 #if defined ( __CC_ARM )
saloutos 0:083111ae2a11 298
saloutos 0:083111ae2a11 299 #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
saloutos 0:083111ae2a11 300
saloutos 0:083111ae2a11 301 #elif defined ( __GNUC__ )
saloutos 0:083111ae2a11 302 #pragma GCC diagnostic push
saloutos 0:083111ae2a11 303 #pragma GCC diagnostic ignored "-Wsign-conversion"
saloutos 0:083111ae2a11 304 #pragma GCC diagnostic ignored "-Wconversion"
saloutos 0:083111ae2a11 305 #pragma GCC diagnostic ignored "-Wunused-parameter"
saloutos 0:083111ae2a11 306
saloutos 0:083111ae2a11 307 #elif defined ( __ICCARM__ )
saloutos 0:083111ae2a11 308
saloutos 0:083111ae2a11 309 #elif defined ( __TI_ARM__ )
saloutos 0:083111ae2a11 310
saloutos 0:083111ae2a11 311 #elif defined ( __CSMC__ )
saloutos 0:083111ae2a11 312
saloutos 0:083111ae2a11 313 #elif defined ( __TASKING__ )
saloutos 0:083111ae2a11 314
saloutos 0:083111ae2a11 315 #else
saloutos 0:083111ae2a11 316 #error Unknown compiler
saloutos 0:083111ae2a11 317 #endif
saloutos 0:083111ae2a11 318
saloutos 0:083111ae2a11 319
saloutos 0:083111ae2a11 320 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
saloutos 0:083111ae2a11 321
saloutos 0:083111ae2a11 322 #if defined(ARM_MATH_CM7)
saloutos 0:083111ae2a11 323 #include "core_cm7.h"
saloutos 0:083111ae2a11 324 #define ARM_MATH_DSP
saloutos 0:083111ae2a11 325 #elif defined (ARM_MATH_CM4)
saloutos 0:083111ae2a11 326 #include "core_cm4.h"
saloutos 0:083111ae2a11 327 #define ARM_MATH_DSP
saloutos 0:083111ae2a11 328 #elif defined (ARM_MATH_CM3)
saloutos 0:083111ae2a11 329 #include "core_cm3.h"
saloutos 0:083111ae2a11 330 #elif defined (ARM_MATH_CM0)
saloutos 0:083111ae2a11 331 #include "core_cm0.h"
saloutos 0:083111ae2a11 332 #define ARM_MATH_CM0_FAMILY
saloutos 0:083111ae2a11 333 #elif defined (ARM_MATH_CM0PLUS)
saloutos 0:083111ae2a11 334 #include "core_cm0plus.h"
saloutos 0:083111ae2a11 335 #define ARM_MATH_CM0_FAMILY
saloutos 0:083111ae2a11 336 #elif defined (ARM_MATH_ARMV8MBL)
saloutos 0:083111ae2a11 337 #include "core_armv8mbl.h"
saloutos 0:083111ae2a11 338 #define ARM_MATH_CM0_FAMILY
saloutos 0:083111ae2a11 339 #elif defined (ARM_MATH_ARMV8MML)
saloutos 0:083111ae2a11 340 #include "core_armv8mml.h"
saloutos 0:083111ae2a11 341 #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1))
saloutos 0:083111ae2a11 342 #define ARM_MATH_DSP
saloutos 0:083111ae2a11 343 #endif
saloutos 0:083111ae2a11 344 #else
saloutos 0:083111ae2a11 345 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML"
saloutos 0:083111ae2a11 346 #endif
saloutos 0:083111ae2a11 347
saloutos 0:083111ae2a11 348 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
saloutos 0:083111ae2a11 349 #include "string.h"
saloutos 0:083111ae2a11 350 #include "math.h"
saloutos 0:083111ae2a11 351 #ifdef __cplusplus
saloutos 0:083111ae2a11 352 extern "C"
saloutos 0:083111ae2a11 353 {
saloutos 0:083111ae2a11 354 #endif
saloutos 0:083111ae2a11 355
saloutos 0:083111ae2a11 356
saloutos 0:083111ae2a11 357 /**
saloutos 0:083111ae2a11 358 * @brief Macros required for reciprocal calculation in Normalized LMS
saloutos 0:083111ae2a11 359 */
saloutos 0:083111ae2a11 360
saloutos 0:083111ae2a11 361 #define DELTA_Q31 (0x100)
saloutos 0:083111ae2a11 362 #define DELTA_Q15 0x5
saloutos 0:083111ae2a11 363 #define INDEX_MASK 0x0000003F
saloutos 0:083111ae2a11 364 #ifndef PI
saloutos 0:083111ae2a11 365 #define PI 3.14159265358979f
saloutos 0:083111ae2a11 366 #endif
saloutos 0:083111ae2a11 367
saloutos 0:083111ae2a11 368 /**
saloutos 0:083111ae2a11 369 * @brief Macros required for SINE and COSINE Fast math approximations
saloutos 0:083111ae2a11 370 */
saloutos 0:083111ae2a11 371
saloutos 0:083111ae2a11 372 #define FAST_MATH_TABLE_SIZE 512
saloutos 0:083111ae2a11 373 #define FAST_MATH_Q31_SHIFT (32 - 10)
saloutos 0:083111ae2a11 374 #define FAST_MATH_Q15_SHIFT (16 - 10)
saloutos 0:083111ae2a11 375 #define CONTROLLER_Q31_SHIFT (32 - 9)
saloutos 0:083111ae2a11 376 #define TABLE_SPACING_Q31 0x400000
saloutos 0:083111ae2a11 377 #define TABLE_SPACING_Q15 0x80
saloutos 0:083111ae2a11 378
saloutos 0:083111ae2a11 379 /**
saloutos 0:083111ae2a11 380 * @brief Macros required for SINE and COSINE Controller functions
saloutos 0:083111ae2a11 381 */
saloutos 0:083111ae2a11 382 /* 1.31(q31) Fixed value of 2/360 */
saloutos 0:083111ae2a11 383 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
saloutos 0:083111ae2a11 384 #define INPUT_SPACING 0xB60B61
saloutos 0:083111ae2a11 385
saloutos 0:083111ae2a11 386 /**
saloutos 0:083111ae2a11 387 * @brief Macro for Unaligned Support
saloutos 0:083111ae2a11 388 */
saloutos 0:083111ae2a11 389 #ifndef UNALIGNED_SUPPORT_DISABLE
saloutos 0:083111ae2a11 390 #define ALIGN4
saloutos 0:083111ae2a11 391 #else
saloutos 0:083111ae2a11 392 #if defined (__GNUC__)
saloutos 0:083111ae2a11 393 #define ALIGN4 __attribute__((aligned(4)))
saloutos 0:083111ae2a11 394 #else
saloutos 0:083111ae2a11 395 #define ALIGN4 __align(4)
saloutos 0:083111ae2a11 396 #endif
saloutos 0:083111ae2a11 397 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
saloutos 0:083111ae2a11 398
saloutos 0:083111ae2a11 399 /**
saloutos 0:083111ae2a11 400 * @brief Error status returned by some functions in the library.
saloutos 0:083111ae2a11 401 */
saloutos 0:083111ae2a11 402
saloutos 0:083111ae2a11 403 typedef enum
saloutos 0:083111ae2a11 404 {
saloutos 0:083111ae2a11 405 ARM_MATH_SUCCESS = 0, /**< No error */
saloutos 0:083111ae2a11 406 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
saloutos 0:083111ae2a11 407 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
saloutos 0:083111ae2a11 408 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
saloutos 0:083111ae2a11 409 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
saloutos 0:083111ae2a11 410 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
saloutos 0:083111ae2a11 411 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
saloutos 0:083111ae2a11 412 } arm_status;
saloutos 0:083111ae2a11 413
saloutos 0:083111ae2a11 414 /**
saloutos 0:083111ae2a11 415 * @brief 8-bit fractional data type in 1.7 format.
saloutos 0:083111ae2a11 416 */
saloutos 0:083111ae2a11 417 typedef int8_t q7_t;
saloutos 0:083111ae2a11 418
saloutos 0:083111ae2a11 419 /**
saloutos 0:083111ae2a11 420 * @brief 16-bit fractional data type in 1.15 format.
saloutos 0:083111ae2a11 421 */
saloutos 0:083111ae2a11 422 typedef int16_t q15_t;
saloutos 0:083111ae2a11 423
saloutos 0:083111ae2a11 424 /**
saloutos 0:083111ae2a11 425 * @brief 32-bit fractional data type in 1.31 format.
saloutos 0:083111ae2a11 426 */
saloutos 0:083111ae2a11 427 typedef int32_t q31_t;
saloutos 0:083111ae2a11 428
saloutos 0:083111ae2a11 429 /**
saloutos 0:083111ae2a11 430 * @brief 64-bit fractional data type in 1.63 format.
saloutos 0:083111ae2a11 431 */
saloutos 0:083111ae2a11 432 typedef int64_t q63_t;
saloutos 0:083111ae2a11 433
saloutos 0:083111ae2a11 434 /**
saloutos 0:083111ae2a11 435 * @brief 32-bit floating-point type definition.
saloutos 0:083111ae2a11 436 */
saloutos 0:083111ae2a11 437 typedef float float32_t;
saloutos 0:083111ae2a11 438
saloutos 0:083111ae2a11 439 /**
saloutos 0:083111ae2a11 440 * @brief 64-bit floating-point type definition.
saloutos 0:083111ae2a11 441 */
saloutos 0:083111ae2a11 442 typedef double float64_t;
saloutos 0:083111ae2a11 443
saloutos 0:083111ae2a11 444 /**
saloutos 0:083111ae2a11 445 * @brief definition to read/write two 16 bit values.
saloutos 0:083111ae2a11 446 */
saloutos 0:083111ae2a11 447 #if defined ( __CC_ARM )
saloutos 0:083111ae2a11 448 #define __SIMD32_TYPE int32_t __packed
saloutos 0:083111ae2a11 449 #define CMSIS_UNUSED __attribute__((unused))
saloutos 0:083111ae2a11 450 #define CMSIS_INLINE __attribute__((always_inline))
saloutos 0:083111ae2a11 451
saloutos 0:083111ae2a11 452 #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
saloutos 0:083111ae2a11 453 #define __SIMD32_TYPE int32_t
saloutos 0:083111ae2a11 454 #define CMSIS_UNUSED __attribute__((unused))
saloutos 0:083111ae2a11 455 #define CMSIS_INLINE __attribute__((always_inline))
saloutos 0:083111ae2a11 456
saloutos 0:083111ae2a11 457 #elif defined ( __GNUC__ )
saloutos 0:083111ae2a11 458 #define __SIMD32_TYPE int32_t
saloutos 0:083111ae2a11 459 #define CMSIS_UNUSED __attribute__((unused))
saloutos 0:083111ae2a11 460 #define CMSIS_INLINE __attribute__((always_inline))
saloutos 0:083111ae2a11 461
saloutos 0:083111ae2a11 462 #elif defined ( __ICCARM__ )
saloutos 0:083111ae2a11 463 #define __SIMD32_TYPE int32_t __packed
saloutos 0:083111ae2a11 464 #define CMSIS_UNUSED
saloutos 0:083111ae2a11 465 #define CMSIS_INLINE
saloutos 0:083111ae2a11 466
saloutos 0:083111ae2a11 467 #elif defined ( __TI_ARM__ )
saloutos 0:083111ae2a11 468 #define __SIMD32_TYPE int32_t
saloutos 0:083111ae2a11 469 #define CMSIS_UNUSED __attribute__((unused))
saloutos 0:083111ae2a11 470 #define CMSIS_INLINE
saloutos 0:083111ae2a11 471
saloutos 0:083111ae2a11 472 #elif defined ( __CSMC__ )
saloutos 0:083111ae2a11 473 #define __SIMD32_TYPE int32_t
saloutos 0:083111ae2a11 474 #define CMSIS_UNUSED
saloutos 0:083111ae2a11 475 #define CMSIS_INLINE
saloutos 0:083111ae2a11 476
saloutos 0:083111ae2a11 477 #elif defined ( __TASKING__ )
saloutos 0:083111ae2a11 478 #define __SIMD32_TYPE __unaligned int32_t
saloutos 0:083111ae2a11 479 #define CMSIS_UNUSED
saloutos 0:083111ae2a11 480 #define CMSIS_INLINE
saloutos 0:083111ae2a11 481
saloutos 0:083111ae2a11 482 #else
saloutos 0:083111ae2a11 483 #error Unknown compiler
saloutos 0:083111ae2a11 484 #endif
saloutos 0:083111ae2a11 485
saloutos 0:083111ae2a11 486 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
saloutos 0:083111ae2a11 487 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
saloutos 0:083111ae2a11 488 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
saloutos 0:083111ae2a11 489 #define __SIMD64(addr) (*(int64_t **) & (addr))
saloutos 0:083111ae2a11 490
saloutos 0:083111ae2a11 491 /* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
saloutos 0:083111ae2a11 492 #if !defined (ARM_MATH_DSP)
saloutos 0:083111ae2a11 493 /**
saloutos 0:083111ae2a11 494 * @brief definition to pack two 16 bit values.
saloutos 0:083111ae2a11 495 */
saloutos 0:083111ae2a11 496 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
saloutos 0:083111ae2a11 497 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
saloutos 0:083111ae2a11 498 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
saloutos 0:083111ae2a11 499 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
saloutos 0:083111ae2a11 500
saloutos 0:083111ae2a11 501 /* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
saloutos 0:083111ae2a11 502 #endif /* !defined (ARM_MATH_DSP) */
saloutos 0:083111ae2a11 503
saloutos 0:083111ae2a11 504 /**
saloutos 0:083111ae2a11 505 * @brief definition to pack four 8 bit values.
saloutos 0:083111ae2a11 506 */
saloutos 0:083111ae2a11 507 #ifndef ARM_MATH_BIG_ENDIAN
saloutos 0:083111ae2a11 508
saloutos 0:083111ae2a11 509 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
saloutos 0:083111ae2a11 510 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
saloutos 0:083111ae2a11 511 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
saloutos 0:083111ae2a11 512 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
saloutos 0:083111ae2a11 513 #else
saloutos 0:083111ae2a11 514
saloutos 0:083111ae2a11 515 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
saloutos 0:083111ae2a11 516 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
saloutos 0:083111ae2a11 517 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
saloutos 0:083111ae2a11 518 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
saloutos 0:083111ae2a11 519
saloutos 0:083111ae2a11 520 #endif
saloutos 0:083111ae2a11 521
saloutos 0:083111ae2a11 522
saloutos 0:083111ae2a11 523 /**
saloutos 0:083111ae2a11 524 * @brief Clips Q63 to Q31 values.
saloutos 0:083111ae2a11 525 */
saloutos 0:083111ae2a11 526 CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31(
saloutos 0:083111ae2a11 527 q63_t x)
saloutos 0:083111ae2a11 528 {
saloutos 0:083111ae2a11 529 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
saloutos 0:083111ae2a11 530 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
saloutos 0:083111ae2a11 531 }
saloutos 0:083111ae2a11 532
saloutos 0:083111ae2a11 533 /**
saloutos 0:083111ae2a11 534 * @brief Clips Q63 to Q15 values.
saloutos 0:083111ae2a11 535 */
saloutos 0:083111ae2a11 536 CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15(
saloutos 0:083111ae2a11 537 q63_t x)
saloutos 0:083111ae2a11 538 {
saloutos 0:083111ae2a11 539 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
saloutos 0:083111ae2a11 540 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
saloutos 0:083111ae2a11 541 }
saloutos 0:083111ae2a11 542
saloutos 0:083111ae2a11 543 /**
saloutos 0:083111ae2a11 544 * @brief Clips Q31 to Q7 values.
saloutos 0:083111ae2a11 545 */
saloutos 0:083111ae2a11 546 CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7(
saloutos 0:083111ae2a11 547 q31_t x)
saloutos 0:083111ae2a11 548 {
saloutos 0:083111ae2a11 549 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
saloutos 0:083111ae2a11 550 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
saloutos 0:083111ae2a11 551 }
saloutos 0:083111ae2a11 552
saloutos 0:083111ae2a11 553 /**
saloutos 0:083111ae2a11 554 * @brief Clips Q31 to Q15 values.
saloutos 0:083111ae2a11 555 */
saloutos 0:083111ae2a11 556 CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15(
saloutos 0:083111ae2a11 557 q31_t x)
saloutos 0:083111ae2a11 558 {
saloutos 0:083111ae2a11 559 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
saloutos 0:083111ae2a11 560 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
saloutos 0:083111ae2a11 561 }
saloutos 0:083111ae2a11 562
saloutos 0:083111ae2a11 563 /**
saloutos 0:083111ae2a11 564 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
saloutos 0:083111ae2a11 565 */
saloutos 0:083111ae2a11 566
saloutos 0:083111ae2a11 567 CMSIS_INLINE __STATIC_INLINE q63_t mult32x64(
saloutos 0:083111ae2a11 568 q63_t x,
saloutos 0:083111ae2a11 569 q31_t y)
saloutos 0:083111ae2a11 570 {
saloutos 0:083111ae2a11 571 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
saloutos 0:083111ae2a11 572 (((q63_t) (x >> 32) * y)));
saloutos 0:083111ae2a11 573 }
saloutos 0:083111ae2a11 574
saloutos 0:083111ae2a11 575 /*
saloutos 0:083111ae2a11 576 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
saloutos 0:083111ae2a11 577 #define __CLZ __clz
saloutos 0:083111ae2a11 578 #endif
saloutos 0:083111ae2a11 579 */
saloutos 0:083111ae2a11 580 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
saloutos 0:083111ae2a11 581 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
saloutos 0:083111ae2a11 582 CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ(
saloutos 0:083111ae2a11 583 q31_t data);
saloutos 0:083111ae2a11 584
saloutos 0:083111ae2a11 585 CMSIS_INLINE __STATIC_INLINE uint32_t __CLZ(
saloutos 0:083111ae2a11 586 q31_t data)
saloutos 0:083111ae2a11 587 {
saloutos 0:083111ae2a11 588 uint32_t count = 0;
saloutos 0:083111ae2a11 589 uint32_t mask = 0x80000000;
saloutos 0:083111ae2a11 590
saloutos 0:083111ae2a11 591 while ((data & mask) == 0)
saloutos 0:083111ae2a11 592 {
saloutos 0:083111ae2a11 593 count += 1u;
saloutos 0:083111ae2a11 594 mask = mask >> 1u;
saloutos 0:083111ae2a11 595 }
saloutos 0:083111ae2a11 596
saloutos 0:083111ae2a11 597 return (count);
saloutos 0:083111ae2a11 598 }
saloutos 0:083111ae2a11 599 #endif
saloutos 0:083111ae2a11 600
saloutos 0:083111ae2a11 601 /**
saloutos 0:083111ae2a11 602 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
saloutos 0:083111ae2a11 603 */
saloutos 0:083111ae2a11 604
saloutos 0:083111ae2a11 605 CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31(
saloutos 0:083111ae2a11 606 q31_t in,
saloutos 0:083111ae2a11 607 q31_t * dst,
saloutos 0:083111ae2a11 608 q31_t * pRecipTable)
saloutos 0:083111ae2a11 609 {
saloutos 0:083111ae2a11 610 q31_t out;
saloutos 0:083111ae2a11 611 uint32_t tempVal;
saloutos 0:083111ae2a11 612 uint32_t index, i;
saloutos 0:083111ae2a11 613 uint32_t signBits;
saloutos 0:083111ae2a11 614
saloutos 0:083111ae2a11 615 if (in > 0)
saloutos 0:083111ae2a11 616 {
saloutos 0:083111ae2a11 617 signBits = ((uint32_t) (__CLZ( in) - 1));
saloutos 0:083111ae2a11 618 }
saloutos 0:083111ae2a11 619 else
saloutos 0:083111ae2a11 620 {
saloutos 0:083111ae2a11 621 signBits = ((uint32_t) (__CLZ(-in) - 1));
saloutos 0:083111ae2a11 622 }
saloutos 0:083111ae2a11 623
saloutos 0:083111ae2a11 624 /* Convert input sample to 1.31 format */
saloutos 0:083111ae2a11 625 in = (in << signBits);
saloutos 0:083111ae2a11 626
saloutos 0:083111ae2a11 627 /* calculation of index for initial approximated Val */
saloutos 0:083111ae2a11 628 index = (uint32_t)(in >> 24);
saloutos 0:083111ae2a11 629 index = (index & INDEX_MASK);
saloutos 0:083111ae2a11 630
saloutos 0:083111ae2a11 631 /* 1.31 with exp 1 */
saloutos 0:083111ae2a11 632 out = pRecipTable[index];
saloutos 0:083111ae2a11 633
saloutos 0:083111ae2a11 634 /* calculation of reciprocal value */
saloutos 0:083111ae2a11 635 /* running approximation for two iterations */
saloutos 0:083111ae2a11 636 for (i = 0u; i < 2u; i++)
saloutos 0:083111ae2a11 637 {
saloutos 0:083111ae2a11 638 tempVal = (uint32_t) (((q63_t) in * out) >> 31);
saloutos 0:083111ae2a11 639 tempVal = 0x7FFFFFFFu - tempVal;
saloutos 0:083111ae2a11 640 /* 1.31 with exp 1 */
saloutos 0:083111ae2a11 641 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
saloutos 0:083111ae2a11 642 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
saloutos 0:083111ae2a11 643 }
saloutos 0:083111ae2a11 644
saloutos 0:083111ae2a11 645 /* write output */
saloutos 0:083111ae2a11 646 *dst = out;
saloutos 0:083111ae2a11 647
saloutos 0:083111ae2a11 648 /* return num of signbits of out = 1/in value */
saloutos 0:083111ae2a11 649 return (signBits + 1u);
saloutos 0:083111ae2a11 650 }
saloutos 0:083111ae2a11 651
saloutos 0:083111ae2a11 652
saloutos 0:083111ae2a11 653 /**
saloutos 0:083111ae2a11 654 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
saloutos 0:083111ae2a11 655 */
saloutos 0:083111ae2a11 656 CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15(
saloutos 0:083111ae2a11 657 q15_t in,
saloutos 0:083111ae2a11 658 q15_t * dst,
saloutos 0:083111ae2a11 659 q15_t * pRecipTable)
saloutos 0:083111ae2a11 660 {
saloutos 0:083111ae2a11 661 q15_t out = 0;
saloutos 0:083111ae2a11 662 uint32_t tempVal = 0;
saloutos 0:083111ae2a11 663 uint32_t index = 0, i = 0;
saloutos 0:083111ae2a11 664 uint32_t signBits = 0;
saloutos 0:083111ae2a11 665
saloutos 0:083111ae2a11 666 if (in > 0)
saloutos 0:083111ae2a11 667 {
saloutos 0:083111ae2a11 668 signBits = ((uint32_t)(__CLZ( in) - 17));
saloutos 0:083111ae2a11 669 }
saloutos 0:083111ae2a11 670 else
saloutos 0:083111ae2a11 671 {
saloutos 0:083111ae2a11 672 signBits = ((uint32_t)(__CLZ(-in) - 17));
saloutos 0:083111ae2a11 673 }
saloutos 0:083111ae2a11 674
saloutos 0:083111ae2a11 675 /* Convert input sample to 1.15 format */
saloutos 0:083111ae2a11 676 in = (in << signBits);
saloutos 0:083111ae2a11 677
saloutos 0:083111ae2a11 678 /* calculation of index for initial approximated Val */
saloutos 0:083111ae2a11 679 index = (uint32_t)(in >> 8);
saloutos 0:083111ae2a11 680 index = (index & INDEX_MASK);
saloutos 0:083111ae2a11 681
saloutos 0:083111ae2a11 682 /* 1.15 with exp 1 */
saloutos 0:083111ae2a11 683 out = pRecipTable[index];
saloutos 0:083111ae2a11 684
saloutos 0:083111ae2a11 685 /* calculation of reciprocal value */
saloutos 0:083111ae2a11 686 /* running approximation for two iterations */
saloutos 0:083111ae2a11 687 for (i = 0u; i < 2u; i++)
saloutos 0:083111ae2a11 688 {
saloutos 0:083111ae2a11 689 tempVal = (uint32_t) (((q31_t) in * out) >> 15);
saloutos 0:083111ae2a11 690 tempVal = 0x7FFFu - tempVal;
saloutos 0:083111ae2a11 691 /* 1.15 with exp 1 */
saloutos 0:083111ae2a11 692 out = (q15_t) (((q31_t) out * tempVal) >> 14);
saloutos 0:083111ae2a11 693 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
saloutos 0:083111ae2a11 694 }
saloutos 0:083111ae2a11 695
saloutos 0:083111ae2a11 696 /* write output */
saloutos 0:083111ae2a11 697 *dst = out;
saloutos 0:083111ae2a11 698
saloutos 0:083111ae2a11 699 /* return num of signbits of out = 1/in value */
saloutos 0:083111ae2a11 700 return (signBits + 1);
saloutos 0:083111ae2a11 701 }
saloutos 0:083111ae2a11 702
saloutos 0:083111ae2a11 703
saloutos 0:083111ae2a11 704 /*
saloutos 0:083111ae2a11 705 * @brief C custom defined intrinisic function for only M0 processors
saloutos 0:083111ae2a11 706 */
saloutos 0:083111ae2a11 707 #if defined(ARM_MATH_CM0_FAMILY)
saloutos 0:083111ae2a11 708 CMSIS_INLINE __STATIC_INLINE q31_t __SSAT(
saloutos 0:083111ae2a11 709 q31_t x,
saloutos 0:083111ae2a11 710 uint32_t y)
saloutos 0:083111ae2a11 711 {
saloutos 0:083111ae2a11 712 int32_t posMax, negMin;
saloutos 0:083111ae2a11 713 uint32_t i;
saloutos 0:083111ae2a11 714
saloutos 0:083111ae2a11 715 posMax = 1;
saloutos 0:083111ae2a11 716 for (i = 0; i < (y - 1); i++)
saloutos 0:083111ae2a11 717 {
saloutos 0:083111ae2a11 718 posMax = posMax * 2;
saloutos 0:083111ae2a11 719 }
saloutos 0:083111ae2a11 720
saloutos 0:083111ae2a11 721 if (x > 0)
saloutos 0:083111ae2a11 722 {
saloutos 0:083111ae2a11 723 posMax = (posMax - 1);
saloutos 0:083111ae2a11 724
saloutos 0:083111ae2a11 725 if (x > posMax)
saloutos 0:083111ae2a11 726 {
saloutos 0:083111ae2a11 727 x = posMax;
saloutos 0:083111ae2a11 728 }
saloutos 0:083111ae2a11 729 }
saloutos 0:083111ae2a11 730 else
saloutos 0:083111ae2a11 731 {
saloutos 0:083111ae2a11 732 negMin = -posMax;
saloutos 0:083111ae2a11 733
saloutos 0:083111ae2a11 734 if (x < negMin)
saloutos 0:083111ae2a11 735 {
saloutos 0:083111ae2a11 736 x = negMin;
saloutos 0:083111ae2a11 737 }
saloutos 0:083111ae2a11 738 }
saloutos 0:083111ae2a11 739 return (x);
saloutos 0:083111ae2a11 740 }
saloutos 0:083111ae2a11 741 #endif /* end of ARM_MATH_CM0_FAMILY */
saloutos 0:083111ae2a11 742
saloutos 0:083111ae2a11 743
saloutos 0:083111ae2a11 744 /*
saloutos 0:083111ae2a11 745 * @brief C custom defined intrinsic function for M3 and M0 processors
saloutos 0:083111ae2a11 746 */
saloutos 0:083111ae2a11 747 /* #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
saloutos 0:083111ae2a11 748 #if !defined (ARM_MATH_DSP)
saloutos 0:083111ae2a11 749
saloutos 0:083111ae2a11 750 /*
saloutos 0:083111ae2a11 751 * @brief C custom defined QADD8 for M3 and M0 processors
saloutos 0:083111ae2a11 752 */
saloutos 0:083111ae2a11 753 CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8(
saloutos 0:083111ae2a11 754 uint32_t x,
saloutos 0:083111ae2a11 755 uint32_t y)
saloutos 0:083111ae2a11 756 {
saloutos 0:083111ae2a11 757 q31_t r, s, t, u;
saloutos 0:083111ae2a11 758
saloutos 0:083111ae2a11 759 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 760 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 761 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 762 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 763
saloutos 0:083111ae2a11 764 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
saloutos 0:083111ae2a11 765 }
saloutos 0:083111ae2a11 766
saloutos 0:083111ae2a11 767
saloutos 0:083111ae2a11 768 /*
saloutos 0:083111ae2a11 769 * @brief C custom defined QSUB8 for M3 and M0 processors
saloutos 0:083111ae2a11 770 */
saloutos 0:083111ae2a11 771 CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8(
saloutos 0:083111ae2a11 772 uint32_t x,
saloutos 0:083111ae2a11 773 uint32_t y)
saloutos 0:083111ae2a11 774 {
saloutos 0:083111ae2a11 775 q31_t r, s, t, u;
saloutos 0:083111ae2a11 776
saloutos 0:083111ae2a11 777 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 778 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 779 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 780 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
saloutos 0:083111ae2a11 781
saloutos 0:083111ae2a11 782 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
saloutos 0:083111ae2a11 783 }
saloutos 0:083111ae2a11 784
saloutos 0:083111ae2a11 785
saloutos 0:083111ae2a11 786 /*
saloutos 0:083111ae2a11 787 * @brief C custom defined QADD16 for M3 and M0 processors
saloutos 0:083111ae2a11 788 */
saloutos 0:083111ae2a11 789 CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16(
saloutos 0:083111ae2a11 790 uint32_t x,
saloutos 0:083111ae2a11 791 uint32_t y)
saloutos 0:083111ae2a11 792 {
saloutos 0:083111ae2a11 793 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
saloutos 0:083111ae2a11 794 q31_t r = 0, s = 0;
saloutos 0:083111ae2a11 795
saloutos 0:083111ae2a11 796 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 797 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 798
saloutos 0:083111ae2a11 799 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 800 }
saloutos 0:083111ae2a11 801
saloutos 0:083111ae2a11 802
saloutos 0:083111ae2a11 803 /*
saloutos 0:083111ae2a11 804 * @brief C custom defined SHADD16 for M3 and M0 processors
saloutos 0:083111ae2a11 805 */
saloutos 0:083111ae2a11 806 CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16(
saloutos 0:083111ae2a11 807 uint32_t x,
saloutos 0:083111ae2a11 808 uint32_t y)
saloutos 0:083111ae2a11 809 {
saloutos 0:083111ae2a11 810 q31_t r, s;
saloutos 0:083111ae2a11 811
saloutos 0:083111ae2a11 812 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 813 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 814
saloutos 0:083111ae2a11 815 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 816 }
saloutos 0:083111ae2a11 817
saloutos 0:083111ae2a11 818
saloutos 0:083111ae2a11 819 /*
saloutos 0:083111ae2a11 820 * @brief C custom defined QSUB16 for M3 and M0 processors
saloutos 0:083111ae2a11 821 */
saloutos 0:083111ae2a11 822 CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16(
saloutos 0:083111ae2a11 823 uint32_t x,
saloutos 0:083111ae2a11 824 uint32_t y)
saloutos 0:083111ae2a11 825 {
saloutos 0:083111ae2a11 826 q31_t r, s;
saloutos 0:083111ae2a11 827
saloutos 0:083111ae2a11 828 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 829 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 830
saloutos 0:083111ae2a11 831 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 832 }
saloutos 0:083111ae2a11 833
saloutos 0:083111ae2a11 834
saloutos 0:083111ae2a11 835 /*
saloutos 0:083111ae2a11 836 * @brief C custom defined SHSUB16 for M3 and M0 processors
saloutos 0:083111ae2a11 837 */
saloutos 0:083111ae2a11 838 CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16(
saloutos 0:083111ae2a11 839 uint32_t x,
saloutos 0:083111ae2a11 840 uint32_t y)
saloutos 0:083111ae2a11 841 {
saloutos 0:083111ae2a11 842 q31_t r, s;
saloutos 0:083111ae2a11 843
saloutos 0:083111ae2a11 844 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 845 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 846
saloutos 0:083111ae2a11 847 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 848 }
saloutos 0:083111ae2a11 849
saloutos 0:083111ae2a11 850
saloutos 0:083111ae2a11 851 /*
saloutos 0:083111ae2a11 852 * @brief C custom defined QASX for M3 and M0 processors
saloutos 0:083111ae2a11 853 */
saloutos 0:083111ae2a11 854 CMSIS_INLINE __STATIC_INLINE uint32_t __QASX(
saloutos 0:083111ae2a11 855 uint32_t x,
saloutos 0:083111ae2a11 856 uint32_t y)
saloutos 0:083111ae2a11 857 {
saloutos 0:083111ae2a11 858 q31_t r, s;
saloutos 0:083111ae2a11 859
saloutos 0:083111ae2a11 860 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 861 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 862
saloutos 0:083111ae2a11 863 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 864 }
saloutos 0:083111ae2a11 865
saloutos 0:083111ae2a11 866
saloutos 0:083111ae2a11 867 /*
saloutos 0:083111ae2a11 868 * @brief C custom defined SHASX for M3 and M0 processors
saloutos 0:083111ae2a11 869 */
saloutos 0:083111ae2a11 870 CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX(
saloutos 0:083111ae2a11 871 uint32_t x,
saloutos 0:083111ae2a11 872 uint32_t y)
saloutos 0:083111ae2a11 873 {
saloutos 0:083111ae2a11 874 q31_t r, s;
saloutos 0:083111ae2a11 875
saloutos 0:083111ae2a11 876 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 877 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 878
saloutos 0:083111ae2a11 879 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 880 }
saloutos 0:083111ae2a11 881
saloutos 0:083111ae2a11 882
saloutos 0:083111ae2a11 883 /*
saloutos 0:083111ae2a11 884 * @brief C custom defined QSAX for M3 and M0 processors
saloutos 0:083111ae2a11 885 */
saloutos 0:083111ae2a11 886 CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX(
saloutos 0:083111ae2a11 887 uint32_t x,
saloutos 0:083111ae2a11 888 uint32_t y)
saloutos 0:083111ae2a11 889 {
saloutos 0:083111ae2a11 890 q31_t r, s;
saloutos 0:083111ae2a11 891
saloutos 0:083111ae2a11 892 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 893 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 894
saloutos 0:083111ae2a11 895 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 896 }
saloutos 0:083111ae2a11 897
saloutos 0:083111ae2a11 898
saloutos 0:083111ae2a11 899 /*
saloutos 0:083111ae2a11 900 * @brief C custom defined SHSAX for M3 and M0 processors
saloutos 0:083111ae2a11 901 */
saloutos 0:083111ae2a11 902 CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX(
saloutos 0:083111ae2a11 903 uint32_t x,
saloutos 0:083111ae2a11 904 uint32_t y)
saloutos 0:083111ae2a11 905 {
saloutos 0:083111ae2a11 906 q31_t r, s;
saloutos 0:083111ae2a11 907
saloutos 0:083111ae2a11 908 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 909 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
saloutos 0:083111ae2a11 910
saloutos 0:083111ae2a11 911 return ((uint32_t)((s << 16) | (r )));
saloutos 0:083111ae2a11 912 }
saloutos 0:083111ae2a11 913
saloutos 0:083111ae2a11 914
saloutos 0:083111ae2a11 915 /*
saloutos 0:083111ae2a11 916 * @brief C custom defined SMUSDX for M3 and M0 processors
saloutos 0:083111ae2a11 917 */
saloutos 0:083111ae2a11 918 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX(
saloutos 0:083111ae2a11 919 uint32_t x,
saloutos 0:083111ae2a11 920 uint32_t y)
saloutos 0:083111ae2a11 921 {
saloutos 0:083111ae2a11 922 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
saloutos 0:083111ae2a11 923 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
saloutos 0:083111ae2a11 924 }
saloutos 0:083111ae2a11 925
saloutos 0:083111ae2a11 926 /*
saloutos 0:083111ae2a11 927 * @brief C custom defined SMUADX for M3 and M0 processors
saloutos 0:083111ae2a11 928 */
saloutos 0:083111ae2a11 929 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX(
saloutos 0:083111ae2a11 930 uint32_t x,
saloutos 0:083111ae2a11 931 uint32_t y)
saloutos 0:083111ae2a11 932 {
saloutos 0:083111ae2a11 933 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
saloutos 0:083111ae2a11 934 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
saloutos 0:083111ae2a11 935 }
saloutos 0:083111ae2a11 936
saloutos 0:083111ae2a11 937
saloutos 0:083111ae2a11 938 /*
saloutos 0:083111ae2a11 939 * @brief C custom defined QADD for M3 and M0 processors
saloutos 0:083111ae2a11 940 */
saloutos 0:083111ae2a11 941 CMSIS_INLINE __STATIC_INLINE int32_t __QADD(
saloutos 0:083111ae2a11 942 int32_t x,
saloutos 0:083111ae2a11 943 int32_t y)
saloutos 0:083111ae2a11 944 {
saloutos 0:083111ae2a11 945 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
saloutos 0:083111ae2a11 946 }
saloutos 0:083111ae2a11 947
saloutos 0:083111ae2a11 948
saloutos 0:083111ae2a11 949 /*
saloutos 0:083111ae2a11 950 * @brief C custom defined QSUB for M3 and M0 processors
saloutos 0:083111ae2a11 951 */
saloutos 0:083111ae2a11 952 CMSIS_INLINE __STATIC_INLINE int32_t __QSUB(
saloutos 0:083111ae2a11 953 int32_t x,
saloutos 0:083111ae2a11 954 int32_t y)
saloutos 0:083111ae2a11 955 {
saloutos 0:083111ae2a11 956 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
saloutos 0:083111ae2a11 957 }
saloutos 0:083111ae2a11 958
saloutos 0:083111ae2a11 959
saloutos 0:083111ae2a11 960 /*
saloutos 0:083111ae2a11 961 * @brief C custom defined SMLAD for M3 and M0 processors
saloutos 0:083111ae2a11 962 */
saloutos 0:083111ae2a11 963 CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD(
saloutos 0:083111ae2a11 964 uint32_t x,
saloutos 0:083111ae2a11 965 uint32_t y,
saloutos 0:083111ae2a11 966 uint32_t sum)
saloutos 0:083111ae2a11 967 {
saloutos 0:083111ae2a11 968 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
saloutos 0:083111ae2a11 969 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
saloutos 0:083111ae2a11 970 ( ((q31_t)sum ) ) ));
saloutos 0:083111ae2a11 971 }
saloutos 0:083111ae2a11 972
saloutos 0:083111ae2a11 973
saloutos 0:083111ae2a11 974 /*
saloutos 0:083111ae2a11 975 * @brief C custom defined SMLADX for M3 and M0 processors
saloutos 0:083111ae2a11 976 */
saloutos 0:083111ae2a11 977 CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX(
saloutos 0:083111ae2a11 978 uint32_t x,
saloutos 0:083111ae2a11 979 uint32_t y,
saloutos 0:083111ae2a11 980 uint32_t sum)
saloutos 0:083111ae2a11 981 {
saloutos 0:083111ae2a11 982 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
saloutos 0:083111ae2a11 983 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
saloutos 0:083111ae2a11 984 ( ((q31_t)sum ) ) ));
saloutos 0:083111ae2a11 985 }
saloutos 0:083111ae2a11 986
saloutos 0:083111ae2a11 987
saloutos 0:083111ae2a11 988 /*
saloutos 0:083111ae2a11 989 * @brief C custom defined SMLSDX for M3 and M0 processors
saloutos 0:083111ae2a11 990 */
saloutos 0:083111ae2a11 991 CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX(
saloutos 0:083111ae2a11 992 uint32_t x,
saloutos 0:083111ae2a11 993 uint32_t y,
saloutos 0:083111ae2a11 994 uint32_t sum)
saloutos 0:083111ae2a11 995 {
saloutos 0:083111ae2a11 996 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
saloutos 0:083111ae2a11 997 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
saloutos 0:083111ae2a11 998 ( ((q31_t)sum ) ) ));
saloutos 0:083111ae2a11 999 }
saloutos 0:083111ae2a11 1000
saloutos 0:083111ae2a11 1001
saloutos 0:083111ae2a11 1002 /*
saloutos 0:083111ae2a11 1003 * @brief C custom defined SMLALD for M3 and M0 processors
saloutos 0:083111ae2a11 1004 */
saloutos 0:083111ae2a11 1005 CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD(
saloutos 0:083111ae2a11 1006 uint32_t x,
saloutos 0:083111ae2a11 1007 uint32_t y,
saloutos 0:083111ae2a11 1008 uint64_t sum)
saloutos 0:083111ae2a11 1009 {
saloutos 0:083111ae2a11 1010 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
saloutos 0:083111ae2a11 1011 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
saloutos 0:083111ae2a11 1012 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
saloutos 0:083111ae2a11 1013 ( ((q63_t)sum ) ) ));
saloutos 0:083111ae2a11 1014 }
saloutos 0:083111ae2a11 1015
saloutos 0:083111ae2a11 1016
saloutos 0:083111ae2a11 1017 /*
saloutos 0:083111ae2a11 1018 * @brief C custom defined SMLALDX for M3 and M0 processors
saloutos 0:083111ae2a11 1019 */
saloutos 0:083111ae2a11 1020 CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX(
saloutos 0:083111ae2a11 1021 uint32_t x,
saloutos 0:083111ae2a11 1022 uint32_t y,
saloutos 0:083111ae2a11 1023 uint64_t sum)
saloutos 0:083111ae2a11 1024 {
saloutos 0:083111ae2a11 1025 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
saloutos 0:083111ae2a11 1026 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
saloutos 0:083111ae2a11 1027 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
saloutos 0:083111ae2a11 1028 ( ((q63_t)sum ) ) ));
saloutos 0:083111ae2a11 1029 }
saloutos 0:083111ae2a11 1030
saloutos 0:083111ae2a11 1031
saloutos 0:083111ae2a11 1032 /*
saloutos 0:083111ae2a11 1033 * @brief C custom defined SMUAD for M3 and M0 processors
saloutos 0:083111ae2a11 1034 */
saloutos 0:083111ae2a11 1035 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD(
saloutos 0:083111ae2a11 1036 uint32_t x,
saloutos 0:083111ae2a11 1037 uint32_t y)
saloutos 0:083111ae2a11 1038 {
saloutos 0:083111ae2a11 1039 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
saloutos 0:083111ae2a11 1040 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
saloutos 0:083111ae2a11 1041 }
saloutos 0:083111ae2a11 1042
saloutos 0:083111ae2a11 1043
saloutos 0:083111ae2a11 1044 /*
saloutos 0:083111ae2a11 1045 * @brief C custom defined SMUSD for M3 and M0 processors
saloutos 0:083111ae2a11 1046 */
saloutos 0:083111ae2a11 1047 CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD(
saloutos 0:083111ae2a11 1048 uint32_t x,
saloutos 0:083111ae2a11 1049 uint32_t y)
saloutos 0:083111ae2a11 1050 {
saloutos 0:083111ae2a11 1051 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
saloutos 0:083111ae2a11 1052 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
saloutos 0:083111ae2a11 1053 }
saloutos 0:083111ae2a11 1054
saloutos 0:083111ae2a11 1055
saloutos 0:083111ae2a11 1056 /*
saloutos 0:083111ae2a11 1057 * @brief C custom defined SXTB16 for M3 and M0 processors
saloutos 0:083111ae2a11 1058 */
saloutos 0:083111ae2a11 1059 CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16(
saloutos 0:083111ae2a11 1060 uint32_t x)
saloutos 0:083111ae2a11 1061 {
saloutos 0:083111ae2a11 1062 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
saloutos 0:083111ae2a11 1063 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
saloutos 0:083111ae2a11 1064 }
saloutos 0:083111ae2a11 1065
saloutos 0:083111ae2a11 1066 /*
saloutos 0:083111ae2a11 1067 * @brief C custom defined SMMLA for M3 and M0 processors
saloutos 0:083111ae2a11 1068 */
saloutos 0:083111ae2a11 1069 CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA(
saloutos 0:083111ae2a11 1070 int32_t x,
saloutos 0:083111ae2a11 1071 int32_t y,
saloutos 0:083111ae2a11 1072 int32_t sum)
saloutos 0:083111ae2a11 1073 {
saloutos 0:083111ae2a11 1074 return (sum + (int32_t) (((int64_t) x * y) >> 32));
saloutos 0:083111ae2a11 1075 }
saloutos 0:083111ae2a11 1076
saloutos 0:083111ae2a11 1077 #if 0
saloutos 0:083111ae2a11 1078 /*
saloutos 0:083111ae2a11 1079 * @brief C custom defined PKHBT for unavailable DSP extension
saloutos 0:083111ae2a11 1080 */
saloutos 0:083111ae2a11 1081 CMSIS_INLINE __STATIC_INLINE uint32_t __PKHBT(
saloutos 0:083111ae2a11 1082 uint32_t x,
saloutos 0:083111ae2a11 1083 uint32_t y,
saloutos 0:083111ae2a11 1084 uint32_t leftshift)
saloutos 0:083111ae2a11 1085 {
saloutos 0:083111ae2a11 1086 return ( ((x ) & 0x0000FFFFUL) |
saloutos 0:083111ae2a11 1087 ((y << leftshift) & 0xFFFF0000UL) );
saloutos 0:083111ae2a11 1088 }
saloutos 0:083111ae2a11 1089
saloutos 0:083111ae2a11 1090 /*
saloutos 0:083111ae2a11 1091 * @brief C custom defined PKHTB for unavailable DSP extension
saloutos 0:083111ae2a11 1092 */
saloutos 0:083111ae2a11 1093 CMSIS_INLINE __STATIC_INLINE uint32_t __PKHTB(
saloutos 0:083111ae2a11 1094 uint32_t x,
saloutos 0:083111ae2a11 1095 uint32_t y,
saloutos 0:083111ae2a11 1096 uint32_t rightshift)
saloutos 0:083111ae2a11 1097 {
saloutos 0:083111ae2a11 1098 return ( ((x ) & 0xFFFF0000UL) |
saloutos 0:083111ae2a11 1099 ((y >> rightshift) & 0x0000FFFFUL) );
saloutos 0:083111ae2a11 1100 }
saloutos 0:083111ae2a11 1101 #endif
saloutos 0:083111ae2a11 1102
saloutos 0:083111ae2a11 1103 /* #endif // defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
saloutos 0:083111ae2a11 1104 #endif /* !defined (ARM_MATH_DSP) */
saloutos 0:083111ae2a11 1105
saloutos 0:083111ae2a11 1106
saloutos 0:083111ae2a11 1107 /**
saloutos 0:083111ae2a11 1108 * @brief Instance structure for the Q7 FIR filter.
saloutos 0:083111ae2a11 1109 */
saloutos 0:083111ae2a11 1110 typedef struct
saloutos 0:083111ae2a11 1111 {
saloutos 0:083111ae2a11 1112 uint16_t numTaps; /**< number of filter coefficients in the filter. */
saloutos 0:083111ae2a11 1113 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 1114 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 1115 } arm_fir_instance_q7;
saloutos 0:083111ae2a11 1116
saloutos 0:083111ae2a11 1117 /**
saloutos 0:083111ae2a11 1118 * @brief Instance structure for the Q15 FIR filter.
saloutos 0:083111ae2a11 1119 */
saloutos 0:083111ae2a11 1120 typedef struct
saloutos 0:083111ae2a11 1121 {
saloutos 0:083111ae2a11 1122 uint16_t numTaps; /**< number of filter coefficients in the filter. */
saloutos 0:083111ae2a11 1123 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 1124 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 1125 } arm_fir_instance_q15;
saloutos 0:083111ae2a11 1126
saloutos 0:083111ae2a11 1127 /**
saloutos 0:083111ae2a11 1128 * @brief Instance structure for the Q31 FIR filter.
saloutos 0:083111ae2a11 1129 */
saloutos 0:083111ae2a11 1130 typedef struct
saloutos 0:083111ae2a11 1131 {
saloutos 0:083111ae2a11 1132 uint16_t numTaps; /**< number of filter coefficients in the filter. */
saloutos 0:083111ae2a11 1133 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 1134 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 1135 } arm_fir_instance_q31;
saloutos 0:083111ae2a11 1136
saloutos 0:083111ae2a11 1137 /**
saloutos 0:083111ae2a11 1138 * @brief Instance structure for the floating-point FIR filter.
saloutos 0:083111ae2a11 1139 */
saloutos 0:083111ae2a11 1140 typedef struct
saloutos 0:083111ae2a11 1141 {
saloutos 0:083111ae2a11 1142 uint16_t numTaps; /**< number of filter coefficients in the filter. */
saloutos 0:083111ae2a11 1143 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 1144 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 1145 } arm_fir_instance_f32;
saloutos 0:083111ae2a11 1146
saloutos 0:083111ae2a11 1147
saloutos 0:083111ae2a11 1148 /**
saloutos 0:083111ae2a11 1149 * @brief Processing function for the Q7 FIR filter.
saloutos 0:083111ae2a11 1150 * @param[in] S points to an instance of the Q7 FIR filter structure.
saloutos 0:083111ae2a11 1151 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1152 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1153 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1154 */
saloutos 0:083111ae2a11 1155 void arm_fir_q7(
saloutos 0:083111ae2a11 1156 const arm_fir_instance_q7 * S,
saloutos 0:083111ae2a11 1157 q7_t * pSrc,
saloutos 0:083111ae2a11 1158 q7_t * pDst,
saloutos 0:083111ae2a11 1159 uint32_t blockSize);
saloutos 0:083111ae2a11 1160
saloutos 0:083111ae2a11 1161
saloutos 0:083111ae2a11 1162 /**
saloutos 0:083111ae2a11 1163 * @brief Initialization function for the Q7 FIR filter.
saloutos 0:083111ae2a11 1164 * @param[in,out] S points to an instance of the Q7 FIR structure.
saloutos 0:083111ae2a11 1165 * @param[in] numTaps Number of filter coefficients in the filter.
saloutos 0:083111ae2a11 1166 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1167 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1168 * @param[in] blockSize number of samples that are processed.
saloutos 0:083111ae2a11 1169 */
saloutos 0:083111ae2a11 1170 void arm_fir_init_q7(
saloutos 0:083111ae2a11 1171 arm_fir_instance_q7 * S,
saloutos 0:083111ae2a11 1172 uint16_t numTaps,
saloutos 0:083111ae2a11 1173 q7_t * pCoeffs,
saloutos 0:083111ae2a11 1174 q7_t * pState,
saloutos 0:083111ae2a11 1175 uint32_t blockSize);
saloutos 0:083111ae2a11 1176
saloutos 0:083111ae2a11 1177
saloutos 0:083111ae2a11 1178 /**
saloutos 0:083111ae2a11 1179 * @brief Processing function for the Q15 FIR filter.
saloutos 0:083111ae2a11 1180 * @param[in] S points to an instance of the Q15 FIR structure.
saloutos 0:083111ae2a11 1181 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1182 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1183 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1184 */
saloutos 0:083111ae2a11 1185 void arm_fir_q15(
saloutos 0:083111ae2a11 1186 const arm_fir_instance_q15 * S,
saloutos 0:083111ae2a11 1187 q15_t * pSrc,
saloutos 0:083111ae2a11 1188 q15_t * pDst,
saloutos 0:083111ae2a11 1189 uint32_t blockSize);
saloutos 0:083111ae2a11 1190
saloutos 0:083111ae2a11 1191
saloutos 0:083111ae2a11 1192 /**
saloutos 0:083111ae2a11 1193 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 1194 * @param[in] S points to an instance of the Q15 FIR filter structure.
saloutos 0:083111ae2a11 1195 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1196 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1197 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1198 */
saloutos 0:083111ae2a11 1199 void arm_fir_fast_q15(
saloutos 0:083111ae2a11 1200 const arm_fir_instance_q15 * S,
saloutos 0:083111ae2a11 1201 q15_t * pSrc,
saloutos 0:083111ae2a11 1202 q15_t * pDst,
saloutos 0:083111ae2a11 1203 uint32_t blockSize);
saloutos 0:083111ae2a11 1204
saloutos 0:083111ae2a11 1205
saloutos 0:083111ae2a11 1206 /**
saloutos 0:083111ae2a11 1207 * @brief Initialization function for the Q15 FIR filter.
saloutos 0:083111ae2a11 1208 * @param[in,out] S points to an instance of the Q15 FIR filter structure.
saloutos 0:083111ae2a11 1209 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
saloutos 0:083111ae2a11 1210 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1211 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1212 * @param[in] blockSize number of samples that are processed at a time.
saloutos 0:083111ae2a11 1213 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
saloutos 0:083111ae2a11 1214 * <code>numTaps</code> is not a supported value.
saloutos 0:083111ae2a11 1215 */
saloutos 0:083111ae2a11 1216 arm_status arm_fir_init_q15(
saloutos 0:083111ae2a11 1217 arm_fir_instance_q15 * S,
saloutos 0:083111ae2a11 1218 uint16_t numTaps,
saloutos 0:083111ae2a11 1219 q15_t * pCoeffs,
saloutos 0:083111ae2a11 1220 q15_t * pState,
saloutos 0:083111ae2a11 1221 uint32_t blockSize);
saloutos 0:083111ae2a11 1222
saloutos 0:083111ae2a11 1223
saloutos 0:083111ae2a11 1224 /**
saloutos 0:083111ae2a11 1225 * @brief Processing function for the Q31 FIR filter.
saloutos 0:083111ae2a11 1226 * @param[in] S points to an instance of the Q31 FIR filter structure.
saloutos 0:083111ae2a11 1227 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1228 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1229 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1230 */
saloutos 0:083111ae2a11 1231 void arm_fir_q31(
saloutos 0:083111ae2a11 1232 const arm_fir_instance_q31 * S,
saloutos 0:083111ae2a11 1233 q31_t * pSrc,
saloutos 0:083111ae2a11 1234 q31_t * pDst,
saloutos 0:083111ae2a11 1235 uint32_t blockSize);
saloutos 0:083111ae2a11 1236
saloutos 0:083111ae2a11 1237
saloutos 0:083111ae2a11 1238 /**
saloutos 0:083111ae2a11 1239 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 1240 * @param[in] S points to an instance of the Q31 FIR structure.
saloutos 0:083111ae2a11 1241 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1242 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1243 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1244 */
saloutos 0:083111ae2a11 1245 void arm_fir_fast_q31(
saloutos 0:083111ae2a11 1246 const arm_fir_instance_q31 * S,
saloutos 0:083111ae2a11 1247 q31_t * pSrc,
saloutos 0:083111ae2a11 1248 q31_t * pDst,
saloutos 0:083111ae2a11 1249 uint32_t blockSize);
saloutos 0:083111ae2a11 1250
saloutos 0:083111ae2a11 1251
saloutos 0:083111ae2a11 1252 /**
saloutos 0:083111ae2a11 1253 * @brief Initialization function for the Q31 FIR filter.
saloutos 0:083111ae2a11 1254 * @param[in,out] S points to an instance of the Q31 FIR structure.
saloutos 0:083111ae2a11 1255 * @param[in] numTaps Number of filter coefficients in the filter.
saloutos 0:083111ae2a11 1256 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1257 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1258 * @param[in] blockSize number of samples that are processed at a time.
saloutos 0:083111ae2a11 1259 */
saloutos 0:083111ae2a11 1260 void arm_fir_init_q31(
saloutos 0:083111ae2a11 1261 arm_fir_instance_q31 * S,
saloutos 0:083111ae2a11 1262 uint16_t numTaps,
saloutos 0:083111ae2a11 1263 q31_t * pCoeffs,
saloutos 0:083111ae2a11 1264 q31_t * pState,
saloutos 0:083111ae2a11 1265 uint32_t blockSize);
saloutos 0:083111ae2a11 1266
saloutos 0:083111ae2a11 1267
saloutos 0:083111ae2a11 1268 /**
saloutos 0:083111ae2a11 1269 * @brief Processing function for the floating-point FIR filter.
saloutos 0:083111ae2a11 1270 * @param[in] S points to an instance of the floating-point FIR structure.
saloutos 0:083111ae2a11 1271 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1272 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1273 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1274 */
saloutos 0:083111ae2a11 1275 void arm_fir_f32(
saloutos 0:083111ae2a11 1276 const arm_fir_instance_f32 * S,
saloutos 0:083111ae2a11 1277 float32_t * pSrc,
saloutos 0:083111ae2a11 1278 float32_t * pDst,
saloutos 0:083111ae2a11 1279 uint32_t blockSize);
saloutos 0:083111ae2a11 1280
saloutos 0:083111ae2a11 1281
saloutos 0:083111ae2a11 1282 /**
saloutos 0:083111ae2a11 1283 * @brief Initialization function for the floating-point FIR filter.
saloutos 0:083111ae2a11 1284 * @param[in,out] S points to an instance of the floating-point FIR filter structure.
saloutos 0:083111ae2a11 1285 * @param[in] numTaps Number of filter coefficients in the filter.
saloutos 0:083111ae2a11 1286 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1287 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1288 * @param[in] blockSize number of samples that are processed at a time.
saloutos 0:083111ae2a11 1289 */
saloutos 0:083111ae2a11 1290 void arm_fir_init_f32(
saloutos 0:083111ae2a11 1291 arm_fir_instance_f32 * S,
saloutos 0:083111ae2a11 1292 uint16_t numTaps,
saloutos 0:083111ae2a11 1293 float32_t * pCoeffs,
saloutos 0:083111ae2a11 1294 float32_t * pState,
saloutos 0:083111ae2a11 1295 uint32_t blockSize);
saloutos 0:083111ae2a11 1296
saloutos 0:083111ae2a11 1297
saloutos 0:083111ae2a11 1298 /**
saloutos 0:083111ae2a11 1299 * @brief Instance structure for the Q15 Biquad cascade filter.
saloutos 0:083111ae2a11 1300 */
saloutos 0:083111ae2a11 1301 typedef struct
saloutos 0:083111ae2a11 1302 {
saloutos 0:083111ae2a11 1303 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 1304 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
saloutos 0:083111ae2a11 1305 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 1306 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
saloutos 0:083111ae2a11 1307 } arm_biquad_casd_df1_inst_q15;
saloutos 0:083111ae2a11 1308
saloutos 0:083111ae2a11 1309 /**
saloutos 0:083111ae2a11 1310 * @brief Instance structure for the Q31 Biquad cascade filter.
saloutos 0:083111ae2a11 1311 */
saloutos 0:083111ae2a11 1312 typedef struct
saloutos 0:083111ae2a11 1313 {
saloutos 0:083111ae2a11 1314 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 1315 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
saloutos 0:083111ae2a11 1316 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 1317 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
saloutos 0:083111ae2a11 1318 } arm_biquad_casd_df1_inst_q31;
saloutos 0:083111ae2a11 1319
saloutos 0:083111ae2a11 1320 /**
saloutos 0:083111ae2a11 1321 * @brief Instance structure for the floating-point Biquad cascade filter.
saloutos 0:083111ae2a11 1322 */
saloutos 0:083111ae2a11 1323 typedef struct
saloutos 0:083111ae2a11 1324 {
saloutos 0:083111ae2a11 1325 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 1326 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
saloutos 0:083111ae2a11 1327 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 1328 } arm_biquad_casd_df1_inst_f32;
saloutos 0:083111ae2a11 1329
saloutos 0:083111ae2a11 1330
saloutos 0:083111ae2a11 1331 /**
saloutos 0:083111ae2a11 1332 * @brief Processing function for the Q15 Biquad cascade filter.
saloutos 0:083111ae2a11 1333 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
saloutos 0:083111ae2a11 1334 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1335 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1336 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1337 */
saloutos 0:083111ae2a11 1338 void arm_biquad_cascade_df1_q15(
saloutos 0:083111ae2a11 1339 const arm_biquad_casd_df1_inst_q15 * S,
saloutos 0:083111ae2a11 1340 q15_t * pSrc,
saloutos 0:083111ae2a11 1341 q15_t * pDst,
saloutos 0:083111ae2a11 1342 uint32_t blockSize);
saloutos 0:083111ae2a11 1343
saloutos 0:083111ae2a11 1344
saloutos 0:083111ae2a11 1345 /**
saloutos 0:083111ae2a11 1346 * @brief Initialization function for the Q15 Biquad cascade filter.
saloutos 0:083111ae2a11 1347 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
saloutos 0:083111ae2a11 1348 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 1349 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1350 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1351 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
saloutos 0:083111ae2a11 1352 */
saloutos 0:083111ae2a11 1353 void arm_biquad_cascade_df1_init_q15(
saloutos 0:083111ae2a11 1354 arm_biquad_casd_df1_inst_q15 * S,
saloutos 0:083111ae2a11 1355 uint8_t numStages,
saloutos 0:083111ae2a11 1356 q15_t * pCoeffs,
saloutos 0:083111ae2a11 1357 q15_t * pState,
saloutos 0:083111ae2a11 1358 int8_t postShift);
saloutos 0:083111ae2a11 1359
saloutos 0:083111ae2a11 1360
saloutos 0:083111ae2a11 1361 /**
saloutos 0:083111ae2a11 1362 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 1363 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
saloutos 0:083111ae2a11 1364 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1365 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1366 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1367 */
saloutos 0:083111ae2a11 1368 void arm_biquad_cascade_df1_fast_q15(
saloutos 0:083111ae2a11 1369 const arm_biquad_casd_df1_inst_q15 * S,
saloutos 0:083111ae2a11 1370 q15_t * pSrc,
saloutos 0:083111ae2a11 1371 q15_t * pDst,
saloutos 0:083111ae2a11 1372 uint32_t blockSize);
saloutos 0:083111ae2a11 1373
saloutos 0:083111ae2a11 1374
saloutos 0:083111ae2a11 1375 /**
saloutos 0:083111ae2a11 1376 * @brief Processing function for the Q31 Biquad cascade filter
saloutos 0:083111ae2a11 1377 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
saloutos 0:083111ae2a11 1378 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1379 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1380 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1381 */
saloutos 0:083111ae2a11 1382 void arm_biquad_cascade_df1_q31(
saloutos 0:083111ae2a11 1383 const arm_biquad_casd_df1_inst_q31 * S,
saloutos 0:083111ae2a11 1384 q31_t * pSrc,
saloutos 0:083111ae2a11 1385 q31_t * pDst,
saloutos 0:083111ae2a11 1386 uint32_t blockSize);
saloutos 0:083111ae2a11 1387
saloutos 0:083111ae2a11 1388
saloutos 0:083111ae2a11 1389 /**
saloutos 0:083111ae2a11 1390 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 1391 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
saloutos 0:083111ae2a11 1392 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1393 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1394 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1395 */
saloutos 0:083111ae2a11 1396 void arm_biquad_cascade_df1_fast_q31(
saloutos 0:083111ae2a11 1397 const arm_biquad_casd_df1_inst_q31 * S,
saloutos 0:083111ae2a11 1398 q31_t * pSrc,
saloutos 0:083111ae2a11 1399 q31_t * pDst,
saloutos 0:083111ae2a11 1400 uint32_t blockSize);
saloutos 0:083111ae2a11 1401
saloutos 0:083111ae2a11 1402
saloutos 0:083111ae2a11 1403 /**
saloutos 0:083111ae2a11 1404 * @brief Initialization function for the Q31 Biquad cascade filter.
saloutos 0:083111ae2a11 1405 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
saloutos 0:083111ae2a11 1406 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 1407 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1408 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1409 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
saloutos 0:083111ae2a11 1410 */
saloutos 0:083111ae2a11 1411 void arm_biquad_cascade_df1_init_q31(
saloutos 0:083111ae2a11 1412 arm_biquad_casd_df1_inst_q31 * S,
saloutos 0:083111ae2a11 1413 uint8_t numStages,
saloutos 0:083111ae2a11 1414 q31_t * pCoeffs,
saloutos 0:083111ae2a11 1415 q31_t * pState,
saloutos 0:083111ae2a11 1416 int8_t postShift);
saloutos 0:083111ae2a11 1417
saloutos 0:083111ae2a11 1418
saloutos 0:083111ae2a11 1419 /**
saloutos 0:083111ae2a11 1420 * @brief Processing function for the floating-point Biquad cascade filter.
saloutos 0:083111ae2a11 1421 * @param[in] S points to an instance of the floating-point Biquad cascade structure.
saloutos 0:083111ae2a11 1422 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 1423 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 1424 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 1425 */
saloutos 0:083111ae2a11 1426 void arm_biquad_cascade_df1_f32(
saloutos 0:083111ae2a11 1427 const arm_biquad_casd_df1_inst_f32 * S,
saloutos 0:083111ae2a11 1428 float32_t * pSrc,
saloutos 0:083111ae2a11 1429 float32_t * pDst,
saloutos 0:083111ae2a11 1430 uint32_t blockSize);
saloutos 0:083111ae2a11 1431
saloutos 0:083111ae2a11 1432
saloutos 0:083111ae2a11 1433 /**
saloutos 0:083111ae2a11 1434 * @brief Initialization function for the floating-point Biquad cascade filter.
saloutos 0:083111ae2a11 1435 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
saloutos 0:083111ae2a11 1436 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 1437 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 1438 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 1439 */
saloutos 0:083111ae2a11 1440 void arm_biquad_cascade_df1_init_f32(
saloutos 0:083111ae2a11 1441 arm_biquad_casd_df1_inst_f32 * S,
saloutos 0:083111ae2a11 1442 uint8_t numStages,
saloutos 0:083111ae2a11 1443 float32_t * pCoeffs,
saloutos 0:083111ae2a11 1444 float32_t * pState);
saloutos 0:083111ae2a11 1445
saloutos 0:083111ae2a11 1446
saloutos 0:083111ae2a11 1447 /**
saloutos 0:083111ae2a11 1448 * @brief Instance structure for the floating-point matrix structure.
saloutos 0:083111ae2a11 1449 */
saloutos 0:083111ae2a11 1450 typedef struct
saloutos 0:083111ae2a11 1451 {
saloutos 0:083111ae2a11 1452 uint16_t numRows; /**< number of rows of the matrix. */
saloutos 0:083111ae2a11 1453 uint16_t numCols; /**< number of columns of the matrix. */
saloutos 0:083111ae2a11 1454 float32_t *pData; /**< points to the data of the matrix. */
saloutos 0:083111ae2a11 1455 } arm_matrix_instance_f32;
saloutos 0:083111ae2a11 1456
saloutos 0:083111ae2a11 1457
saloutos 0:083111ae2a11 1458 /**
saloutos 0:083111ae2a11 1459 * @brief Instance structure for the floating-point matrix structure.
saloutos 0:083111ae2a11 1460 */
saloutos 0:083111ae2a11 1461 typedef struct
saloutos 0:083111ae2a11 1462 {
saloutos 0:083111ae2a11 1463 uint16_t numRows; /**< number of rows of the matrix. */
saloutos 0:083111ae2a11 1464 uint16_t numCols; /**< number of columns of the matrix. */
saloutos 0:083111ae2a11 1465 float64_t *pData; /**< points to the data of the matrix. */
saloutos 0:083111ae2a11 1466 } arm_matrix_instance_f64;
saloutos 0:083111ae2a11 1467
saloutos 0:083111ae2a11 1468 /**
saloutos 0:083111ae2a11 1469 * @brief Instance structure for the Q15 matrix structure.
saloutos 0:083111ae2a11 1470 */
saloutos 0:083111ae2a11 1471 typedef struct
saloutos 0:083111ae2a11 1472 {
saloutos 0:083111ae2a11 1473 uint16_t numRows; /**< number of rows of the matrix. */
saloutos 0:083111ae2a11 1474 uint16_t numCols; /**< number of columns of the matrix. */
saloutos 0:083111ae2a11 1475 q15_t *pData; /**< points to the data of the matrix. */
saloutos 0:083111ae2a11 1476 } arm_matrix_instance_q15;
saloutos 0:083111ae2a11 1477
saloutos 0:083111ae2a11 1478 /**
saloutos 0:083111ae2a11 1479 * @brief Instance structure for the Q31 matrix structure.
saloutos 0:083111ae2a11 1480 */
saloutos 0:083111ae2a11 1481 typedef struct
saloutos 0:083111ae2a11 1482 {
saloutos 0:083111ae2a11 1483 uint16_t numRows; /**< number of rows of the matrix. */
saloutos 0:083111ae2a11 1484 uint16_t numCols; /**< number of columns of the matrix. */
saloutos 0:083111ae2a11 1485 q31_t *pData; /**< points to the data of the matrix. */
saloutos 0:083111ae2a11 1486 } arm_matrix_instance_q31;
saloutos 0:083111ae2a11 1487
saloutos 0:083111ae2a11 1488
saloutos 0:083111ae2a11 1489 /**
saloutos 0:083111ae2a11 1490 * @brief Floating-point matrix addition.
saloutos 0:083111ae2a11 1491 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1492 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1493 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1494 * @return The function returns either
saloutos 0:083111ae2a11 1495 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1496 */
saloutos 0:083111ae2a11 1497 arm_status arm_mat_add_f32(
saloutos 0:083111ae2a11 1498 const arm_matrix_instance_f32 * pSrcA,
saloutos 0:083111ae2a11 1499 const arm_matrix_instance_f32 * pSrcB,
saloutos 0:083111ae2a11 1500 arm_matrix_instance_f32 * pDst);
saloutos 0:083111ae2a11 1501
saloutos 0:083111ae2a11 1502
saloutos 0:083111ae2a11 1503 /**
saloutos 0:083111ae2a11 1504 * @brief Q15 matrix addition.
saloutos 0:083111ae2a11 1505 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1506 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1507 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1508 * @return The function returns either
saloutos 0:083111ae2a11 1509 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1510 */
saloutos 0:083111ae2a11 1511 arm_status arm_mat_add_q15(
saloutos 0:083111ae2a11 1512 const arm_matrix_instance_q15 * pSrcA,
saloutos 0:083111ae2a11 1513 const arm_matrix_instance_q15 * pSrcB,
saloutos 0:083111ae2a11 1514 arm_matrix_instance_q15 * pDst);
saloutos 0:083111ae2a11 1515
saloutos 0:083111ae2a11 1516
saloutos 0:083111ae2a11 1517 /**
saloutos 0:083111ae2a11 1518 * @brief Q31 matrix addition.
saloutos 0:083111ae2a11 1519 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1520 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1521 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1522 * @return The function returns either
saloutos 0:083111ae2a11 1523 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1524 */
saloutos 0:083111ae2a11 1525 arm_status arm_mat_add_q31(
saloutos 0:083111ae2a11 1526 const arm_matrix_instance_q31 * pSrcA,
saloutos 0:083111ae2a11 1527 const arm_matrix_instance_q31 * pSrcB,
saloutos 0:083111ae2a11 1528 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1529
saloutos 0:083111ae2a11 1530
saloutos 0:083111ae2a11 1531 /**
saloutos 0:083111ae2a11 1532 * @brief Floating-point, complex, matrix multiplication.
saloutos 0:083111ae2a11 1533 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1534 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1535 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1536 * @return The function returns either
saloutos 0:083111ae2a11 1537 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1538 */
saloutos 0:083111ae2a11 1539 arm_status arm_mat_cmplx_mult_f32(
saloutos 0:083111ae2a11 1540 const arm_matrix_instance_f32 * pSrcA,
saloutos 0:083111ae2a11 1541 const arm_matrix_instance_f32 * pSrcB,
saloutos 0:083111ae2a11 1542 arm_matrix_instance_f32 * pDst);
saloutos 0:083111ae2a11 1543
saloutos 0:083111ae2a11 1544
saloutos 0:083111ae2a11 1545 /**
saloutos 0:083111ae2a11 1546 * @brief Q15, complex, matrix multiplication.
saloutos 0:083111ae2a11 1547 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1548 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1549 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1550 * @return The function returns either
saloutos 0:083111ae2a11 1551 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1552 */
saloutos 0:083111ae2a11 1553 arm_status arm_mat_cmplx_mult_q15(
saloutos 0:083111ae2a11 1554 const arm_matrix_instance_q15 * pSrcA,
saloutos 0:083111ae2a11 1555 const arm_matrix_instance_q15 * pSrcB,
saloutos 0:083111ae2a11 1556 arm_matrix_instance_q15 * pDst,
saloutos 0:083111ae2a11 1557 q15_t * pScratch);
saloutos 0:083111ae2a11 1558
saloutos 0:083111ae2a11 1559
saloutos 0:083111ae2a11 1560 /**
saloutos 0:083111ae2a11 1561 * @brief Q31, complex, matrix multiplication.
saloutos 0:083111ae2a11 1562 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1563 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1564 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1565 * @return The function returns either
saloutos 0:083111ae2a11 1566 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1567 */
saloutos 0:083111ae2a11 1568 arm_status arm_mat_cmplx_mult_q31(
saloutos 0:083111ae2a11 1569 const arm_matrix_instance_q31 * pSrcA,
saloutos 0:083111ae2a11 1570 const arm_matrix_instance_q31 * pSrcB,
saloutos 0:083111ae2a11 1571 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1572
saloutos 0:083111ae2a11 1573
saloutos 0:083111ae2a11 1574 /**
saloutos 0:083111ae2a11 1575 * @brief Floating-point matrix transpose.
saloutos 0:083111ae2a11 1576 * @param[in] pSrc points to the input matrix
saloutos 0:083111ae2a11 1577 * @param[out] pDst points to the output matrix
saloutos 0:083111ae2a11 1578 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
saloutos 0:083111ae2a11 1579 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1580 */
saloutos 0:083111ae2a11 1581 arm_status arm_mat_trans_f32(
saloutos 0:083111ae2a11 1582 const arm_matrix_instance_f32 * pSrc,
saloutos 0:083111ae2a11 1583 arm_matrix_instance_f32 * pDst);
saloutos 0:083111ae2a11 1584
saloutos 0:083111ae2a11 1585
saloutos 0:083111ae2a11 1586 /**
saloutos 0:083111ae2a11 1587 * @brief Q15 matrix transpose.
saloutos 0:083111ae2a11 1588 * @param[in] pSrc points to the input matrix
saloutos 0:083111ae2a11 1589 * @param[out] pDst points to the output matrix
saloutos 0:083111ae2a11 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
saloutos 0:083111ae2a11 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1592 */
saloutos 0:083111ae2a11 1593 arm_status arm_mat_trans_q15(
saloutos 0:083111ae2a11 1594 const arm_matrix_instance_q15 * pSrc,
saloutos 0:083111ae2a11 1595 arm_matrix_instance_q15 * pDst);
saloutos 0:083111ae2a11 1596
saloutos 0:083111ae2a11 1597
saloutos 0:083111ae2a11 1598 /**
saloutos 0:083111ae2a11 1599 * @brief Q31 matrix transpose.
saloutos 0:083111ae2a11 1600 * @param[in] pSrc points to the input matrix
saloutos 0:083111ae2a11 1601 * @param[out] pDst points to the output matrix
saloutos 0:083111ae2a11 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
saloutos 0:083111ae2a11 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1604 */
saloutos 0:083111ae2a11 1605 arm_status arm_mat_trans_q31(
saloutos 0:083111ae2a11 1606 const arm_matrix_instance_q31 * pSrc,
saloutos 0:083111ae2a11 1607 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1608
saloutos 0:083111ae2a11 1609
saloutos 0:083111ae2a11 1610 /**
saloutos 0:083111ae2a11 1611 * @brief Floating-point matrix multiplication
saloutos 0:083111ae2a11 1612 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1613 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1614 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1615 * @return The function returns either
saloutos 0:083111ae2a11 1616 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1617 */
saloutos 0:083111ae2a11 1618 arm_status arm_mat_mult_f32(
saloutos 0:083111ae2a11 1619 const arm_matrix_instance_f32 * pSrcA,
saloutos 0:083111ae2a11 1620 const arm_matrix_instance_f32 * pSrcB,
saloutos 0:083111ae2a11 1621 arm_matrix_instance_f32 * pDst);
saloutos 0:083111ae2a11 1622
saloutos 0:083111ae2a11 1623
saloutos 0:083111ae2a11 1624 /**
saloutos 0:083111ae2a11 1625 * @brief Q15 matrix multiplication
saloutos 0:083111ae2a11 1626 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1627 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1628 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1629 * @param[in] pState points to the array for storing intermediate results
saloutos 0:083111ae2a11 1630 * @return The function returns either
saloutos 0:083111ae2a11 1631 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1632 */
saloutos 0:083111ae2a11 1633 arm_status arm_mat_mult_q15(
saloutos 0:083111ae2a11 1634 const arm_matrix_instance_q15 * pSrcA,
saloutos 0:083111ae2a11 1635 const arm_matrix_instance_q15 * pSrcB,
saloutos 0:083111ae2a11 1636 arm_matrix_instance_q15 * pDst,
saloutos 0:083111ae2a11 1637 q15_t * pState);
saloutos 0:083111ae2a11 1638
saloutos 0:083111ae2a11 1639
saloutos 0:083111ae2a11 1640 /**
saloutos 0:083111ae2a11 1641 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 1642 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1643 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1644 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1645 * @param[in] pState points to the array for storing intermediate results
saloutos 0:083111ae2a11 1646 * @return The function returns either
saloutos 0:083111ae2a11 1647 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1648 */
saloutos 0:083111ae2a11 1649 arm_status arm_mat_mult_fast_q15(
saloutos 0:083111ae2a11 1650 const arm_matrix_instance_q15 * pSrcA,
saloutos 0:083111ae2a11 1651 const arm_matrix_instance_q15 * pSrcB,
saloutos 0:083111ae2a11 1652 arm_matrix_instance_q15 * pDst,
saloutos 0:083111ae2a11 1653 q15_t * pState);
saloutos 0:083111ae2a11 1654
saloutos 0:083111ae2a11 1655
saloutos 0:083111ae2a11 1656 /**
saloutos 0:083111ae2a11 1657 * @brief Q31 matrix multiplication
saloutos 0:083111ae2a11 1658 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1659 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1660 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1661 * @return The function returns either
saloutos 0:083111ae2a11 1662 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1663 */
saloutos 0:083111ae2a11 1664 arm_status arm_mat_mult_q31(
saloutos 0:083111ae2a11 1665 const arm_matrix_instance_q31 * pSrcA,
saloutos 0:083111ae2a11 1666 const arm_matrix_instance_q31 * pSrcB,
saloutos 0:083111ae2a11 1667 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1668
saloutos 0:083111ae2a11 1669
saloutos 0:083111ae2a11 1670 /**
saloutos 0:083111ae2a11 1671 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 1672 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1673 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1674 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1675 * @return The function returns either
saloutos 0:083111ae2a11 1676 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1677 */
saloutos 0:083111ae2a11 1678 arm_status arm_mat_mult_fast_q31(
saloutos 0:083111ae2a11 1679 const arm_matrix_instance_q31 * pSrcA,
saloutos 0:083111ae2a11 1680 const arm_matrix_instance_q31 * pSrcB,
saloutos 0:083111ae2a11 1681 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1682
saloutos 0:083111ae2a11 1683
saloutos 0:083111ae2a11 1684 /**
saloutos 0:083111ae2a11 1685 * @brief Floating-point matrix subtraction
saloutos 0:083111ae2a11 1686 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1687 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1688 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1689 * @return The function returns either
saloutos 0:083111ae2a11 1690 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1691 */
saloutos 0:083111ae2a11 1692 arm_status arm_mat_sub_f32(
saloutos 0:083111ae2a11 1693 const arm_matrix_instance_f32 * pSrcA,
saloutos 0:083111ae2a11 1694 const arm_matrix_instance_f32 * pSrcB,
saloutos 0:083111ae2a11 1695 arm_matrix_instance_f32 * pDst);
saloutos 0:083111ae2a11 1696
saloutos 0:083111ae2a11 1697
saloutos 0:083111ae2a11 1698 /**
saloutos 0:083111ae2a11 1699 * @brief Q15 matrix subtraction
saloutos 0:083111ae2a11 1700 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1701 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1702 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1703 * @return The function returns either
saloutos 0:083111ae2a11 1704 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1705 */
saloutos 0:083111ae2a11 1706 arm_status arm_mat_sub_q15(
saloutos 0:083111ae2a11 1707 const arm_matrix_instance_q15 * pSrcA,
saloutos 0:083111ae2a11 1708 const arm_matrix_instance_q15 * pSrcB,
saloutos 0:083111ae2a11 1709 arm_matrix_instance_q15 * pDst);
saloutos 0:083111ae2a11 1710
saloutos 0:083111ae2a11 1711
saloutos 0:083111ae2a11 1712 /**
saloutos 0:083111ae2a11 1713 * @brief Q31 matrix subtraction
saloutos 0:083111ae2a11 1714 * @param[in] pSrcA points to the first input matrix structure
saloutos 0:083111ae2a11 1715 * @param[in] pSrcB points to the second input matrix structure
saloutos 0:083111ae2a11 1716 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1717 * @return The function returns either
saloutos 0:083111ae2a11 1718 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1719 */
saloutos 0:083111ae2a11 1720 arm_status arm_mat_sub_q31(
saloutos 0:083111ae2a11 1721 const arm_matrix_instance_q31 * pSrcA,
saloutos 0:083111ae2a11 1722 const arm_matrix_instance_q31 * pSrcB,
saloutos 0:083111ae2a11 1723 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1724
saloutos 0:083111ae2a11 1725
saloutos 0:083111ae2a11 1726 /**
saloutos 0:083111ae2a11 1727 * @brief Floating-point matrix scaling.
saloutos 0:083111ae2a11 1728 * @param[in] pSrc points to the input matrix
saloutos 0:083111ae2a11 1729 * @param[in] scale scale factor
saloutos 0:083111ae2a11 1730 * @param[out] pDst points to the output matrix
saloutos 0:083111ae2a11 1731 * @return The function returns either
saloutos 0:083111ae2a11 1732 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1733 */
saloutos 0:083111ae2a11 1734 arm_status arm_mat_scale_f32(
saloutos 0:083111ae2a11 1735 const arm_matrix_instance_f32 * pSrc,
saloutos 0:083111ae2a11 1736 float32_t scale,
saloutos 0:083111ae2a11 1737 arm_matrix_instance_f32 * pDst);
saloutos 0:083111ae2a11 1738
saloutos 0:083111ae2a11 1739
saloutos 0:083111ae2a11 1740 /**
saloutos 0:083111ae2a11 1741 * @brief Q15 matrix scaling.
saloutos 0:083111ae2a11 1742 * @param[in] pSrc points to input matrix
saloutos 0:083111ae2a11 1743 * @param[in] scaleFract fractional portion of the scale factor
saloutos 0:083111ae2a11 1744 * @param[in] shift number of bits to shift the result by
saloutos 0:083111ae2a11 1745 * @param[out] pDst points to output matrix
saloutos 0:083111ae2a11 1746 * @return The function returns either
saloutos 0:083111ae2a11 1747 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1748 */
saloutos 0:083111ae2a11 1749 arm_status arm_mat_scale_q15(
saloutos 0:083111ae2a11 1750 const arm_matrix_instance_q15 * pSrc,
saloutos 0:083111ae2a11 1751 q15_t scaleFract,
saloutos 0:083111ae2a11 1752 int32_t shift,
saloutos 0:083111ae2a11 1753 arm_matrix_instance_q15 * pDst);
saloutos 0:083111ae2a11 1754
saloutos 0:083111ae2a11 1755
saloutos 0:083111ae2a11 1756 /**
saloutos 0:083111ae2a11 1757 * @brief Q31 matrix scaling.
saloutos 0:083111ae2a11 1758 * @param[in] pSrc points to input matrix
saloutos 0:083111ae2a11 1759 * @param[in] scaleFract fractional portion of the scale factor
saloutos 0:083111ae2a11 1760 * @param[in] shift number of bits to shift the result by
saloutos 0:083111ae2a11 1761 * @param[out] pDst points to output matrix structure
saloutos 0:083111ae2a11 1762 * @return The function returns either
saloutos 0:083111ae2a11 1763 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
saloutos 0:083111ae2a11 1764 */
saloutos 0:083111ae2a11 1765 arm_status arm_mat_scale_q31(
saloutos 0:083111ae2a11 1766 const arm_matrix_instance_q31 * pSrc,
saloutos 0:083111ae2a11 1767 q31_t scaleFract,
saloutos 0:083111ae2a11 1768 int32_t shift,
saloutos 0:083111ae2a11 1769 arm_matrix_instance_q31 * pDst);
saloutos 0:083111ae2a11 1770
saloutos 0:083111ae2a11 1771
saloutos 0:083111ae2a11 1772 /**
saloutos 0:083111ae2a11 1773 * @brief Q31 matrix initialization.
saloutos 0:083111ae2a11 1774 * @param[in,out] S points to an instance of the floating-point matrix structure.
saloutos 0:083111ae2a11 1775 * @param[in] nRows number of rows in the matrix.
saloutos 0:083111ae2a11 1776 * @param[in] nColumns number of columns in the matrix.
saloutos 0:083111ae2a11 1777 * @param[in] pData points to the matrix data array.
saloutos 0:083111ae2a11 1778 */
saloutos 0:083111ae2a11 1779 void arm_mat_init_q31(
saloutos 0:083111ae2a11 1780 arm_matrix_instance_q31 * S,
saloutos 0:083111ae2a11 1781 uint16_t nRows,
saloutos 0:083111ae2a11 1782 uint16_t nColumns,
saloutos 0:083111ae2a11 1783 q31_t * pData);
saloutos 0:083111ae2a11 1784
saloutos 0:083111ae2a11 1785
saloutos 0:083111ae2a11 1786 /**
saloutos 0:083111ae2a11 1787 * @brief Q15 matrix initialization.
saloutos 0:083111ae2a11 1788 * @param[in,out] S points to an instance of the floating-point matrix structure.
saloutos 0:083111ae2a11 1789 * @param[in] nRows number of rows in the matrix.
saloutos 0:083111ae2a11 1790 * @param[in] nColumns number of columns in the matrix.
saloutos 0:083111ae2a11 1791 * @param[in] pData points to the matrix data array.
saloutos 0:083111ae2a11 1792 */
saloutos 0:083111ae2a11 1793 void arm_mat_init_q15(
saloutos 0:083111ae2a11 1794 arm_matrix_instance_q15 * S,
saloutos 0:083111ae2a11 1795 uint16_t nRows,
saloutos 0:083111ae2a11 1796 uint16_t nColumns,
saloutos 0:083111ae2a11 1797 q15_t * pData);
saloutos 0:083111ae2a11 1798
saloutos 0:083111ae2a11 1799
saloutos 0:083111ae2a11 1800 /**
saloutos 0:083111ae2a11 1801 * @brief Floating-point matrix initialization.
saloutos 0:083111ae2a11 1802 * @param[in,out] S points to an instance of the floating-point matrix structure.
saloutos 0:083111ae2a11 1803 * @param[in] nRows number of rows in the matrix.
saloutos 0:083111ae2a11 1804 * @param[in] nColumns number of columns in the matrix.
saloutos 0:083111ae2a11 1805 * @param[in] pData points to the matrix data array.
saloutos 0:083111ae2a11 1806 */
saloutos 0:083111ae2a11 1807 void arm_mat_init_f32(
saloutos 0:083111ae2a11 1808 arm_matrix_instance_f32 * S,
saloutos 0:083111ae2a11 1809 uint16_t nRows,
saloutos 0:083111ae2a11 1810 uint16_t nColumns,
saloutos 0:083111ae2a11 1811 float32_t * pData);
saloutos 0:083111ae2a11 1812
saloutos 0:083111ae2a11 1813
saloutos 0:083111ae2a11 1814
saloutos 0:083111ae2a11 1815 /**
saloutos 0:083111ae2a11 1816 * @brief Instance structure for the Q15 PID Control.
saloutos 0:083111ae2a11 1817 */
saloutos 0:083111ae2a11 1818 typedef struct
saloutos 0:083111ae2a11 1819 {
saloutos 0:083111ae2a11 1820 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
saloutos 0:083111ae2a11 1821 #if !defined (ARM_MATH_DSP)
saloutos 0:083111ae2a11 1822 q15_t A1;
saloutos 0:083111ae2a11 1823 q15_t A2;
saloutos 0:083111ae2a11 1824 #else
saloutos 0:083111ae2a11 1825 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
saloutos 0:083111ae2a11 1826 #endif
saloutos 0:083111ae2a11 1827 q15_t state[3]; /**< The state array of length 3. */
saloutos 0:083111ae2a11 1828 q15_t Kp; /**< The proportional gain. */
saloutos 0:083111ae2a11 1829 q15_t Ki; /**< The integral gain. */
saloutos 0:083111ae2a11 1830 q15_t Kd; /**< The derivative gain. */
saloutos 0:083111ae2a11 1831 } arm_pid_instance_q15;
saloutos 0:083111ae2a11 1832
saloutos 0:083111ae2a11 1833 /**
saloutos 0:083111ae2a11 1834 * @brief Instance structure for the Q31 PID Control.
saloutos 0:083111ae2a11 1835 */
saloutos 0:083111ae2a11 1836 typedef struct
saloutos 0:083111ae2a11 1837 {
saloutos 0:083111ae2a11 1838 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
saloutos 0:083111ae2a11 1839 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
saloutos 0:083111ae2a11 1840 q31_t A2; /**< The derived gain, A2 = Kd . */
saloutos 0:083111ae2a11 1841 q31_t state[3]; /**< The state array of length 3. */
saloutos 0:083111ae2a11 1842 q31_t Kp; /**< The proportional gain. */
saloutos 0:083111ae2a11 1843 q31_t Ki; /**< The integral gain. */
saloutos 0:083111ae2a11 1844 q31_t Kd; /**< The derivative gain. */
saloutos 0:083111ae2a11 1845 } arm_pid_instance_q31;
saloutos 0:083111ae2a11 1846
saloutos 0:083111ae2a11 1847 /**
saloutos 0:083111ae2a11 1848 * @brief Instance structure for the floating-point PID Control.
saloutos 0:083111ae2a11 1849 */
saloutos 0:083111ae2a11 1850 typedef struct
saloutos 0:083111ae2a11 1851 {
saloutos 0:083111ae2a11 1852 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
saloutos 0:083111ae2a11 1853 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
saloutos 0:083111ae2a11 1854 float32_t A2; /**< The derived gain, A2 = Kd . */
saloutos 0:083111ae2a11 1855 float32_t state[3]; /**< The state array of length 3. */
saloutos 0:083111ae2a11 1856 float32_t Kp; /**< The proportional gain. */
saloutos 0:083111ae2a11 1857 float32_t Ki; /**< The integral gain. */
saloutos 0:083111ae2a11 1858 float32_t Kd; /**< The derivative gain. */
saloutos 0:083111ae2a11 1859 } arm_pid_instance_f32;
saloutos 0:083111ae2a11 1860
saloutos 0:083111ae2a11 1861
saloutos 0:083111ae2a11 1862
saloutos 0:083111ae2a11 1863 /**
saloutos 0:083111ae2a11 1864 * @brief Initialization function for the floating-point PID Control.
saloutos 0:083111ae2a11 1865 * @param[in,out] S points to an instance of the PID structure.
saloutos 0:083111ae2a11 1866 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
saloutos 0:083111ae2a11 1867 */
saloutos 0:083111ae2a11 1868 void arm_pid_init_f32(
saloutos 0:083111ae2a11 1869 arm_pid_instance_f32 * S,
saloutos 0:083111ae2a11 1870 int32_t resetStateFlag);
saloutos 0:083111ae2a11 1871
saloutos 0:083111ae2a11 1872
saloutos 0:083111ae2a11 1873 /**
saloutos 0:083111ae2a11 1874 * @brief Reset function for the floating-point PID Control.
saloutos 0:083111ae2a11 1875 * @param[in,out] S is an instance of the floating-point PID Control structure
saloutos 0:083111ae2a11 1876 */
saloutos 0:083111ae2a11 1877 void arm_pid_reset_f32(
saloutos 0:083111ae2a11 1878 arm_pid_instance_f32 * S);
saloutos 0:083111ae2a11 1879
saloutos 0:083111ae2a11 1880
saloutos 0:083111ae2a11 1881 /**
saloutos 0:083111ae2a11 1882 * @brief Initialization function for the Q31 PID Control.
saloutos 0:083111ae2a11 1883 * @param[in,out] S points to an instance of the Q15 PID structure.
saloutos 0:083111ae2a11 1884 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
saloutos 0:083111ae2a11 1885 */
saloutos 0:083111ae2a11 1886 void arm_pid_init_q31(
saloutos 0:083111ae2a11 1887 arm_pid_instance_q31 * S,
saloutos 0:083111ae2a11 1888 int32_t resetStateFlag);
saloutos 0:083111ae2a11 1889
saloutos 0:083111ae2a11 1890
saloutos 0:083111ae2a11 1891 /**
saloutos 0:083111ae2a11 1892 * @brief Reset function for the Q31 PID Control.
saloutos 0:083111ae2a11 1893 * @param[in,out] S points to an instance of the Q31 PID Control structure
saloutos 0:083111ae2a11 1894 */
saloutos 0:083111ae2a11 1895
saloutos 0:083111ae2a11 1896 void arm_pid_reset_q31(
saloutos 0:083111ae2a11 1897 arm_pid_instance_q31 * S);
saloutos 0:083111ae2a11 1898
saloutos 0:083111ae2a11 1899
saloutos 0:083111ae2a11 1900 /**
saloutos 0:083111ae2a11 1901 * @brief Initialization function for the Q15 PID Control.
saloutos 0:083111ae2a11 1902 * @param[in,out] S points to an instance of the Q15 PID structure.
saloutos 0:083111ae2a11 1903 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
saloutos 0:083111ae2a11 1904 */
saloutos 0:083111ae2a11 1905 void arm_pid_init_q15(
saloutos 0:083111ae2a11 1906 arm_pid_instance_q15 * S,
saloutos 0:083111ae2a11 1907 int32_t resetStateFlag);
saloutos 0:083111ae2a11 1908
saloutos 0:083111ae2a11 1909
saloutos 0:083111ae2a11 1910 /**
saloutos 0:083111ae2a11 1911 * @brief Reset function for the Q15 PID Control.
saloutos 0:083111ae2a11 1912 * @param[in,out] S points to an instance of the q15 PID Control structure
saloutos 0:083111ae2a11 1913 */
saloutos 0:083111ae2a11 1914 void arm_pid_reset_q15(
saloutos 0:083111ae2a11 1915 arm_pid_instance_q15 * S);
saloutos 0:083111ae2a11 1916
saloutos 0:083111ae2a11 1917
saloutos 0:083111ae2a11 1918 /**
saloutos 0:083111ae2a11 1919 * @brief Instance structure for the floating-point Linear Interpolate function.
saloutos 0:083111ae2a11 1920 */
saloutos 0:083111ae2a11 1921 typedef struct
saloutos 0:083111ae2a11 1922 {
saloutos 0:083111ae2a11 1923 uint32_t nValues; /**< nValues */
saloutos 0:083111ae2a11 1924 float32_t x1; /**< x1 */
saloutos 0:083111ae2a11 1925 float32_t xSpacing; /**< xSpacing */
saloutos 0:083111ae2a11 1926 float32_t *pYData; /**< pointer to the table of Y values */
saloutos 0:083111ae2a11 1927 } arm_linear_interp_instance_f32;
saloutos 0:083111ae2a11 1928
saloutos 0:083111ae2a11 1929 /**
saloutos 0:083111ae2a11 1930 * @brief Instance structure for the floating-point bilinear interpolation function.
saloutos 0:083111ae2a11 1931 */
saloutos 0:083111ae2a11 1932 typedef struct
saloutos 0:083111ae2a11 1933 {
saloutos 0:083111ae2a11 1934 uint16_t numRows; /**< number of rows in the data table. */
saloutos 0:083111ae2a11 1935 uint16_t numCols; /**< number of columns in the data table. */
saloutos 0:083111ae2a11 1936 float32_t *pData; /**< points to the data table. */
saloutos 0:083111ae2a11 1937 } arm_bilinear_interp_instance_f32;
saloutos 0:083111ae2a11 1938
saloutos 0:083111ae2a11 1939 /**
saloutos 0:083111ae2a11 1940 * @brief Instance structure for the Q31 bilinear interpolation function.
saloutos 0:083111ae2a11 1941 */
saloutos 0:083111ae2a11 1942 typedef struct
saloutos 0:083111ae2a11 1943 {
saloutos 0:083111ae2a11 1944 uint16_t numRows; /**< number of rows in the data table. */
saloutos 0:083111ae2a11 1945 uint16_t numCols; /**< number of columns in the data table. */
saloutos 0:083111ae2a11 1946 q31_t *pData; /**< points to the data table. */
saloutos 0:083111ae2a11 1947 } arm_bilinear_interp_instance_q31;
saloutos 0:083111ae2a11 1948
saloutos 0:083111ae2a11 1949 /**
saloutos 0:083111ae2a11 1950 * @brief Instance structure for the Q15 bilinear interpolation function.
saloutos 0:083111ae2a11 1951 */
saloutos 0:083111ae2a11 1952 typedef struct
saloutos 0:083111ae2a11 1953 {
saloutos 0:083111ae2a11 1954 uint16_t numRows; /**< number of rows in the data table. */
saloutos 0:083111ae2a11 1955 uint16_t numCols; /**< number of columns in the data table. */
saloutos 0:083111ae2a11 1956 q15_t *pData; /**< points to the data table. */
saloutos 0:083111ae2a11 1957 } arm_bilinear_interp_instance_q15;
saloutos 0:083111ae2a11 1958
saloutos 0:083111ae2a11 1959 /**
saloutos 0:083111ae2a11 1960 * @brief Instance structure for the Q15 bilinear interpolation function.
saloutos 0:083111ae2a11 1961 */
saloutos 0:083111ae2a11 1962 typedef struct
saloutos 0:083111ae2a11 1963 {
saloutos 0:083111ae2a11 1964 uint16_t numRows; /**< number of rows in the data table. */
saloutos 0:083111ae2a11 1965 uint16_t numCols; /**< number of columns in the data table. */
saloutos 0:083111ae2a11 1966 q7_t *pData; /**< points to the data table. */
saloutos 0:083111ae2a11 1967 } arm_bilinear_interp_instance_q7;
saloutos 0:083111ae2a11 1968
saloutos 0:083111ae2a11 1969
saloutos 0:083111ae2a11 1970 /**
saloutos 0:083111ae2a11 1971 * @brief Q7 vector multiplication.
saloutos 0:083111ae2a11 1972 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 1973 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 1974 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 1975 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 1976 */
saloutos 0:083111ae2a11 1977 void arm_mult_q7(
saloutos 0:083111ae2a11 1978 q7_t * pSrcA,
saloutos 0:083111ae2a11 1979 q7_t * pSrcB,
saloutos 0:083111ae2a11 1980 q7_t * pDst,
saloutos 0:083111ae2a11 1981 uint32_t blockSize);
saloutos 0:083111ae2a11 1982
saloutos 0:083111ae2a11 1983
saloutos 0:083111ae2a11 1984 /**
saloutos 0:083111ae2a11 1985 * @brief Q15 vector multiplication.
saloutos 0:083111ae2a11 1986 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 1987 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 1988 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 1989 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 1990 */
saloutos 0:083111ae2a11 1991 void arm_mult_q15(
saloutos 0:083111ae2a11 1992 q15_t * pSrcA,
saloutos 0:083111ae2a11 1993 q15_t * pSrcB,
saloutos 0:083111ae2a11 1994 q15_t * pDst,
saloutos 0:083111ae2a11 1995 uint32_t blockSize);
saloutos 0:083111ae2a11 1996
saloutos 0:083111ae2a11 1997
saloutos 0:083111ae2a11 1998 /**
saloutos 0:083111ae2a11 1999 * @brief Q31 vector multiplication.
saloutos 0:083111ae2a11 2000 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2001 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2002 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2003 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2004 */
saloutos 0:083111ae2a11 2005 void arm_mult_q31(
saloutos 0:083111ae2a11 2006 q31_t * pSrcA,
saloutos 0:083111ae2a11 2007 q31_t * pSrcB,
saloutos 0:083111ae2a11 2008 q31_t * pDst,
saloutos 0:083111ae2a11 2009 uint32_t blockSize);
saloutos 0:083111ae2a11 2010
saloutos 0:083111ae2a11 2011
saloutos 0:083111ae2a11 2012 /**
saloutos 0:083111ae2a11 2013 * @brief Floating-point vector multiplication.
saloutos 0:083111ae2a11 2014 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2015 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2016 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2017 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2018 */
saloutos 0:083111ae2a11 2019 void arm_mult_f32(
saloutos 0:083111ae2a11 2020 float32_t * pSrcA,
saloutos 0:083111ae2a11 2021 float32_t * pSrcB,
saloutos 0:083111ae2a11 2022 float32_t * pDst,
saloutos 0:083111ae2a11 2023 uint32_t blockSize);
saloutos 0:083111ae2a11 2024
saloutos 0:083111ae2a11 2025
saloutos 0:083111ae2a11 2026 /**
saloutos 0:083111ae2a11 2027 * @brief Instance structure for the Q15 CFFT/CIFFT function.
saloutos 0:083111ae2a11 2028 */
saloutos 0:083111ae2a11 2029 typedef struct
saloutos 0:083111ae2a11 2030 {
saloutos 0:083111ae2a11 2031 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2032 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
saloutos 0:083111ae2a11 2033 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
saloutos 0:083111ae2a11 2034 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
saloutos 0:083111ae2a11 2035 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2036 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2037 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
saloutos 0:083111ae2a11 2038 } arm_cfft_radix2_instance_q15;
saloutos 0:083111ae2a11 2039
saloutos 0:083111ae2a11 2040 /* Deprecated */
saloutos 0:083111ae2a11 2041 arm_status arm_cfft_radix2_init_q15(
saloutos 0:083111ae2a11 2042 arm_cfft_radix2_instance_q15 * S,
saloutos 0:083111ae2a11 2043 uint16_t fftLen,
saloutos 0:083111ae2a11 2044 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2045 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2046
saloutos 0:083111ae2a11 2047 /* Deprecated */
saloutos 0:083111ae2a11 2048 void arm_cfft_radix2_q15(
saloutos 0:083111ae2a11 2049 const arm_cfft_radix2_instance_q15 * S,
saloutos 0:083111ae2a11 2050 q15_t * pSrc);
saloutos 0:083111ae2a11 2051
saloutos 0:083111ae2a11 2052
saloutos 0:083111ae2a11 2053 /**
saloutos 0:083111ae2a11 2054 * @brief Instance structure for the Q15 CFFT/CIFFT function.
saloutos 0:083111ae2a11 2055 */
saloutos 0:083111ae2a11 2056 typedef struct
saloutos 0:083111ae2a11 2057 {
saloutos 0:083111ae2a11 2058 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2059 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
saloutos 0:083111ae2a11 2060 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
saloutos 0:083111ae2a11 2061 q15_t *pTwiddle; /**< points to the twiddle factor table. */
saloutos 0:083111ae2a11 2062 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2063 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2064 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
saloutos 0:083111ae2a11 2065 } arm_cfft_radix4_instance_q15;
saloutos 0:083111ae2a11 2066
saloutos 0:083111ae2a11 2067 /* Deprecated */
saloutos 0:083111ae2a11 2068 arm_status arm_cfft_radix4_init_q15(
saloutos 0:083111ae2a11 2069 arm_cfft_radix4_instance_q15 * S,
saloutos 0:083111ae2a11 2070 uint16_t fftLen,
saloutos 0:083111ae2a11 2071 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2072 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2073
saloutos 0:083111ae2a11 2074 /* Deprecated */
saloutos 0:083111ae2a11 2075 void arm_cfft_radix4_q15(
saloutos 0:083111ae2a11 2076 const arm_cfft_radix4_instance_q15 * S,
saloutos 0:083111ae2a11 2077 q15_t * pSrc);
saloutos 0:083111ae2a11 2078
saloutos 0:083111ae2a11 2079 /**
saloutos 0:083111ae2a11 2080 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
saloutos 0:083111ae2a11 2081 */
saloutos 0:083111ae2a11 2082 typedef struct
saloutos 0:083111ae2a11 2083 {
saloutos 0:083111ae2a11 2084 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2085 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
saloutos 0:083111ae2a11 2086 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
saloutos 0:083111ae2a11 2087 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
saloutos 0:083111ae2a11 2088 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2089 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2090 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
saloutos 0:083111ae2a11 2091 } arm_cfft_radix2_instance_q31;
saloutos 0:083111ae2a11 2092
saloutos 0:083111ae2a11 2093 /* Deprecated */
saloutos 0:083111ae2a11 2094 arm_status arm_cfft_radix2_init_q31(
saloutos 0:083111ae2a11 2095 arm_cfft_radix2_instance_q31 * S,
saloutos 0:083111ae2a11 2096 uint16_t fftLen,
saloutos 0:083111ae2a11 2097 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2098 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2099
saloutos 0:083111ae2a11 2100 /* Deprecated */
saloutos 0:083111ae2a11 2101 void arm_cfft_radix2_q31(
saloutos 0:083111ae2a11 2102 const arm_cfft_radix2_instance_q31 * S,
saloutos 0:083111ae2a11 2103 q31_t * pSrc);
saloutos 0:083111ae2a11 2104
saloutos 0:083111ae2a11 2105 /**
saloutos 0:083111ae2a11 2106 * @brief Instance structure for the Q31 CFFT/CIFFT function.
saloutos 0:083111ae2a11 2107 */
saloutos 0:083111ae2a11 2108 typedef struct
saloutos 0:083111ae2a11 2109 {
saloutos 0:083111ae2a11 2110 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2111 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
saloutos 0:083111ae2a11 2112 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
saloutos 0:083111ae2a11 2113 q31_t *pTwiddle; /**< points to the twiddle factor table. */
saloutos 0:083111ae2a11 2114 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2115 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2116 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
saloutos 0:083111ae2a11 2117 } arm_cfft_radix4_instance_q31;
saloutos 0:083111ae2a11 2118
saloutos 0:083111ae2a11 2119 /* Deprecated */
saloutos 0:083111ae2a11 2120 void arm_cfft_radix4_q31(
saloutos 0:083111ae2a11 2121 const arm_cfft_radix4_instance_q31 * S,
saloutos 0:083111ae2a11 2122 q31_t * pSrc);
saloutos 0:083111ae2a11 2123
saloutos 0:083111ae2a11 2124 /* Deprecated */
saloutos 0:083111ae2a11 2125 arm_status arm_cfft_radix4_init_q31(
saloutos 0:083111ae2a11 2126 arm_cfft_radix4_instance_q31 * S,
saloutos 0:083111ae2a11 2127 uint16_t fftLen,
saloutos 0:083111ae2a11 2128 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2129 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2130
saloutos 0:083111ae2a11 2131 /**
saloutos 0:083111ae2a11 2132 * @brief Instance structure for the floating-point CFFT/CIFFT function.
saloutos 0:083111ae2a11 2133 */
saloutos 0:083111ae2a11 2134 typedef struct
saloutos 0:083111ae2a11 2135 {
saloutos 0:083111ae2a11 2136 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2137 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
saloutos 0:083111ae2a11 2138 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
saloutos 0:083111ae2a11 2139 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
saloutos 0:083111ae2a11 2140 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2141 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2142 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
saloutos 0:083111ae2a11 2143 float32_t onebyfftLen; /**< value of 1/fftLen. */
saloutos 0:083111ae2a11 2144 } arm_cfft_radix2_instance_f32;
saloutos 0:083111ae2a11 2145
saloutos 0:083111ae2a11 2146 /* Deprecated */
saloutos 0:083111ae2a11 2147 arm_status arm_cfft_radix2_init_f32(
saloutos 0:083111ae2a11 2148 arm_cfft_radix2_instance_f32 * S,
saloutos 0:083111ae2a11 2149 uint16_t fftLen,
saloutos 0:083111ae2a11 2150 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2151 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2152
saloutos 0:083111ae2a11 2153 /* Deprecated */
saloutos 0:083111ae2a11 2154 void arm_cfft_radix2_f32(
saloutos 0:083111ae2a11 2155 const arm_cfft_radix2_instance_f32 * S,
saloutos 0:083111ae2a11 2156 float32_t * pSrc);
saloutos 0:083111ae2a11 2157
saloutos 0:083111ae2a11 2158 /**
saloutos 0:083111ae2a11 2159 * @brief Instance structure for the floating-point CFFT/CIFFT function.
saloutos 0:083111ae2a11 2160 */
saloutos 0:083111ae2a11 2161 typedef struct
saloutos 0:083111ae2a11 2162 {
saloutos 0:083111ae2a11 2163 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2164 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
saloutos 0:083111ae2a11 2165 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
saloutos 0:083111ae2a11 2166 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
saloutos 0:083111ae2a11 2167 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2168 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2169 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
saloutos 0:083111ae2a11 2170 float32_t onebyfftLen; /**< value of 1/fftLen. */
saloutos 0:083111ae2a11 2171 } arm_cfft_radix4_instance_f32;
saloutos 0:083111ae2a11 2172
saloutos 0:083111ae2a11 2173 /* Deprecated */
saloutos 0:083111ae2a11 2174 arm_status arm_cfft_radix4_init_f32(
saloutos 0:083111ae2a11 2175 arm_cfft_radix4_instance_f32 * S,
saloutos 0:083111ae2a11 2176 uint16_t fftLen,
saloutos 0:083111ae2a11 2177 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2178 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2179
saloutos 0:083111ae2a11 2180 /* Deprecated */
saloutos 0:083111ae2a11 2181 void arm_cfft_radix4_f32(
saloutos 0:083111ae2a11 2182 const arm_cfft_radix4_instance_f32 * S,
saloutos 0:083111ae2a11 2183 float32_t * pSrc);
saloutos 0:083111ae2a11 2184
saloutos 0:083111ae2a11 2185 /**
saloutos 0:083111ae2a11 2186 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
saloutos 0:083111ae2a11 2187 */
saloutos 0:083111ae2a11 2188 typedef struct
saloutos 0:083111ae2a11 2189 {
saloutos 0:083111ae2a11 2190 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2191 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
saloutos 0:083111ae2a11 2192 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2193 uint16_t bitRevLength; /**< bit reversal table length. */
saloutos 0:083111ae2a11 2194 } arm_cfft_instance_q15;
saloutos 0:083111ae2a11 2195
saloutos 0:083111ae2a11 2196 void arm_cfft_q15(
saloutos 0:083111ae2a11 2197 const arm_cfft_instance_q15 * S,
saloutos 0:083111ae2a11 2198 q15_t * p1,
saloutos 0:083111ae2a11 2199 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2200 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2201
saloutos 0:083111ae2a11 2202 /**
saloutos 0:083111ae2a11 2203 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
saloutos 0:083111ae2a11 2204 */
saloutos 0:083111ae2a11 2205 typedef struct
saloutos 0:083111ae2a11 2206 {
saloutos 0:083111ae2a11 2207 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2208 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
saloutos 0:083111ae2a11 2209 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2210 uint16_t bitRevLength; /**< bit reversal table length. */
saloutos 0:083111ae2a11 2211 } arm_cfft_instance_q31;
saloutos 0:083111ae2a11 2212
saloutos 0:083111ae2a11 2213 void arm_cfft_q31(
saloutos 0:083111ae2a11 2214 const arm_cfft_instance_q31 * S,
saloutos 0:083111ae2a11 2215 q31_t * p1,
saloutos 0:083111ae2a11 2216 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2217 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2218
saloutos 0:083111ae2a11 2219 /**
saloutos 0:083111ae2a11 2220 * @brief Instance structure for the floating-point CFFT/CIFFT function.
saloutos 0:083111ae2a11 2221 */
saloutos 0:083111ae2a11 2222 typedef struct
saloutos 0:083111ae2a11 2223 {
saloutos 0:083111ae2a11 2224 uint16_t fftLen; /**< length of the FFT. */
saloutos 0:083111ae2a11 2225 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
saloutos 0:083111ae2a11 2226 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
saloutos 0:083111ae2a11 2227 uint16_t bitRevLength; /**< bit reversal table length. */
saloutos 0:083111ae2a11 2228 } arm_cfft_instance_f32;
saloutos 0:083111ae2a11 2229
saloutos 0:083111ae2a11 2230 void arm_cfft_f32(
saloutos 0:083111ae2a11 2231 const arm_cfft_instance_f32 * S,
saloutos 0:083111ae2a11 2232 float32_t * p1,
saloutos 0:083111ae2a11 2233 uint8_t ifftFlag,
saloutos 0:083111ae2a11 2234 uint8_t bitReverseFlag);
saloutos 0:083111ae2a11 2235
saloutos 0:083111ae2a11 2236 /**
saloutos 0:083111ae2a11 2237 * @brief Instance structure for the Q15 RFFT/RIFFT function.
saloutos 0:083111ae2a11 2238 */
saloutos 0:083111ae2a11 2239 typedef struct
saloutos 0:083111ae2a11 2240 {
saloutos 0:083111ae2a11 2241 uint32_t fftLenReal; /**< length of the real FFT. */
saloutos 0:083111ae2a11 2242 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
saloutos 0:083111ae2a11 2243 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
saloutos 0:083111ae2a11 2244 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2245 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
saloutos 0:083111ae2a11 2246 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
saloutos 0:083111ae2a11 2247 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
saloutos 0:083111ae2a11 2248 } arm_rfft_instance_q15;
saloutos 0:083111ae2a11 2249
saloutos 0:083111ae2a11 2250 arm_status arm_rfft_init_q15(
saloutos 0:083111ae2a11 2251 arm_rfft_instance_q15 * S,
saloutos 0:083111ae2a11 2252 uint32_t fftLenReal,
saloutos 0:083111ae2a11 2253 uint32_t ifftFlagR,
saloutos 0:083111ae2a11 2254 uint32_t bitReverseFlag);
saloutos 0:083111ae2a11 2255
saloutos 0:083111ae2a11 2256 void arm_rfft_q15(
saloutos 0:083111ae2a11 2257 const arm_rfft_instance_q15 * S,
saloutos 0:083111ae2a11 2258 q15_t * pSrc,
saloutos 0:083111ae2a11 2259 q15_t * pDst);
saloutos 0:083111ae2a11 2260
saloutos 0:083111ae2a11 2261 /**
saloutos 0:083111ae2a11 2262 * @brief Instance structure for the Q31 RFFT/RIFFT function.
saloutos 0:083111ae2a11 2263 */
saloutos 0:083111ae2a11 2264 typedef struct
saloutos 0:083111ae2a11 2265 {
saloutos 0:083111ae2a11 2266 uint32_t fftLenReal; /**< length of the real FFT. */
saloutos 0:083111ae2a11 2267 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
saloutos 0:083111ae2a11 2268 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
saloutos 0:083111ae2a11 2269 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2270 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
saloutos 0:083111ae2a11 2271 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
saloutos 0:083111ae2a11 2272 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
saloutos 0:083111ae2a11 2273 } arm_rfft_instance_q31;
saloutos 0:083111ae2a11 2274
saloutos 0:083111ae2a11 2275 arm_status arm_rfft_init_q31(
saloutos 0:083111ae2a11 2276 arm_rfft_instance_q31 * S,
saloutos 0:083111ae2a11 2277 uint32_t fftLenReal,
saloutos 0:083111ae2a11 2278 uint32_t ifftFlagR,
saloutos 0:083111ae2a11 2279 uint32_t bitReverseFlag);
saloutos 0:083111ae2a11 2280
saloutos 0:083111ae2a11 2281 void arm_rfft_q31(
saloutos 0:083111ae2a11 2282 const arm_rfft_instance_q31 * S,
saloutos 0:083111ae2a11 2283 q31_t * pSrc,
saloutos 0:083111ae2a11 2284 q31_t * pDst);
saloutos 0:083111ae2a11 2285
saloutos 0:083111ae2a11 2286 /**
saloutos 0:083111ae2a11 2287 * @brief Instance structure for the floating-point RFFT/RIFFT function.
saloutos 0:083111ae2a11 2288 */
saloutos 0:083111ae2a11 2289 typedef struct
saloutos 0:083111ae2a11 2290 {
saloutos 0:083111ae2a11 2291 uint32_t fftLenReal; /**< length of the real FFT. */
saloutos 0:083111ae2a11 2292 uint16_t fftLenBy2; /**< length of the complex FFT. */
saloutos 0:083111ae2a11 2293 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
saloutos 0:083111ae2a11 2294 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
saloutos 0:083111ae2a11 2295 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
saloutos 0:083111ae2a11 2296 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
saloutos 0:083111ae2a11 2297 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
saloutos 0:083111ae2a11 2298 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
saloutos 0:083111ae2a11 2299 } arm_rfft_instance_f32;
saloutos 0:083111ae2a11 2300
saloutos 0:083111ae2a11 2301 arm_status arm_rfft_init_f32(
saloutos 0:083111ae2a11 2302 arm_rfft_instance_f32 * S,
saloutos 0:083111ae2a11 2303 arm_cfft_radix4_instance_f32 * S_CFFT,
saloutos 0:083111ae2a11 2304 uint32_t fftLenReal,
saloutos 0:083111ae2a11 2305 uint32_t ifftFlagR,
saloutos 0:083111ae2a11 2306 uint32_t bitReverseFlag);
saloutos 0:083111ae2a11 2307
saloutos 0:083111ae2a11 2308 void arm_rfft_f32(
saloutos 0:083111ae2a11 2309 const arm_rfft_instance_f32 * S,
saloutos 0:083111ae2a11 2310 float32_t * pSrc,
saloutos 0:083111ae2a11 2311 float32_t * pDst);
saloutos 0:083111ae2a11 2312
saloutos 0:083111ae2a11 2313 /**
saloutos 0:083111ae2a11 2314 * @brief Instance structure for the floating-point RFFT/RIFFT function.
saloutos 0:083111ae2a11 2315 */
saloutos 0:083111ae2a11 2316 typedef struct
saloutos 0:083111ae2a11 2317 {
saloutos 0:083111ae2a11 2318 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
saloutos 0:083111ae2a11 2319 uint16_t fftLenRFFT; /**< length of the real sequence */
saloutos 0:083111ae2a11 2320 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
saloutos 0:083111ae2a11 2321 } arm_rfft_fast_instance_f32 ;
saloutos 0:083111ae2a11 2322
saloutos 0:083111ae2a11 2323 arm_status arm_rfft_fast_init_f32 (
saloutos 0:083111ae2a11 2324 arm_rfft_fast_instance_f32 * S,
saloutos 0:083111ae2a11 2325 uint16_t fftLen);
saloutos 0:083111ae2a11 2326
saloutos 0:083111ae2a11 2327 void arm_rfft_fast_f32(
saloutos 0:083111ae2a11 2328 arm_rfft_fast_instance_f32 * S,
saloutos 0:083111ae2a11 2329 float32_t * p, float32_t * pOut,
saloutos 0:083111ae2a11 2330 uint8_t ifftFlag);
saloutos 0:083111ae2a11 2331
saloutos 0:083111ae2a11 2332 /**
saloutos 0:083111ae2a11 2333 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
saloutos 0:083111ae2a11 2334 */
saloutos 0:083111ae2a11 2335 typedef struct
saloutos 0:083111ae2a11 2336 {
saloutos 0:083111ae2a11 2337 uint16_t N; /**< length of the DCT4. */
saloutos 0:083111ae2a11 2338 uint16_t Nby2; /**< half of the length of the DCT4. */
saloutos 0:083111ae2a11 2339 float32_t normalize; /**< normalizing factor. */
saloutos 0:083111ae2a11 2340 float32_t *pTwiddle; /**< points to the twiddle factor table. */
saloutos 0:083111ae2a11 2341 float32_t *pCosFactor; /**< points to the cosFactor table. */
saloutos 0:083111ae2a11 2342 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
saloutos 0:083111ae2a11 2343 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
saloutos 0:083111ae2a11 2344 } arm_dct4_instance_f32;
saloutos 0:083111ae2a11 2345
saloutos 0:083111ae2a11 2346
saloutos 0:083111ae2a11 2347 /**
saloutos 0:083111ae2a11 2348 * @brief Initialization function for the floating-point DCT4/IDCT4.
saloutos 0:083111ae2a11 2349 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
saloutos 0:083111ae2a11 2350 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
saloutos 0:083111ae2a11 2351 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
saloutos 0:083111ae2a11 2352 * @param[in] N length of the DCT4.
saloutos 0:083111ae2a11 2353 * @param[in] Nby2 half of the length of the DCT4.
saloutos 0:083111ae2a11 2354 * @param[in] normalize normalizing factor.
saloutos 0:083111ae2a11 2355 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
saloutos 0:083111ae2a11 2356 */
saloutos 0:083111ae2a11 2357 arm_status arm_dct4_init_f32(
saloutos 0:083111ae2a11 2358 arm_dct4_instance_f32 * S,
saloutos 0:083111ae2a11 2359 arm_rfft_instance_f32 * S_RFFT,
saloutos 0:083111ae2a11 2360 arm_cfft_radix4_instance_f32 * S_CFFT,
saloutos 0:083111ae2a11 2361 uint16_t N,
saloutos 0:083111ae2a11 2362 uint16_t Nby2,
saloutos 0:083111ae2a11 2363 float32_t normalize);
saloutos 0:083111ae2a11 2364
saloutos 0:083111ae2a11 2365
saloutos 0:083111ae2a11 2366 /**
saloutos 0:083111ae2a11 2367 * @brief Processing function for the floating-point DCT4/IDCT4.
saloutos 0:083111ae2a11 2368 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
saloutos 0:083111ae2a11 2369 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 2370 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
saloutos 0:083111ae2a11 2371 */
saloutos 0:083111ae2a11 2372 void arm_dct4_f32(
saloutos 0:083111ae2a11 2373 const arm_dct4_instance_f32 * S,
saloutos 0:083111ae2a11 2374 float32_t * pState,
saloutos 0:083111ae2a11 2375 float32_t * pInlineBuffer);
saloutos 0:083111ae2a11 2376
saloutos 0:083111ae2a11 2377
saloutos 0:083111ae2a11 2378 /**
saloutos 0:083111ae2a11 2379 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
saloutos 0:083111ae2a11 2380 */
saloutos 0:083111ae2a11 2381 typedef struct
saloutos 0:083111ae2a11 2382 {
saloutos 0:083111ae2a11 2383 uint16_t N; /**< length of the DCT4. */
saloutos 0:083111ae2a11 2384 uint16_t Nby2; /**< half of the length of the DCT4. */
saloutos 0:083111ae2a11 2385 q31_t normalize; /**< normalizing factor. */
saloutos 0:083111ae2a11 2386 q31_t *pTwiddle; /**< points to the twiddle factor table. */
saloutos 0:083111ae2a11 2387 q31_t *pCosFactor; /**< points to the cosFactor table. */
saloutos 0:083111ae2a11 2388 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
saloutos 0:083111ae2a11 2389 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
saloutos 0:083111ae2a11 2390 } arm_dct4_instance_q31;
saloutos 0:083111ae2a11 2391
saloutos 0:083111ae2a11 2392
saloutos 0:083111ae2a11 2393 /**
saloutos 0:083111ae2a11 2394 * @brief Initialization function for the Q31 DCT4/IDCT4.
saloutos 0:083111ae2a11 2395 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
saloutos 0:083111ae2a11 2396 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
saloutos 0:083111ae2a11 2397 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
saloutos 0:083111ae2a11 2398 * @param[in] N length of the DCT4.
saloutos 0:083111ae2a11 2399 * @param[in] Nby2 half of the length of the DCT4.
saloutos 0:083111ae2a11 2400 * @param[in] normalize normalizing factor.
saloutos 0:083111ae2a11 2401 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
saloutos 0:083111ae2a11 2402 */
saloutos 0:083111ae2a11 2403 arm_status arm_dct4_init_q31(
saloutos 0:083111ae2a11 2404 arm_dct4_instance_q31 * S,
saloutos 0:083111ae2a11 2405 arm_rfft_instance_q31 * S_RFFT,
saloutos 0:083111ae2a11 2406 arm_cfft_radix4_instance_q31 * S_CFFT,
saloutos 0:083111ae2a11 2407 uint16_t N,
saloutos 0:083111ae2a11 2408 uint16_t Nby2,
saloutos 0:083111ae2a11 2409 q31_t normalize);
saloutos 0:083111ae2a11 2410
saloutos 0:083111ae2a11 2411
saloutos 0:083111ae2a11 2412 /**
saloutos 0:083111ae2a11 2413 * @brief Processing function for the Q31 DCT4/IDCT4.
saloutos 0:083111ae2a11 2414 * @param[in] S points to an instance of the Q31 DCT4 structure.
saloutos 0:083111ae2a11 2415 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 2416 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
saloutos 0:083111ae2a11 2417 */
saloutos 0:083111ae2a11 2418 void arm_dct4_q31(
saloutos 0:083111ae2a11 2419 const arm_dct4_instance_q31 * S,
saloutos 0:083111ae2a11 2420 q31_t * pState,
saloutos 0:083111ae2a11 2421 q31_t * pInlineBuffer);
saloutos 0:083111ae2a11 2422
saloutos 0:083111ae2a11 2423
saloutos 0:083111ae2a11 2424 /**
saloutos 0:083111ae2a11 2425 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
saloutos 0:083111ae2a11 2426 */
saloutos 0:083111ae2a11 2427 typedef struct
saloutos 0:083111ae2a11 2428 {
saloutos 0:083111ae2a11 2429 uint16_t N; /**< length of the DCT4. */
saloutos 0:083111ae2a11 2430 uint16_t Nby2; /**< half of the length of the DCT4. */
saloutos 0:083111ae2a11 2431 q15_t normalize; /**< normalizing factor. */
saloutos 0:083111ae2a11 2432 q15_t *pTwiddle; /**< points to the twiddle factor table. */
saloutos 0:083111ae2a11 2433 q15_t *pCosFactor; /**< points to the cosFactor table. */
saloutos 0:083111ae2a11 2434 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
saloutos 0:083111ae2a11 2435 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
saloutos 0:083111ae2a11 2436 } arm_dct4_instance_q15;
saloutos 0:083111ae2a11 2437
saloutos 0:083111ae2a11 2438
saloutos 0:083111ae2a11 2439 /**
saloutos 0:083111ae2a11 2440 * @brief Initialization function for the Q15 DCT4/IDCT4.
saloutos 0:083111ae2a11 2441 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
saloutos 0:083111ae2a11 2442 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
saloutos 0:083111ae2a11 2443 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
saloutos 0:083111ae2a11 2444 * @param[in] N length of the DCT4.
saloutos 0:083111ae2a11 2445 * @param[in] Nby2 half of the length of the DCT4.
saloutos 0:083111ae2a11 2446 * @param[in] normalize normalizing factor.
saloutos 0:083111ae2a11 2447 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
saloutos 0:083111ae2a11 2448 */
saloutos 0:083111ae2a11 2449 arm_status arm_dct4_init_q15(
saloutos 0:083111ae2a11 2450 arm_dct4_instance_q15 * S,
saloutos 0:083111ae2a11 2451 arm_rfft_instance_q15 * S_RFFT,
saloutos 0:083111ae2a11 2452 arm_cfft_radix4_instance_q15 * S_CFFT,
saloutos 0:083111ae2a11 2453 uint16_t N,
saloutos 0:083111ae2a11 2454 uint16_t Nby2,
saloutos 0:083111ae2a11 2455 q15_t normalize);
saloutos 0:083111ae2a11 2456
saloutos 0:083111ae2a11 2457
saloutos 0:083111ae2a11 2458 /**
saloutos 0:083111ae2a11 2459 * @brief Processing function for the Q15 DCT4/IDCT4.
saloutos 0:083111ae2a11 2460 * @param[in] S points to an instance of the Q15 DCT4 structure.
saloutos 0:083111ae2a11 2461 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 2462 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
saloutos 0:083111ae2a11 2463 */
saloutos 0:083111ae2a11 2464 void arm_dct4_q15(
saloutos 0:083111ae2a11 2465 const arm_dct4_instance_q15 * S,
saloutos 0:083111ae2a11 2466 q15_t * pState,
saloutos 0:083111ae2a11 2467 q15_t * pInlineBuffer);
saloutos 0:083111ae2a11 2468
saloutos 0:083111ae2a11 2469
saloutos 0:083111ae2a11 2470 /**
saloutos 0:083111ae2a11 2471 * @brief Floating-point vector addition.
saloutos 0:083111ae2a11 2472 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2473 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2474 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2475 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2476 */
saloutos 0:083111ae2a11 2477 void arm_add_f32(
saloutos 0:083111ae2a11 2478 float32_t * pSrcA,
saloutos 0:083111ae2a11 2479 float32_t * pSrcB,
saloutos 0:083111ae2a11 2480 float32_t * pDst,
saloutos 0:083111ae2a11 2481 uint32_t blockSize);
saloutos 0:083111ae2a11 2482
saloutos 0:083111ae2a11 2483
saloutos 0:083111ae2a11 2484 /**
saloutos 0:083111ae2a11 2485 * @brief Q7 vector addition.
saloutos 0:083111ae2a11 2486 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2487 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2488 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2489 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2490 */
saloutos 0:083111ae2a11 2491 void arm_add_q7(
saloutos 0:083111ae2a11 2492 q7_t * pSrcA,
saloutos 0:083111ae2a11 2493 q7_t * pSrcB,
saloutos 0:083111ae2a11 2494 q7_t * pDst,
saloutos 0:083111ae2a11 2495 uint32_t blockSize);
saloutos 0:083111ae2a11 2496
saloutos 0:083111ae2a11 2497
saloutos 0:083111ae2a11 2498 /**
saloutos 0:083111ae2a11 2499 * @brief Q15 vector addition.
saloutos 0:083111ae2a11 2500 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2501 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2502 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2503 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2504 */
saloutos 0:083111ae2a11 2505 void arm_add_q15(
saloutos 0:083111ae2a11 2506 q15_t * pSrcA,
saloutos 0:083111ae2a11 2507 q15_t * pSrcB,
saloutos 0:083111ae2a11 2508 q15_t * pDst,
saloutos 0:083111ae2a11 2509 uint32_t blockSize);
saloutos 0:083111ae2a11 2510
saloutos 0:083111ae2a11 2511
saloutos 0:083111ae2a11 2512 /**
saloutos 0:083111ae2a11 2513 * @brief Q31 vector addition.
saloutos 0:083111ae2a11 2514 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2515 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2516 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2517 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2518 */
saloutos 0:083111ae2a11 2519 void arm_add_q31(
saloutos 0:083111ae2a11 2520 q31_t * pSrcA,
saloutos 0:083111ae2a11 2521 q31_t * pSrcB,
saloutos 0:083111ae2a11 2522 q31_t * pDst,
saloutos 0:083111ae2a11 2523 uint32_t blockSize);
saloutos 0:083111ae2a11 2524
saloutos 0:083111ae2a11 2525
saloutos 0:083111ae2a11 2526 /**
saloutos 0:083111ae2a11 2527 * @brief Floating-point vector subtraction.
saloutos 0:083111ae2a11 2528 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2529 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2530 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2531 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2532 */
saloutos 0:083111ae2a11 2533 void arm_sub_f32(
saloutos 0:083111ae2a11 2534 float32_t * pSrcA,
saloutos 0:083111ae2a11 2535 float32_t * pSrcB,
saloutos 0:083111ae2a11 2536 float32_t * pDst,
saloutos 0:083111ae2a11 2537 uint32_t blockSize);
saloutos 0:083111ae2a11 2538
saloutos 0:083111ae2a11 2539
saloutos 0:083111ae2a11 2540 /**
saloutos 0:083111ae2a11 2541 * @brief Q7 vector subtraction.
saloutos 0:083111ae2a11 2542 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2543 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2544 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2545 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2546 */
saloutos 0:083111ae2a11 2547 void arm_sub_q7(
saloutos 0:083111ae2a11 2548 q7_t * pSrcA,
saloutos 0:083111ae2a11 2549 q7_t * pSrcB,
saloutos 0:083111ae2a11 2550 q7_t * pDst,
saloutos 0:083111ae2a11 2551 uint32_t blockSize);
saloutos 0:083111ae2a11 2552
saloutos 0:083111ae2a11 2553
saloutos 0:083111ae2a11 2554 /**
saloutos 0:083111ae2a11 2555 * @brief Q15 vector subtraction.
saloutos 0:083111ae2a11 2556 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2557 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2558 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2559 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2560 */
saloutos 0:083111ae2a11 2561 void arm_sub_q15(
saloutos 0:083111ae2a11 2562 q15_t * pSrcA,
saloutos 0:083111ae2a11 2563 q15_t * pSrcB,
saloutos 0:083111ae2a11 2564 q15_t * pDst,
saloutos 0:083111ae2a11 2565 uint32_t blockSize);
saloutos 0:083111ae2a11 2566
saloutos 0:083111ae2a11 2567
saloutos 0:083111ae2a11 2568 /**
saloutos 0:083111ae2a11 2569 * @brief Q31 vector subtraction.
saloutos 0:083111ae2a11 2570 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2571 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2572 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2573 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2574 */
saloutos 0:083111ae2a11 2575 void arm_sub_q31(
saloutos 0:083111ae2a11 2576 q31_t * pSrcA,
saloutos 0:083111ae2a11 2577 q31_t * pSrcB,
saloutos 0:083111ae2a11 2578 q31_t * pDst,
saloutos 0:083111ae2a11 2579 uint32_t blockSize);
saloutos 0:083111ae2a11 2580
saloutos 0:083111ae2a11 2581
saloutos 0:083111ae2a11 2582 /**
saloutos 0:083111ae2a11 2583 * @brief Multiplies a floating-point vector by a scalar.
saloutos 0:083111ae2a11 2584 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2585 * @param[in] scale scale factor to be applied
saloutos 0:083111ae2a11 2586 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2587 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2588 */
saloutos 0:083111ae2a11 2589 void arm_scale_f32(
saloutos 0:083111ae2a11 2590 float32_t * pSrc,
saloutos 0:083111ae2a11 2591 float32_t scale,
saloutos 0:083111ae2a11 2592 float32_t * pDst,
saloutos 0:083111ae2a11 2593 uint32_t blockSize);
saloutos 0:083111ae2a11 2594
saloutos 0:083111ae2a11 2595
saloutos 0:083111ae2a11 2596 /**
saloutos 0:083111ae2a11 2597 * @brief Multiplies a Q7 vector by a scalar.
saloutos 0:083111ae2a11 2598 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2599 * @param[in] scaleFract fractional portion of the scale value
saloutos 0:083111ae2a11 2600 * @param[in] shift number of bits to shift the result by
saloutos 0:083111ae2a11 2601 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2602 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2603 */
saloutos 0:083111ae2a11 2604 void arm_scale_q7(
saloutos 0:083111ae2a11 2605 q7_t * pSrc,
saloutos 0:083111ae2a11 2606 q7_t scaleFract,
saloutos 0:083111ae2a11 2607 int8_t shift,
saloutos 0:083111ae2a11 2608 q7_t * pDst,
saloutos 0:083111ae2a11 2609 uint32_t blockSize);
saloutos 0:083111ae2a11 2610
saloutos 0:083111ae2a11 2611
saloutos 0:083111ae2a11 2612 /**
saloutos 0:083111ae2a11 2613 * @brief Multiplies a Q15 vector by a scalar.
saloutos 0:083111ae2a11 2614 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2615 * @param[in] scaleFract fractional portion of the scale value
saloutos 0:083111ae2a11 2616 * @param[in] shift number of bits to shift the result by
saloutos 0:083111ae2a11 2617 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2618 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2619 */
saloutos 0:083111ae2a11 2620 void arm_scale_q15(
saloutos 0:083111ae2a11 2621 q15_t * pSrc,
saloutos 0:083111ae2a11 2622 q15_t scaleFract,
saloutos 0:083111ae2a11 2623 int8_t shift,
saloutos 0:083111ae2a11 2624 q15_t * pDst,
saloutos 0:083111ae2a11 2625 uint32_t blockSize);
saloutos 0:083111ae2a11 2626
saloutos 0:083111ae2a11 2627
saloutos 0:083111ae2a11 2628 /**
saloutos 0:083111ae2a11 2629 * @brief Multiplies a Q31 vector by a scalar.
saloutos 0:083111ae2a11 2630 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2631 * @param[in] scaleFract fractional portion of the scale value
saloutos 0:083111ae2a11 2632 * @param[in] shift number of bits to shift the result by
saloutos 0:083111ae2a11 2633 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2634 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2635 */
saloutos 0:083111ae2a11 2636 void arm_scale_q31(
saloutos 0:083111ae2a11 2637 q31_t * pSrc,
saloutos 0:083111ae2a11 2638 q31_t scaleFract,
saloutos 0:083111ae2a11 2639 int8_t shift,
saloutos 0:083111ae2a11 2640 q31_t * pDst,
saloutos 0:083111ae2a11 2641 uint32_t blockSize);
saloutos 0:083111ae2a11 2642
saloutos 0:083111ae2a11 2643
saloutos 0:083111ae2a11 2644 /**
saloutos 0:083111ae2a11 2645 * @brief Q7 vector absolute value.
saloutos 0:083111ae2a11 2646 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 2647 * @param[out] pDst points to the output buffer
saloutos 0:083111ae2a11 2648 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2649 */
saloutos 0:083111ae2a11 2650 void arm_abs_q7(
saloutos 0:083111ae2a11 2651 q7_t * pSrc,
saloutos 0:083111ae2a11 2652 q7_t * pDst,
saloutos 0:083111ae2a11 2653 uint32_t blockSize);
saloutos 0:083111ae2a11 2654
saloutos 0:083111ae2a11 2655
saloutos 0:083111ae2a11 2656 /**
saloutos 0:083111ae2a11 2657 * @brief Floating-point vector absolute value.
saloutos 0:083111ae2a11 2658 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 2659 * @param[out] pDst points to the output buffer
saloutos 0:083111ae2a11 2660 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2661 */
saloutos 0:083111ae2a11 2662 void arm_abs_f32(
saloutos 0:083111ae2a11 2663 float32_t * pSrc,
saloutos 0:083111ae2a11 2664 float32_t * pDst,
saloutos 0:083111ae2a11 2665 uint32_t blockSize);
saloutos 0:083111ae2a11 2666
saloutos 0:083111ae2a11 2667
saloutos 0:083111ae2a11 2668 /**
saloutos 0:083111ae2a11 2669 * @brief Q15 vector absolute value.
saloutos 0:083111ae2a11 2670 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 2671 * @param[out] pDst points to the output buffer
saloutos 0:083111ae2a11 2672 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2673 */
saloutos 0:083111ae2a11 2674 void arm_abs_q15(
saloutos 0:083111ae2a11 2675 q15_t * pSrc,
saloutos 0:083111ae2a11 2676 q15_t * pDst,
saloutos 0:083111ae2a11 2677 uint32_t blockSize);
saloutos 0:083111ae2a11 2678
saloutos 0:083111ae2a11 2679
saloutos 0:083111ae2a11 2680 /**
saloutos 0:083111ae2a11 2681 * @brief Q31 vector absolute value.
saloutos 0:083111ae2a11 2682 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 2683 * @param[out] pDst points to the output buffer
saloutos 0:083111ae2a11 2684 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2685 */
saloutos 0:083111ae2a11 2686 void arm_abs_q31(
saloutos 0:083111ae2a11 2687 q31_t * pSrc,
saloutos 0:083111ae2a11 2688 q31_t * pDst,
saloutos 0:083111ae2a11 2689 uint32_t blockSize);
saloutos 0:083111ae2a11 2690
saloutos 0:083111ae2a11 2691
saloutos 0:083111ae2a11 2692 /**
saloutos 0:083111ae2a11 2693 * @brief Dot product of floating-point vectors.
saloutos 0:083111ae2a11 2694 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2695 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2696 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2697 * @param[out] result output result returned here
saloutos 0:083111ae2a11 2698 */
saloutos 0:083111ae2a11 2699 void arm_dot_prod_f32(
saloutos 0:083111ae2a11 2700 float32_t * pSrcA,
saloutos 0:083111ae2a11 2701 float32_t * pSrcB,
saloutos 0:083111ae2a11 2702 uint32_t blockSize,
saloutos 0:083111ae2a11 2703 float32_t * result);
saloutos 0:083111ae2a11 2704
saloutos 0:083111ae2a11 2705
saloutos 0:083111ae2a11 2706 /**
saloutos 0:083111ae2a11 2707 * @brief Dot product of Q7 vectors.
saloutos 0:083111ae2a11 2708 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2709 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2710 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2711 * @param[out] result output result returned here
saloutos 0:083111ae2a11 2712 */
saloutos 0:083111ae2a11 2713 void arm_dot_prod_q7(
saloutos 0:083111ae2a11 2714 q7_t * pSrcA,
saloutos 0:083111ae2a11 2715 q7_t * pSrcB,
saloutos 0:083111ae2a11 2716 uint32_t blockSize,
saloutos 0:083111ae2a11 2717 q31_t * result);
saloutos 0:083111ae2a11 2718
saloutos 0:083111ae2a11 2719
saloutos 0:083111ae2a11 2720 /**
saloutos 0:083111ae2a11 2721 * @brief Dot product of Q15 vectors.
saloutos 0:083111ae2a11 2722 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2723 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2724 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2725 * @param[out] result output result returned here
saloutos 0:083111ae2a11 2726 */
saloutos 0:083111ae2a11 2727 void arm_dot_prod_q15(
saloutos 0:083111ae2a11 2728 q15_t * pSrcA,
saloutos 0:083111ae2a11 2729 q15_t * pSrcB,
saloutos 0:083111ae2a11 2730 uint32_t blockSize,
saloutos 0:083111ae2a11 2731 q63_t * result);
saloutos 0:083111ae2a11 2732
saloutos 0:083111ae2a11 2733
saloutos 0:083111ae2a11 2734 /**
saloutos 0:083111ae2a11 2735 * @brief Dot product of Q31 vectors.
saloutos 0:083111ae2a11 2736 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 2737 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 2738 * @param[in] blockSize number of samples in each vector
saloutos 0:083111ae2a11 2739 * @param[out] result output result returned here
saloutos 0:083111ae2a11 2740 */
saloutos 0:083111ae2a11 2741 void arm_dot_prod_q31(
saloutos 0:083111ae2a11 2742 q31_t * pSrcA,
saloutos 0:083111ae2a11 2743 q31_t * pSrcB,
saloutos 0:083111ae2a11 2744 uint32_t blockSize,
saloutos 0:083111ae2a11 2745 q63_t * result);
saloutos 0:083111ae2a11 2746
saloutos 0:083111ae2a11 2747
saloutos 0:083111ae2a11 2748 /**
saloutos 0:083111ae2a11 2749 * @brief Shifts the elements of a Q7 vector a specified number of bits.
saloutos 0:083111ae2a11 2750 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2751 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
saloutos 0:083111ae2a11 2752 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2753 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2754 */
saloutos 0:083111ae2a11 2755 void arm_shift_q7(
saloutos 0:083111ae2a11 2756 q7_t * pSrc,
saloutos 0:083111ae2a11 2757 int8_t shiftBits,
saloutos 0:083111ae2a11 2758 q7_t * pDst,
saloutos 0:083111ae2a11 2759 uint32_t blockSize);
saloutos 0:083111ae2a11 2760
saloutos 0:083111ae2a11 2761
saloutos 0:083111ae2a11 2762 /**
saloutos 0:083111ae2a11 2763 * @brief Shifts the elements of a Q15 vector a specified number of bits.
saloutos 0:083111ae2a11 2764 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2765 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
saloutos 0:083111ae2a11 2766 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2767 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2768 */
saloutos 0:083111ae2a11 2769 void arm_shift_q15(
saloutos 0:083111ae2a11 2770 q15_t * pSrc,
saloutos 0:083111ae2a11 2771 int8_t shiftBits,
saloutos 0:083111ae2a11 2772 q15_t * pDst,
saloutos 0:083111ae2a11 2773 uint32_t blockSize);
saloutos 0:083111ae2a11 2774
saloutos 0:083111ae2a11 2775
saloutos 0:083111ae2a11 2776 /**
saloutos 0:083111ae2a11 2777 * @brief Shifts the elements of a Q31 vector a specified number of bits.
saloutos 0:083111ae2a11 2778 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2779 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
saloutos 0:083111ae2a11 2780 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2781 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2782 */
saloutos 0:083111ae2a11 2783 void arm_shift_q31(
saloutos 0:083111ae2a11 2784 q31_t * pSrc,
saloutos 0:083111ae2a11 2785 int8_t shiftBits,
saloutos 0:083111ae2a11 2786 q31_t * pDst,
saloutos 0:083111ae2a11 2787 uint32_t blockSize);
saloutos 0:083111ae2a11 2788
saloutos 0:083111ae2a11 2789
saloutos 0:083111ae2a11 2790 /**
saloutos 0:083111ae2a11 2791 * @brief Adds a constant offset to a floating-point vector.
saloutos 0:083111ae2a11 2792 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2793 * @param[in] offset is the offset to be added
saloutos 0:083111ae2a11 2794 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2795 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2796 */
saloutos 0:083111ae2a11 2797 void arm_offset_f32(
saloutos 0:083111ae2a11 2798 float32_t * pSrc,
saloutos 0:083111ae2a11 2799 float32_t offset,
saloutos 0:083111ae2a11 2800 float32_t * pDst,
saloutos 0:083111ae2a11 2801 uint32_t blockSize);
saloutos 0:083111ae2a11 2802
saloutos 0:083111ae2a11 2803
saloutos 0:083111ae2a11 2804 /**
saloutos 0:083111ae2a11 2805 * @brief Adds a constant offset to a Q7 vector.
saloutos 0:083111ae2a11 2806 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2807 * @param[in] offset is the offset to be added
saloutos 0:083111ae2a11 2808 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2809 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2810 */
saloutos 0:083111ae2a11 2811 void arm_offset_q7(
saloutos 0:083111ae2a11 2812 q7_t * pSrc,
saloutos 0:083111ae2a11 2813 q7_t offset,
saloutos 0:083111ae2a11 2814 q7_t * pDst,
saloutos 0:083111ae2a11 2815 uint32_t blockSize);
saloutos 0:083111ae2a11 2816
saloutos 0:083111ae2a11 2817
saloutos 0:083111ae2a11 2818 /**
saloutos 0:083111ae2a11 2819 * @brief Adds a constant offset to a Q15 vector.
saloutos 0:083111ae2a11 2820 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2821 * @param[in] offset is the offset to be added
saloutos 0:083111ae2a11 2822 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2823 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2824 */
saloutos 0:083111ae2a11 2825 void arm_offset_q15(
saloutos 0:083111ae2a11 2826 q15_t * pSrc,
saloutos 0:083111ae2a11 2827 q15_t offset,
saloutos 0:083111ae2a11 2828 q15_t * pDst,
saloutos 0:083111ae2a11 2829 uint32_t blockSize);
saloutos 0:083111ae2a11 2830
saloutos 0:083111ae2a11 2831
saloutos 0:083111ae2a11 2832 /**
saloutos 0:083111ae2a11 2833 * @brief Adds a constant offset to a Q31 vector.
saloutos 0:083111ae2a11 2834 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2835 * @param[in] offset is the offset to be added
saloutos 0:083111ae2a11 2836 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2837 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2838 */
saloutos 0:083111ae2a11 2839 void arm_offset_q31(
saloutos 0:083111ae2a11 2840 q31_t * pSrc,
saloutos 0:083111ae2a11 2841 q31_t offset,
saloutos 0:083111ae2a11 2842 q31_t * pDst,
saloutos 0:083111ae2a11 2843 uint32_t blockSize);
saloutos 0:083111ae2a11 2844
saloutos 0:083111ae2a11 2845
saloutos 0:083111ae2a11 2846 /**
saloutos 0:083111ae2a11 2847 * @brief Negates the elements of a floating-point vector.
saloutos 0:083111ae2a11 2848 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2849 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2850 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2851 */
saloutos 0:083111ae2a11 2852 void arm_negate_f32(
saloutos 0:083111ae2a11 2853 float32_t * pSrc,
saloutos 0:083111ae2a11 2854 float32_t * pDst,
saloutos 0:083111ae2a11 2855 uint32_t blockSize);
saloutos 0:083111ae2a11 2856
saloutos 0:083111ae2a11 2857
saloutos 0:083111ae2a11 2858 /**
saloutos 0:083111ae2a11 2859 * @brief Negates the elements of a Q7 vector.
saloutos 0:083111ae2a11 2860 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2861 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2862 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2863 */
saloutos 0:083111ae2a11 2864 void arm_negate_q7(
saloutos 0:083111ae2a11 2865 q7_t * pSrc,
saloutos 0:083111ae2a11 2866 q7_t * pDst,
saloutos 0:083111ae2a11 2867 uint32_t blockSize);
saloutos 0:083111ae2a11 2868
saloutos 0:083111ae2a11 2869
saloutos 0:083111ae2a11 2870 /**
saloutos 0:083111ae2a11 2871 * @brief Negates the elements of a Q15 vector.
saloutos 0:083111ae2a11 2872 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2873 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2874 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2875 */
saloutos 0:083111ae2a11 2876 void arm_negate_q15(
saloutos 0:083111ae2a11 2877 q15_t * pSrc,
saloutos 0:083111ae2a11 2878 q15_t * pDst,
saloutos 0:083111ae2a11 2879 uint32_t blockSize);
saloutos 0:083111ae2a11 2880
saloutos 0:083111ae2a11 2881
saloutos 0:083111ae2a11 2882 /**
saloutos 0:083111ae2a11 2883 * @brief Negates the elements of a Q31 vector.
saloutos 0:083111ae2a11 2884 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 2885 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 2886 * @param[in] blockSize number of samples in the vector
saloutos 0:083111ae2a11 2887 */
saloutos 0:083111ae2a11 2888 void arm_negate_q31(
saloutos 0:083111ae2a11 2889 q31_t * pSrc,
saloutos 0:083111ae2a11 2890 q31_t * pDst,
saloutos 0:083111ae2a11 2891 uint32_t blockSize);
saloutos 0:083111ae2a11 2892
saloutos 0:083111ae2a11 2893
saloutos 0:083111ae2a11 2894 /**
saloutos 0:083111ae2a11 2895 * @brief Copies the elements of a floating-point vector.
saloutos 0:083111ae2a11 2896 * @param[in] pSrc input pointer
saloutos 0:083111ae2a11 2897 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2898 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2899 */
saloutos 0:083111ae2a11 2900 void arm_copy_f32(
saloutos 0:083111ae2a11 2901 float32_t * pSrc,
saloutos 0:083111ae2a11 2902 float32_t * pDst,
saloutos 0:083111ae2a11 2903 uint32_t blockSize);
saloutos 0:083111ae2a11 2904
saloutos 0:083111ae2a11 2905
saloutos 0:083111ae2a11 2906 /**
saloutos 0:083111ae2a11 2907 * @brief Copies the elements of a Q7 vector.
saloutos 0:083111ae2a11 2908 * @param[in] pSrc input pointer
saloutos 0:083111ae2a11 2909 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2910 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2911 */
saloutos 0:083111ae2a11 2912 void arm_copy_q7(
saloutos 0:083111ae2a11 2913 q7_t * pSrc,
saloutos 0:083111ae2a11 2914 q7_t * pDst,
saloutos 0:083111ae2a11 2915 uint32_t blockSize);
saloutos 0:083111ae2a11 2916
saloutos 0:083111ae2a11 2917
saloutos 0:083111ae2a11 2918 /**
saloutos 0:083111ae2a11 2919 * @brief Copies the elements of a Q15 vector.
saloutos 0:083111ae2a11 2920 * @param[in] pSrc input pointer
saloutos 0:083111ae2a11 2921 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2922 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2923 */
saloutos 0:083111ae2a11 2924 void arm_copy_q15(
saloutos 0:083111ae2a11 2925 q15_t * pSrc,
saloutos 0:083111ae2a11 2926 q15_t * pDst,
saloutos 0:083111ae2a11 2927 uint32_t blockSize);
saloutos 0:083111ae2a11 2928
saloutos 0:083111ae2a11 2929
saloutos 0:083111ae2a11 2930 /**
saloutos 0:083111ae2a11 2931 * @brief Copies the elements of a Q31 vector.
saloutos 0:083111ae2a11 2932 * @param[in] pSrc input pointer
saloutos 0:083111ae2a11 2933 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2934 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2935 */
saloutos 0:083111ae2a11 2936 void arm_copy_q31(
saloutos 0:083111ae2a11 2937 q31_t * pSrc,
saloutos 0:083111ae2a11 2938 q31_t * pDst,
saloutos 0:083111ae2a11 2939 uint32_t blockSize);
saloutos 0:083111ae2a11 2940
saloutos 0:083111ae2a11 2941
saloutos 0:083111ae2a11 2942 /**
saloutos 0:083111ae2a11 2943 * @brief Fills a constant value into a floating-point vector.
saloutos 0:083111ae2a11 2944 * @param[in] value input value to be filled
saloutos 0:083111ae2a11 2945 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2946 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2947 */
saloutos 0:083111ae2a11 2948 void arm_fill_f32(
saloutos 0:083111ae2a11 2949 float32_t value,
saloutos 0:083111ae2a11 2950 float32_t * pDst,
saloutos 0:083111ae2a11 2951 uint32_t blockSize);
saloutos 0:083111ae2a11 2952
saloutos 0:083111ae2a11 2953
saloutos 0:083111ae2a11 2954 /**
saloutos 0:083111ae2a11 2955 * @brief Fills a constant value into a Q7 vector.
saloutos 0:083111ae2a11 2956 * @param[in] value input value to be filled
saloutos 0:083111ae2a11 2957 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2958 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2959 */
saloutos 0:083111ae2a11 2960 void arm_fill_q7(
saloutos 0:083111ae2a11 2961 q7_t value,
saloutos 0:083111ae2a11 2962 q7_t * pDst,
saloutos 0:083111ae2a11 2963 uint32_t blockSize);
saloutos 0:083111ae2a11 2964
saloutos 0:083111ae2a11 2965
saloutos 0:083111ae2a11 2966 /**
saloutos 0:083111ae2a11 2967 * @brief Fills a constant value into a Q15 vector.
saloutos 0:083111ae2a11 2968 * @param[in] value input value to be filled
saloutos 0:083111ae2a11 2969 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2970 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2971 */
saloutos 0:083111ae2a11 2972 void arm_fill_q15(
saloutos 0:083111ae2a11 2973 q15_t value,
saloutos 0:083111ae2a11 2974 q15_t * pDst,
saloutos 0:083111ae2a11 2975 uint32_t blockSize);
saloutos 0:083111ae2a11 2976
saloutos 0:083111ae2a11 2977
saloutos 0:083111ae2a11 2978 /**
saloutos 0:083111ae2a11 2979 * @brief Fills a constant value into a Q31 vector.
saloutos 0:083111ae2a11 2980 * @param[in] value input value to be filled
saloutos 0:083111ae2a11 2981 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 2982 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 2983 */
saloutos 0:083111ae2a11 2984 void arm_fill_q31(
saloutos 0:083111ae2a11 2985 q31_t value,
saloutos 0:083111ae2a11 2986 q31_t * pDst,
saloutos 0:083111ae2a11 2987 uint32_t blockSize);
saloutos 0:083111ae2a11 2988
saloutos 0:083111ae2a11 2989
saloutos 0:083111ae2a11 2990 /**
saloutos 0:083111ae2a11 2991 * @brief Convolution of floating-point sequences.
saloutos 0:083111ae2a11 2992 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 2993 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 2994 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 2995 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 2996 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 2997 */
saloutos 0:083111ae2a11 2998 void arm_conv_f32(
saloutos 0:083111ae2a11 2999 float32_t * pSrcA,
saloutos 0:083111ae2a11 3000 uint32_t srcALen,
saloutos 0:083111ae2a11 3001 float32_t * pSrcB,
saloutos 0:083111ae2a11 3002 uint32_t srcBLen,
saloutos 0:083111ae2a11 3003 float32_t * pDst);
saloutos 0:083111ae2a11 3004
saloutos 0:083111ae2a11 3005
saloutos 0:083111ae2a11 3006 /**
saloutos 0:083111ae2a11 3007 * @brief Convolution of Q15 sequences.
saloutos 0:083111ae2a11 3008 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3009 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3010 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3011 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3012 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3013 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 3014 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 3015 */
saloutos 0:083111ae2a11 3016 void arm_conv_opt_q15(
saloutos 0:083111ae2a11 3017 q15_t * pSrcA,
saloutos 0:083111ae2a11 3018 uint32_t srcALen,
saloutos 0:083111ae2a11 3019 q15_t * pSrcB,
saloutos 0:083111ae2a11 3020 uint32_t srcBLen,
saloutos 0:083111ae2a11 3021 q15_t * pDst,
saloutos 0:083111ae2a11 3022 q15_t * pScratch1,
saloutos 0:083111ae2a11 3023 q15_t * pScratch2);
saloutos 0:083111ae2a11 3024
saloutos 0:083111ae2a11 3025
saloutos 0:083111ae2a11 3026 /**
saloutos 0:083111ae2a11 3027 * @brief Convolution of Q15 sequences.
saloutos 0:083111ae2a11 3028 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3029 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3030 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3031 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3032 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3033 */
saloutos 0:083111ae2a11 3034 void arm_conv_q15(
saloutos 0:083111ae2a11 3035 q15_t * pSrcA,
saloutos 0:083111ae2a11 3036 uint32_t srcALen,
saloutos 0:083111ae2a11 3037 q15_t * pSrcB,
saloutos 0:083111ae2a11 3038 uint32_t srcBLen,
saloutos 0:083111ae2a11 3039 q15_t * pDst);
saloutos 0:083111ae2a11 3040
saloutos 0:083111ae2a11 3041
saloutos 0:083111ae2a11 3042 /**
saloutos 0:083111ae2a11 3043 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 3044 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3045 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3046 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3047 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3048 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3049 */
saloutos 0:083111ae2a11 3050 void arm_conv_fast_q15(
saloutos 0:083111ae2a11 3051 q15_t * pSrcA,
saloutos 0:083111ae2a11 3052 uint32_t srcALen,
saloutos 0:083111ae2a11 3053 q15_t * pSrcB,
saloutos 0:083111ae2a11 3054 uint32_t srcBLen,
saloutos 0:083111ae2a11 3055 q15_t * pDst);
saloutos 0:083111ae2a11 3056
saloutos 0:083111ae2a11 3057
saloutos 0:083111ae2a11 3058 /**
saloutos 0:083111ae2a11 3059 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 3060 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3061 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3062 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3063 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3064 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3065 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 3066 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 3067 */
saloutos 0:083111ae2a11 3068 void arm_conv_fast_opt_q15(
saloutos 0:083111ae2a11 3069 q15_t * pSrcA,
saloutos 0:083111ae2a11 3070 uint32_t srcALen,
saloutos 0:083111ae2a11 3071 q15_t * pSrcB,
saloutos 0:083111ae2a11 3072 uint32_t srcBLen,
saloutos 0:083111ae2a11 3073 q15_t * pDst,
saloutos 0:083111ae2a11 3074 q15_t * pScratch1,
saloutos 0:083111ae2a11 3075 q15_t * pScratch2);
saloutos 0:083111ae2a11 3076
saloutos 0:083111ae2a11 3077
saloutos 0:083111ae2a11 3078 /**
saloutos 0:083111ae2a11 3079 * @brief Convolution of Q31 sequences.
saloutos 0:083111ae2a11 3080 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3081 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3082 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3083 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3084 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3085 */
saloutos 0:083111ae2a11 3086 void arm_conv_q31(
saloutos 0:083111ae2a11 3087 q31_t * pSrcA,
saloutos 0:083111ae2a11 3088 uint32_t srcALen,
saloutos 0:083111ae2a11 3089 q31_t * pSrcB,
saloutos 0:083111ae2a11 3090 uint32_t srcBLen,
saloutos 0:083111ae2a11 3091 q31_t * pDst);
saloutos 0:083111ae2a11 3092
saloutos 0:083111ae2a11 3093
saloutos 0:083111ae2a11 3094 /**
saloutos 0:083111ae2a11 3095 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 3096 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3097 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3098 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3099 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3100 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3101 */
saloutos 0:083111ae2a11 3102 void arm_conv_fast_q31(
saloutos 0:083111ae2a11 3103 q31_t * pSrcA,
saloutos 0:083111ae2a11 3104 uint32_t srcALen,
saloutos 0:083111ae2a11 3105 q31_t * pSrcB,
saloutos 0:083111ae2a11 3106 uint32_t srcBLen,
saloutos 0:083111ae2a11 3107 q31_t * pDst);
saloutos 0:083111ae2a11 3108
saloutos 0:083111ae2a11 3109
saloutos 0:083111ae2a11 3110 /**
saloutos 0:083111ae2a11 3111 * @brief Convolution of Q7 sequences.
saloutos 0:083111ae2a11 3112 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3113 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3114 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3115 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3116 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3117 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 3118 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 3119 */
saloutos 0:083111ae2a11 3120 void arm_conv_opt_q7(
saloutos 0:083111ae2a11 3121 q7_t * pSrcA,
saloutos 0:083111ae2a11 3122 uint32_t srcALen,
saloutos 0:083111ae2a11 3123 q7_t * pSrcB,
saloutos 0:083111ae2a11 3124 uint32_t srcBLen,
saloutos 0:083111ae2a11 3125 q7_t * pDst,
saloutos 0:083111ae2a11 3126 q15_t * pScratch1,
saloutos 0:083111ae2a11 3127 q15_t * pScratch2);
saloutos 0:083111ae2a11 3128
saloutos 0:083111ae2a11 3129
saloutos 0:083111ae2a11 3130 /**
saloutos 0:083111ae2a11 3131 * @brief Convolution of Q7 sequences.
saloutos 0:083111ae2a11 3132 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3133 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3134 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3135 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3136 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
saloutos 0:083111ae2a11 3137 */
saloutos 0:083111ae2a11 3138 void arm_conv_q7(
saloutos 0:083111ae2a11 3139 q7_t * pSrcA,
saloutos 0:083111ae2a11 3140 uint32_t srcALen,
saloutos 0:083111ae2a11 3141 q7_t * pSrcB,
saloutos 0:083111ae2a11 3142 uint32_t srcBLen,
saloutos 0:083111ae2a11 3143 q7_t * pDst);
saloutos 0:083111ae2a11 3144
saloutos 0:083111ae2a11 3145
saloutos 0:083111ae2a11 3146 /**
saloutos 0:083111ae2a11 3147 * @brief Partial convolution of floating-point sequences.
saloutos 0:083111ae2a11 3148 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3149 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3150 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3151 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3152 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3153 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3154 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3155 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3156 */
saloutos 0:083111ae2a11 3157 arm_status arm_conv_partial_f32(
saloutos 0:083111ae2a11 3158 float32_t * pSrcA,
saloutos 0:083111ae2a11 3159 uint32_t srcALen,
saloutos 0:083111ae2a11 3160 float32_t * pSrcB,
saloutos 0:083111ae2a11 3161 uint32_t srcBLen,
saloutos 0:083111ae2a11 3162 float32_t * pDst,
saloutos 0:083111ae2a11 3163 uint32_t firstIndex,
saloutos 0:083111ae2a11 3164 uint32_t numPoints);
saloutos 0:083111ae2a11 3165
saloutos 0:083111ae2a11 3166
saloutos 0:083111ae2a11 3167 /**
saloutos 0:083111ae2a11 3168 * @brief Partial convolution of Q15 sequences.
saloutos 0:083111ae2a11 3169 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3170 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3171 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3172 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3173 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3174 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3175 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3176 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 3177 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 3178 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3179 */
saloutos 0:083111ae2a11 3180 arm_status arm_conv_partial_opt_q15(
saloutos 0:083111ae2a11 3181 q15_t * pSrcA,
saloutos 0:083111ae2a11 3182 uint32_t srcALen,
saloutos 0:083111ae2a11 3183 q15_t * pSrcB,
saloutos 0:083111ae2a11 3184 uint32_t srcBLen,
saloutos 0:083111ae2a11 3185 q15_t * pDst,
saloutos 0:083111ae2a11 3186 uint32_t firstIndex,
saloutos 0:083111ae2a11 3187 uint32_t numPoints,
saloutos 0:083111ae2a11 3188 q15_t * pScratch1,
saloutos 0:083111ae2a11 3189 q15_t * pScratch2);
saloutos 0:083111ae2a11 3190
saloutos 0:083111ae2a11 3191
saloutos 0:083111ae2a11 3192 /**
saloutos 0:083111ae2a11 3193 * @brief Partial convolution of Q15 sequences.
saloutos 0:083111ae2a11 3194 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3195 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3196 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3197 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3198 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3199 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3200 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3201 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3202 */
saloutos 0:083111ae2a11 3203 arm_status arm_conv_partial_q15(
saloutos 0:083111ae2a11 3204 q15_t * pSrcA,
saloutos 0:083111ae2a11 3205 uint32_t srcALen,
saloutos 0:083111ae2a11 3206 q15_t * pSrcB,
saloutos 0:083111ae2a11 3207 uint32_t srcBLen,
saloutos 0:083111ae2a11 3208 q15_t * pDst,
saloutos 0:083111ae2a11 3209 uint32_t firstIndex,
saloutos 0:083111ae2a11 3210 uint32_t numPoints);
saloutos 0:083111ae2a11 3211
saloutos 0:083111ae2a11 3212
saloutos 0:083111ae2a11 3213 /**
saloutos 0:083111ae2a11 3214 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 3215 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3216 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3217 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3218 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3219 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3220 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3221 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3222 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3223 */
saloutos 0:083111ae2a11 3224 arm_status arm_conv_partial_fast_q15(
saloutos 0:083111ae2a11 3225 q15_t * pSrcA,
saloutos 0:083111ae2a11 3226 uint32_t srcALen,
saloutos 0:083111ae2a11 3227 q15_t * pSrcB,
saloutos 0:083111ae2a11 3228 uint32_t srcBLen,
saloutos 0:083111ae2a11 3229 q15_t * pDst,
saloutos 0:083111ae2a11 3230 uint32_t firstIndex,
saloutos 0:083111ae2a11 3231 uint32_t numPoints);
saloutos 0:083111ae2a11 3232
saloutos 0:083111ae2a11 3233
saloutos 0:083111ae2a11 3234 /**
saloutos 0:083111ae2a11 3235 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 3236 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3237 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3238 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3239 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3240 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3241 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3242 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3243 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 3244 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 3245 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3246 */
saloutos 0:083111ae2a11 3247 arm_status arm_conv_partial_fast_opt_q15(
saloutos 0:083111ae2a11 3248 q15_t * pSrcA,
saloutos 0:083111ae2a11 3249 uint32_t srcALen,
saloutos 0:083111ae2a11 3250 q15_t * pSrcB,
saloutos 0:083111ae2a11 3251 uint32_t srcBLen,
saloutos 0:083111ae2a11 3252 q15_t * pDst,
saloutos 0:083111ae2a11 3253 uint32_t firstIndex,
saloutos 0:083111ae2a11 3254 uint32_t numPoints,
saloutos 0:083111ae2a11 3255 q15_t * pScratch1,
saloutos 0:083111ae2a11 3256 q15_t * pScratch2);
saloutos 0:083111ae2a11 3257
saloutos 0:083111ae2a11 3258
saloutos 0:083111ae2a11 3259 /**
saloutos 0:083111ae2a11 3260 * @brief Partial convolution of Q31 sequences.
saloutos 0:083111ae2a11 3261 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3262 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3263 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3264 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3265 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3266 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3267 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3268 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3269 */
saloutos 0:083111ae2a11 3270 arm_status arm_conv_partial_q31(
saloutos 0:083111ae2a11 3271 q31_t * pSrcA,
saloutos 0:083111ae2a11 3272 uint32_t srcALen,
saloutos 0:083111ae2a11 3273 q31_t * pSrcB,
saloutos 0:083111ae2a11 3274 uint32_t srcBLen,
saloutos 0:083111ae2a11 3275 q31_t * pDst,
saloutos 0:083111ae2a11 3276 uint32_t firstIndex,
saloutos 0:083111ae2a11 3277 uint32_t numPoints);
saloutos 0:083111ae2a11 3278
saloutos 0:083111ae2a11 3279
saloutos 0:083111ae2a11 3280 /**
saloutos 0:083111ae2a11 3281 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 3282 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3283 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3284 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3285 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3286 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3287 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3288 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3289 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3290 */
saloutos 0:083111ae2a11 3291 arm_status arm_conv_partial_fast_q31(
saloutos 0:083111ae2a11 3292 q31_t * pSrcA,
saloutos 0:083111ae2a11 3293 uint32_t srcALen,
saloutos 0:083111ae2a11 3294 q31_t * pSrcB,
saloutos 0:083111ae2a11 3295 uint32_t srcBLen,
saloutos 0:083111ae2a11 3296 q31_t * pDst,
saloutos 0:083111ae2a11 3297 uint32_t firstIndex,
saloutos 0:083111ae2a11 3298 uint32_t numPoints);
saloutos 0:083111ae2a11 3299
saloutos 0:083111ae2a11 3300
saloutos 0:083111ae2a11 3301 /**
saloutos 0:083111ae2a11 3302 * @brief Partial convolution of Q7 sequences
saloutos 0:083111ae2a11 3303 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3304 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3305 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3306 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3307 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3308 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3309 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3310 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 3311 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 3312 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3313 */
saloutos 0:083111ae2a11 3314 arm_status arm_conv_partial_opt_q7(
saloutos 0:083111ae2a11 3315 q7_t * pSrcA,
saloutos 0:083111ae2a11 3316 uint32_t srcALen,
saloutos 0:083111ae2a11 3317 q7_t * pSrcB,
saloutos 0:083111ae2a11 3318 uint32_t srcBLen,
saloutos 0:083111ae2a11 3319 q7_t * pDst,
saloutos 0:083111ae2a11 3320 uint32_t firstIndex,
saloutos 0:083111ae2a11 3321 uint32_t numPoints,
saloutos 0:083111ae2a11 3322 q15_t * pScratch1,
saloutos 0:083111ae2a11 3323 q15_t * pScratch2);
saloutos 0:083111ae2a11 3324
saloutos 0:083111ae2a11 3325
saloutos 0:083111ae2a11 3326 /**
saloutos 0:083111ae2a11 3327 * @brief Partial convolution of Q7 sequences.
saloutos 0:083111ae2a11 3328 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 3329 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 3330 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 3331 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 3332 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3333 * @param[in] firstIndex is the first output sample to start with.
saloutos 0:083111ae2a11 3334 * @param[in] numPoints is the number of output points to be computed.
saloutos 0:083111ae2a11 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
saloutos 0:083111ae2a11 3336 */
saloutos 0:083111ae2a11 3337 arm_status arm_conv_partial_q7(
saloutos 0:083111ae2a11 3338 q7_t * pSrcA,
saloutos 0:083111ae2a11 3339 uint32_t srcALen,
saloutos 0:083111ae2a11 3340 q7_t * pSrcB,
saloutos 0:083111ae2a11 3341 uint32_t srcBLen,
saloutos 0:083111ae2a11 3342 q7_t * pDst,
saloutos 0:083111ae2a11 3343 uint32_t firstIndex,
saloutos 0:083111ae2a11 3344 uint32_t numPoints);
saloutos 0:083111ae2a11 3345
saloutos 0:083111ae2a11 3346
saloutos 0:083111ae2a11 3347 /**
saloutos 0:083111ae2a11 3348 * @brief Instance structure for the Q15 FIR decimator.
saloutos 0:083111ae2a11 3349 */
saloutos 0:083111ae2a11 3350 typedef struct
saloutos 0:083111ae2a11 3351 {
saloutos 0:083111ae2a11 3352 uint8_t M; /**< decimation factor. */
saloutos 0:083111ae2a11 3353 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 3354 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 3355 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 3356 } arm_fir_decimate_instance_q15;
saloutos 0:083111ae2a11 3357
saloutos 0:083111ae2a11 3358 /**
saloutos 0:083111ae2a11 3359 * @brief Instance structure for the Q31 FIR decimator.
saloutos 0:083111ae2a11 3360 */
saloutos 0:083111ae2a11 3361 typedef struct
saloutos 0:083111ae2a11 3362 {
saloutos 0:083111ae2a11 3363 uint8_t M; /**< decimation factor. */
saloutos 0:083111ae2a11 3364 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 3365 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 3366 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 3367 } arm_fir_decimate_instance_q31;
saloutos 0:083111ae2a11 3368
saloutos 0:083111ae2a11 3369 /**
saloutos 0:083111ae2a11 3370 * @brief Instance structure for the floating-point FIR decimator.
saloutos 0:083111ae2a11 3371 */
saloutos 0:083111ae2a11 3372 typedef struct
saloutos 0:083111ae2a11 3373 {
saloutos 0:083111ae2a11 3374 uint8_t M; /**< decimation factor. */
saloutos 0:083111ae2a11 3375 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 3376 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 3377 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 3378 } arm_fir_decimate_instance_f32;
saloutos 0:083111ae2a11 3379
saloutos 0:083111ae2a11 3380
saloutos 0:083111ae2a11 3381 /**
saloutos 0:083111ae2a11 3382 * @brief Processing function for the floating-point FIR decimator.
saloutos 0:083111ae2a11 3383 * @param[in] S points to an instance of the floating-point FIR decimator structure.
saloutos 0:083111ae2a11 3384 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3385 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3386 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3387 */
saloutos 0:083111ae2a11 3388 void arm_fir_decimate_f32(
saloutos 0:083111ae2a11 3389 const arm_fir_decimate_instance_f32 * S,
saloutos 0:083111ae2a11 3390 float32_t * pSrc,
saloutos 0:083111ae2a11 3391 float32_t * pDst,
saloutos 0:083111ae2a11 3392 uint32_t blockSize);
saloutos 0:083111ae2a11 3393
saloutos 0:083111ae2a11 3394
saloutos 0:083111ae2a11 3395 /**
saloutos 0:083111ae2a11 3396 * @brief Initialization function for the floating-point FIR decimator.
saloutos 0:083111ae2a11 3397 * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
saloutos 0:083111ae2a11 3398 * @param[in] numTaps number of coefficients in the filter.
saloutos 0:083111ae2a11 3399 * @param[in] M decimation factor.
saloutos 0:083111ae2a11 3400 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3401 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3402 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3403 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
saloutos 0:083111ae2a11 3404 * <code>blockSize</code> is not a multiple of <code>M</code>.
saloutos 0:083111ae2a11 3405 */
saloutos 0:083111ae2a11 3406 arm_status arm_fir_decimate_init_f32(
saloutos 0:083111ae2a11 3407 arm_fir_decimate_instance_f32 * S,
saloutos 0:083111ae2a11 3408 uint16_t numTaps,
saloutos 0:083111ae2a11 3409 uint8_t M,
saloutos 0:083111ae2a11 3410 float32_t * pCoeffs,
saloutos 0:083111ae2a11 3411 float32_t * pState,
saloutos 0:083111ae2a11 3412 uint32_t blockSize);
saloutos 0:083111ae2a11 3413
saloutos 0:083111ae2a11 3414
saloutos 0:083111ae2a11 3415 /**
saloutos 0:083111ae2a11 3416 * @brief Processing function for the Q15 FIR decimator.
saloutos 0:083111ae2a11 3417 * @param[in] S points to an instance of the Q15 FIR decimator structure.
saloutos 0:083111ae2a11 3418 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3419 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3420 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3421 */
saloutos 0:083111ae2a11 3422 void arm_fir_decimate_q15(
saloutos 0:083111ae2a11 3423 const arm_fir_decimate_instance_q15 * S,
saloutos 0:083111ae2a11 3424 q15_t * pSrc,
saloutos 0:083111ae2a11 3425 q15_t * pDst,
saloutos 0:083111ae2a11 3426 uint32_t blockSize);
saloutos 0:083111ae2a11 3427
saloutos 0:083111ae2a11 3428
saloutos 0:083111ae2a11 3429 /**
saloutos 0:083111ae2a11 3430 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 3431 * @param[in] S points to an instance of the Q15 FIR decimator structure.
saloutos 0:083111ae2a11 3432 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3433 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3434 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3435 */
saloutos 0:083111ae2a11 3436 void arm_fir_decimate_fast_q15(
saloutos 0:083111ae2a11 3437 const arm_fir_decimate_instance_q15 * S,
saloutos 0:083111ae2a11 3438 q15_t * pSrc,
saloutos 0:083111ae2a11 3439 q15_t * pDst,
saloutos 0:083111ae2a11 3440 uint32_t blockSize);
saloutos 0:083111ae2a11 3441
saloutos 0:083111ae2a11 3442
saloutos 0:083111ae2a11 3443 /**
saloutos 0:083111ae2a11 3444 * @brief Initialization function for the Q15 FIR decimator.
saloutos 0:083111ae2a11 3445 * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
saloutos 0:083111ae2a11 3446 * @param[in] numTaps number of coefficients in the filter.
saloutos 0:083111ae2a11 3447 * @param[in] M decimation factor.
saloutos 0:083111ae2a11 3448 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3449 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3450 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3451 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
saloutos 0:083111ae2a11 3452 * <code>blockSize</code> is not a multiple of <code>M</code>.
saloutos 0:083111ae2a11 3453 */
saloutos 0:083111ae2a11 3454 arm_status arm_fir_decimate_init_q15(
saloutos 0:083111ae2a11 3455 arm_fir_decimate_instance_q15 * S,
saloutos 0:083111ae2a11 3456 uint16_t numTaps,
saloutos 0:083111ae2a11 3457 uint8_t M,
saloutos 0:083111ae2a11 3458 q15_t * pCoeffs,
saloutos 0:083111ae2a11 3459 q15_t * pState,
saloutos 0:083111ae2a11 3460 uint32_t blockSize);
saloutos 0:083111ae2a11 3461
saloutos 0:083111ae2a11 3462
saloutos 0:083111ae2a11 3463 /**
saloutos 0:083111ae2a11 3464 * @brief Processing function for the Q31 FIR decimator.
saloutos 0:083111ae2a11 3465 * @param[in] S points to an instance of the Q31 FIR decimator structure.
saloutos 0:083111ae2a11 3466 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3467 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3468 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3469 */
saloutos 0:083111ae2a11 3470 void arm_fir_decimate_q31(
saloutos 0:083111ae2a11 3471 const arm_fir_decimate_instance_q31 * S,
saloutos 0:083111ae2a11 3472 q31_t * pSrc,
saloutos 0:083111ae2a11 3473 q31_t * pDst,
saloutos 0:083111ae2a11 3474 uint32_t blockSize);
saloutos 0:083111ae2a11 3475
saloutos 0:083111ae2a11 3476 /**
saloutos 0:083111ae2a11 3477 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 3478 * @param[in] S points to an instance of the Q31 FIR decimator structure.
saloutos 0:083111ae2a11 3479 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3480 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3481 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3482 */
saloutos 0:083111ae2a11 3483 void arm_fir_decimate_fast_q31(
saloutos 0:083111ae2a11 3484 arm_fir_decimate_instance_q31 * S,
saloutos 0:083111ae2a11 3485 q31_t * pSrc,
saloutos 0:083111ae2a11 3486 q31_t * pDst,
saloutos 0:083111ae2a11 3487 uint32_t blockSize);
saloutos 0:083111ae2a11 3488
saloutos 0:083111ae2a11 3489
saloutos 0:083111ae2a11 3490 /**
saloutos 0:083111ae2a11 3491 * @brief Initialization function for the Q31 FIR decimator.
saloutos 0:083111ae2a11 3492 * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
saloutos 0:083111ae2a11 3493 * @param[in] numTaps number of coefficients in the filter.
saloutos 0:083111ae2a11 3494 * @param[in] M decimation factor.
saloutos 0:083111ae2a11 3495 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3496 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3497 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3498 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
saloutos 0:083111ae2a11 3499 * <code>blockSize</code> is not a multiple of <code>M</code>.
saloutos 0:083111ae2a11 3500 */
saloutos 0:083111ae2a11 3501 arm_status arm_fir_decimate_init_q31(
saloutos 0:083111ae2a11 3502 arm_fir_decimate_instance_q31 * S,
saloutos 0:083111ae2a11 3503 uint16_t numTaps,
saloutos 0:083111ae2a11 3504 uint8_t M,
saloutos 0:083111ae2a11 3505 q31_t * pCoeffs,
saloutos 0:083111ae2a11 3506 q31_t * pState,
saloutos 0:083111ae2a11 3507 uint32_t blockSize);
saloutos 0:083111ae2a11 3508
saloutos 0:083111ae2a11 3509
saloutos 0:083111ae2a11 3510 /**
saloutos 0:083111ae2a11 3511 * @brief Instance structure for the Q15 FIR interpolator.
saloutos 0:083111ae2a11 3512 */
saloutos 0:083111ae2a11 3513 typedef struct
saloutos 0:083111ae2a11 3514 {
saloutos 0:083111ae2a11 3515 uint8_t L; /**< upsample factor. */
saloutos 0:083111ae2a11 3516 uint16_t phaseLength; /**< length of each polyphase filter component. */
saloutos 0:083111ae2a11 3517 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
saloutos 0:083111ae2a11 3518 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
saloutos 0:083111ae2a11 3519 } arm_fir_interpolate_instance_q15;
saloutos 0:083111ae2a11 3520
saloutos 0:083111ae2a11 3521 /**
saloutos 0:083111ae2a11 3522 * @brief Instance structure for the Q31 FIR interpolator.
saloutos 0:083111ae2a11 3523 */
saloutos 0:083111ae2a11 3524 typedef struct
saloutos 0:083111ae2a11 3525 {
saloutos 0:083111ae2a11 3526 uint8_t L; /**< upsample factor. */
saloutos 0:083111ae2a11 3527 uint16_t phaseLength; /**< length of each polyphase filter component. */
saloutos 0:083111ae2a11 3528 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
saloutos 0:083111ae2a11 3529 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
saloutos 0:083111ae2a11 3530 } arm_fir_interpolate_instance_q31;
saloutos 0:083111ae2a11 3531
saloutos 0:083111ae2a11 3532 /**
saloutos 0:083111ae2a11 3533 * @brief Instance structure for the floating-point FIR interpolator.
saloutos 0:083111ae2a11 3534 */
saloutos 0:083111ae2a11 3535 typedef struct
saloutos 0:083111ae2a11 3536 {
saloutos 0:083111ae2a11 3537 uint8_t L; /**< upsample factor. */
saloutos 0:083111ae2a11 3538 uint16_t phaseLength; /**< length of each polyphase filter component. */
saloutos 0:083111ae2a11 3539 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
saloutos 0:083111ae2a11 3540 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
saloutos 0:083111ae2a11 3541 } arm_fir_interpolate_instance_f32;
saloutos 0:083111ae2a11 3542
saloutos 0:083111ae2a11 3543
saloutos 0:083111ae2a11 3544 /**
saloutos 0:083111ae2a11 3545 * @brief Processing function for the Q15 FIR interpolator.
saloutos 0:083111ae2a11 3546 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
saloutos 0:083111ae2a11 3547 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3548 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 3549 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3550 */
saloutos 0:083111ae2a11 3551 void arm_fir_interpolate_q15(
saloutos 0:083111ae2a11 3552 const arm_fir_interpolate_instance_q15 * S,
saloutos 0:083111ae2a11 3553 q15_t * pSrc,
saloutos 0:083111ae2a11 3554 q15_t * pDst,
saloutos 0:083111ae2a11 3555 uint32_t blockSize);
saloutos 0:083111ae2a11 3556
saloutos 0:083111ae2a11 3557
saloutos 0:083111ae2a11 3558 /**
saloutos 0:083111ae2a11 3559 * @brief Initialization function for the Q15 FIR interpolator.
saloutos 0:083111ae2a11 3560 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
saloutos 0:083111ae2a11 3561 * @param[in] L upsample factor.
saloutos 0:083111ae2a11 3562 * @param[in] numTaps number of filter coefficients in the filter.
saloutos 0:083111ae2a11 3563 * @param[in] pCoeffs points to the filter coefficient buffer.
saloutos 0:083111ae2a11 3564 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3565 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3566 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
saloutos 0:083111ae2a11 3567 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
saloutos 0:083111ae2a11 3568 */
saloutos 0:083111ae2a11 3569 arm_status arm_fir_interpolate_init_q15(
saloutos 0:083111ae2a11 3570 arm_fir_interpolate_instance_q15 * S,
saloutos 0:083111ae2a11 3571 uint8_t L,
saloutos 0:083111ae2a11 3572 uint16_t numTaps,
saloutos 0:083111ae2a11 3573 q15_t * pCoeffs,
saloutos 0:083111ae2a11 3574 q15_t * pState,
saloutos 0:083111ae2a11 3575 uint32_t blockSize);
saloutos 0:083111ae2a11 3576
saloutos 0:083111ae2a11 3577
saloutos 0:083111ae2a11 3578 /**
saloutos 0:083111ae2a11 3579 * @brief Processing function for the Q31 FIR interpolator.
saloutos 0:083111ae2a11 3580 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
saloutos 0:083111ae2a11 3581 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3582 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 3583 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3584 */
saloutos 0:083111ae2a11 3585 void arm_fir_interpolate_q31(
saloutos 0:083111ae2a11 3586 const arm_fir_interpolate_instance_q31 * S,
saloutos 0:083111ae2a11 3587 q31_t * pSrc,
saloutos 0:083111ae2a11 3588 q31_t * pDst,
saloutos 0:083111ae2a11 3589 uint32_t blockSize);
saloutos 0:083111ae2a11 3590
saloutos 0:083111ae2a11 3591
saloutos 0:083111ae2a11 3592 /**
saloutos 0:083111ae2a11 3593 * @brief Initialization function for the Q31 FIR interpolator.
saloutos 0:083111ae2a11 3594 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
saloutos 0:083111ae2a11 3595 * @param[in] L upsample factor.
saloutos 0:083111ae2a11 3596 * @param[in] numTaps number of filter coefficients in the filter.
saloutos 0:083111ae2a11 3597 * @param[in] pCoeffs points to the filter coefficient buffer.
saloutos 0:083111ae2a11 3598 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3599 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3600 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
saloutos 0:083111ae2a11 3601 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
saloutos 0:083111ae2a11 3602 */
saloutos 0:083111ae2a11 3603 arm_status arm_fir_interpolate_init_q31(
saloutos 0:083111ae2a11 3604 arm_fir_interpolate_instance_q31 * S,
saloutos 0:083111ae2a11 3605 uint8_t L,
saloutos 0:083111ae2a11 3606 uint16_t numTaps,
saloutos 0:083111ae2a11 3607 q31_t * pCoeffs,
saloutos 0:083111ae2a11 3608 q31_t * pState,
saloutos 0:083111ae2a11 3609 uint32_t blockSize);
saloutos 0:083111ae2a11 3610
saloutos 0:083111ae2a11 3611
saloutos 0:083111ae2a11 3612 /**
saloutos 0:083111ae2a11 3613 * @brief Processing function for the floating-point FIR interpolator.
saloutos 0:083111ae2a11 3614 * @param[in] S points to an instance of the floating-point FIR interpolator structure.
saloutos 0:083111ae2a11 3615 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3616 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 3617 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3618 */
saloutos 0:083111ae2a11 3619 void arm_fir_interpolate_f32(
saloutos 0:083111ae2a11 3620 const arm_fir_interpolate_instance_f32 * S,
saloutos 0:083111ae2a11 3621 float32_t * pSrc,
saloutos 0:083111ae2a11 3622 float32_t * pDst,
saloutos 0:083111ae2a11 3623 uint32_t blockSize);
saloutos 0:083111ae2a11 3624
saloutos 0:083111ae2a11 3625
saloutos 0:083111ae2a11 3626 /**
saloutos 0:083111ae2a11 3627 * @brief Initialization function for the floating-point FIR interpolator.
saloutos 0:083111ae2a11 3628 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
saloutos 0:083111ae2a11 3629 * @param[in] L upsample factor.
saloutos 0:083111ae2a11 3630 * @param[in] numTaps number of filter coefficients in the filter.
saloutos 0:083111ae2a11 3631 * @param[in] pCoeffs points to the filter coefficient buffer.
saloutos 0:083111ae2a11 3632 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3633 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 3634 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
saloutos 0:083111ae2a11 3635 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
saloutos 0:083111ae2a11 3636 */
saloutos 0:083111ae2a11 3637 arm_status arm_fir_interpolate_init_f32(
saloutos 0:083111ae2a11 3638 arm_fir_interpolate_instance_f32 * S,
saloutos 0:083111ae2a11 3639 uint8_t L,
saloutos 0:083111ae2a11 3640 uint16_t numTaps,
saloutos 0:083111ae2a11 3641 float32_t * pCoeffs,
saloutos 0:083111ae2a11 3642 float32_t * pState,
saloutos 0:083111ae2a11 3643 uint32_t blockSize);
saloutos 0:083111ae2a11 3644
saloutos 0:083111ae2a11 3645
saloutos 0:083111ae2a11 3646 /**
saloutos 0:083111ae2a11 3647 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
saloutos 0:083111ae2a11 3648 */
saloutos 0:083111ae2a11 3649 typedef struct
saloutos 0:083111ae2a11 3650 {
saloutos 0:083111ae2a11 3651 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 3652 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
saloutos 0:083111ae2a11 3653 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 3654 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
saloutos 0:083111ae2a11 3655 } arm_biquad_cas_df1_32x64_ins_q31;
saloutos 0:083111ae2a11 3656
saloutos 0:083111ae2a11 3657
saloutos 0:083111ae2a11 3658 /**
saloutos 0:083111ae2a11 3659 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
saloutos 0:083111ae2a11 3660 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3661 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3662 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3663 */
saloutos 0:083111ae2a11 3664 void arm_biquad_cas_df1_32x64_q31(
saloutos 0:083111ae2a11 3665 const arm_biquad_cas_df1_32x64_ins_q31 * S,
saloutos 0:083111ae2a11 3666 q31_t * pSrc,
saloutos 0:083111ae2a11 3667 q31_t * pDst,
saloutos 0:083111ae2a11 3668 uint32_t blockSize);
saloutos 0:083111ae2a11 3669
saloutos 0:083111ae2a11 3670
saloutos 0:083111ae2a11 3671 /**
saloutos 0:083111ae2a11 3672 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
saloutos 0:083111ae2a11 3673 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 3674 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3675 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3676 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
saloutos 0:083111ae2a11 3677 */
saloutos 0:083111ae2a11 3678 void arm_biquad_cas_df1_32x64_init_q31(
saloutos 0:083111ae2a11 3679 arm_biquad_cas_df1_32x64_ins_q31 * S,
saloutos 0:083111ae2a11 3680 uint8_t numStages,
saloutos 0:083111ae2a11 3681 q31_t * pCoeffs,
saloutos 0:083111ae2a11 3682 q63_t * pState,
saloutos 0:083111ae2a11 3683 uint8_t postShift);
saloutos 0:083111ae2a11 3684
saloutos 0:083111ae2a11 3685
saloutos 0:083111ae2a11 3686 /**
saloutos 0:083111ae2a11 3687 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3688 */
saloutos 0:083111ae2a11 3689 typedef struct
saloutos 0:083111ae2a11 3690 {
saloutos 0:083111ae2a11 3691 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 3692 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
saloutos 0:083111ae2a11 3693 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 3694 } arm_biquad_cascade_df2T_instance_f32;
saloutos 0:083111ae2a11 3695
saloutos 0:083111ae2a11 3696 /**
saloutos 0:083111ae2a11 3697 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3698 */
saloutos 0:083111ae2a11 3699 typedef struct
saloutos 0:083111ae2a11 3700 {
saloutos 0:083111ae2a11 3701 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 3702 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
saloutos 0:083111ae2a11 3703 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 3704 } arm_biquad_cascade_stereo_df2T_instance_f32;
saloutos 0:083111ae2a11 3705
saloutos 0:083111ae2a11 3706 /**
saloutos 0:083111ae2a11 3707 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3708 */
saloutos 0:083111ae2a11 3709 typedef struct
saloutos 0:083111ae2a11 3710 {
saloutos 0:083111ae2a11 3711 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
saloutos 0:083111ae2a11 3712 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
saloutos 0:083111ae2a11 3713 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
saloutos 0:083111ae2a11 3714 } arm_biquad_cascade_df2T_instance_f64;
saloutos 0:083111ae2a11 3715
saloutos 0:083111ae2a11 3716
saloutos 0:083111ae2a11 3717 /**
saloutos 0:083111ae2a11 3718 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3719 * @param[in] S points to an instance of the filter data structure.
saloutos 0:083111ae2a11 3720 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3721 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3722 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3723 */
saloutos 0:083111ae2a11 3724 void arm_biquad_cascade_df2T_f32(
saloutos 0:083111ae2a11 3725 const arm_biquad_cascade_df2T_instance_f32 * S,
saloutos 0:083111ae2a11 3726 float32_t * pSrc,
saloutos 0:083111ae2a11 3727 float32_t * pDst,
saloutos 0:083111ae2a11 3728 uint32_t blockSize);
saloutos 0:083111ae2a11 3729
saloutos 0:083111ae2a11 3730
saloutos 0:083111ae2a11 3731 /**
saloutos 0:083111ae2a11 3732 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
saloutos 0:083111ae2a11 3733 * @param[in] S points to an instance of the filter data structure.
saloutos 0:083111ae2a11 3734 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3735 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3736 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3737 */
saloutos 0:083111ae2a11 3738 void arm_biquad_cascade_stereo_df2T_f32(
saloutos 0:083111ae2a11 3739 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
saloutos 0:083111ae2a11 3740 float32_t * pSrc,
saloutos 0:083111ae2a11 3741 float32_t * pDst,
saloutos 0:083111ae2a11 3742 uint32_t blockSize);
saloutos 0:083111ae2a11 3743
saloutos 0:083111ae2a11 3744
saloutos 0:083111ae2a11 3745 /**
saloutos 0:083111ae2a11 3746 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3747 * @param[in] S points to an instance of the filter data structure.
saloutos 0:083111ae2a11 3748 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3749 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3750 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3751 */
saloutos 0:083111ae2a11 3752 void arm_biquad_cascade_df2T_f64(
saloutos 0:083111ae2a11 3753 const arm_biquad_cascade_df2T_instance_f64 * S,
saloutos 0:083111ae2a11 3754 float64_t * pSrc,
saloutos 0:083111ae2a11 3755 float64_t * pDst,
saloutos 0:083111ae2a11 3756 uint32_t blockSize);
saloutos 0:083111ae2a11 3757
saloutos 0:083111ae2a11 3758
saloutos 0:083111ae2a11 3759 /**
saloutos 0:083111ae2a11 3760 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3761 * @param[in,out] S points to an instance of the filter data structure.
saloutos 0:083111ae2a11 3762 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 3763 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3764 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3765 */
saloutos 0:083111ae2a11 3766 void arm_biquad_cascade_df2T_init_f32(
saloutos 0:083111ae2a11 3767 arm_biquad_cascade_df2T_instance_f32 * S,
saloutos 0:083111ae2a11 3768 uint8_t numStages,
saloutos 0:083111ae2a11 3769 float32_t * pCoeffs,
saloutos 0:083111ae2a11 3770 float32_t * pState);
saloutos 0:083111ae2a11 3771
saloutos 0:083111ae2a11 3772
saloutos 0:083111ae2a11 3773 /**
saloutos 0:083111ae2a11 3774 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3775 * @param[in,out] S points to an instance of the filter data structure.
saloutos 0:083111ae2a11 3776 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 3777 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3778 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3779 */
saloutos 0:083111ae2a11 3780 void arm_biquad_cascade_stereo_df2T_init_f32(
saloutos 0:083111ae2a11 3781 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
saloutos 0:083111ae2a11 3782 uint8_t numStages,
saloutos 0:083111ae2a11 3783 float32_t * pCoeffs,
saloutos 0:083111ae2a11 3784 float32_t * pState);
saloutos 0:083111ae2a11 3785
saloutos 0:083111ae2a11 3786
saloutos 0:083111ae2a11 3787 /**
saloutos 0:083111ae2a11 3788 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
saloutos 0:083111ae2a11 3789 * @param[in,out] S points to an instance of the filter data structure.
saloutos 0:083111ae2a11 3790 * @param[in] numStages number of 2nd order stages in the filter.
saloutos 0:083111ae2a11 3791 * @param[in] pCoeffs points to the filter coefficients.
saloutos 0:083111ae2a11 3792 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 3793 */
saloutos 0:083111ae2a11 3794 void arm_biquad_cascade_df2T_init_f64(
saloutos 0:083111ae2a11 3795 arm_biquad_cascade_df2T_instance_f64 * S,
saloutos 0:083111ae2a11 3796 uint8_t numStages,
saloutos 0:083111ae2a11 3797 float64_t * pCoeffs,
saloutos 0:083111ae2a11 3798 float64_t * pState);
saloutos 0:083111ae2a11 3799
saloutos 0:083111ae2a11 3800
saloutos 0:083111ae2a11 3801 /**
saloutos 0:083111ae2a11 3802 * @brief Instance structure for the Q15 FIR lattice filter.
saloutos 0:083111ae2a11 3803 */
saloutos 0:083111ae2a11 3804 typedef struct
saloutos 0:083111ae2a11 3805 {
saloutos 0:083111ae2a11 3806 uint16_t numStages; /**< number of filter stages. */
saloutos 0:083111ae2a11 3807 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
saloutos 0:083111ae2a11 3808 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
saloutos 0:083111ae2a11 3809 } arm_fir_lattice_instance_q15;
saloutos 0:083111ae2a11 3810
saloutos 0:083111ae2a11 3811 /**
saloutos 0:083111ae2a11 3812 * @brief Instance structure for the Q31 FIR lattice filter.
saloutos 0:083111ae2a11 3813 */
saloutos 0:083111ae2a11 3814 typedef struct
saloutos 0:083111ae2a11 3815 {
saloutos 0:083111ae2a11 3816 uint16_t numStages; /**< number of filter stages. */
saloutos 0:083111ae2a11 3817 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
saloutos 0:083111ae2a11 3818 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
saloutos 0:083111ae2a11 3819 } arm_fir_lattice_instance_q31;
saloutos 0:083111ae2a11 3820
saloutos 0:083111ae2a11 3821 /**
saloutos 0:083111ae2a11 3822 * @brief Instance structure for the floating-point FIR lattice filter.
saloutos 0:083111ae2a11 3823 */
saloutos 0:083111ae2a11 3824 typedef struct
saloutos 0:083111ae2a11 3825 {
saloutos 0:083111ae2a11 3826 uint16_t numStages; /**< number of filter stages. */
saloutos 0:083111ae2a11 3827 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
saloutos 0:083111ae2a11 3828 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
saloutos 0:083111ae2a11 3829 } arm_fir_lattice_instance_f32;
saloutos 0:083111ae2a11 3830
saloutos 0:083111ae2a11 3831
saloutos 0:083111ae2a11 3832 /**
saloutos 0:083111ae2a11 3833 * @brief Initialization function for the Q15 FIR lattice filter.
saloutos 0:083111ae2a11 3834 * @param[in] S points to an instance of the Q15 FIR lattice structure.
saloutos 0:083111ae2a11 3835 * @param[in] numStages number of filter stages.
saloutos 0:083111ae2a11 3836 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3837 * @param[in] pState points to the state buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3838 */
saloutos 0:083111ae2a11 3839 void arm_fir_lattice_init_q15(
saloutos 0:083111ae2a11 3840 arm_fir_lattice_instance_q15 * S,
saloutos 0:083111ae2a11 3841 uint16_t numStages,
saloutos 0:083111ae2a11 3842 q15_t * pCoeffs,
saloutos 0:083111ae2a11 3843 q15_t * pState);
saloutos 0:083111ae2a11 3844
saloutos 0:083111ae2a11 3845
saloutos 0:083111ae2a11 3846 /**
saloutos 0:083111ae2a11 3847 * @brief Processing function for the Q15 FIR lattice filter.
saloutos 0:083111ae2a11 3848 * @param[in] S points to an instance of the Q15 FIR lattice structure.
saloutos 0:083111ae2a11 3849 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3850 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 3851 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3852 */
saloutos 0:083111ae2a11 3853 void arm_fir_lattice_q15(
saloutos 0:083111ae2a11 3854 const arm_fir_lattice_instance_q15 * S,
saloutos 0:083111ae2a11 3855 q15_t * pSrc,
saloutos 0:083111ae2a11 3856 q15_t * pDst,
saloutos 0:083111ae2a11 3857 uint32_t blockSize);
saloutos 0:083111ae2a11 3858
saloutos 0:083111ae2a11 3859
saloutos 0:083111ae2a11 3860 /**
saloutos 0:083111ae2a11 3861 * @brief Initialization function for the Q31 FIR lattice filter.
saloutos 0:083111ae2a11 3862 * @param[in] S points to an instance of the Q31 FIR lattice structure.
saloutos 0:083111ae2a11 3863 * @param[in] numStages number of filter stages.
saloutos 0:083111ae2a11 3864 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3865 * @param[in] pState points to the state buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3866 */
saloutos 0:083111ae2a11 3867 void arm_fir_lattice_init_q31(
saloutos 0:083111ae2a11 3868 arm_fir_lattice_instance_q31 * S,
saloutos 0:083111ae2a11 3869 uint16_t numStages,
saloutos 0:083111ae2a11 3870 q31_t * pCoeffs,
saloutos 0:083111ae2a11 3871 q31_t * pState);
saloutos 0:083111ae2a11 3872
saloutos 0:083111ae2a11 3873
saloutos 0:083111ae2a11 3874 /**
saloutos 0:083111ae2a11 3875 * @brief Processing function for the Q31 FIR lattice filter.
saloutos 0:083111ae2a11 3876 * @param[in] S points to an instance of the Q31 FIR lattice structure.
saloutos 0:083111ae2a11 3877 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3878 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3879 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3880 */
saloutos 0:083111ae2a11 3881 void arm_fir_lattice_q31(
saloutos 0:083111ae2a11 3882 const arm_fir_lattice_instance_q31 * S,
saloutos 0:083111ae2a11 3883 q31_t * pSrc,
saloutos 0:083111ae2a11 3884 q31_t * pDst,
saloutos 0:083111ae2a11 3885 uint32_t blockSize);
saloutos 0:083111ae2a11 3886
saloutos 0:083111ae2a11 3887
saloutos 0:083111ae2a11 3888 /**
saloutos 0:083111ae2a11 3889 * @brief Initialization function for the floating-point FIR lattice filter.
saloutos 0:083111ae2a11 3890 * @param[in] S points to an instance of the floating-point FIR lattice structure.
saloutos 0:083111ae2a11 3891 * @param[in] numStages number of filter stages.
saloutos 0:083111ae2a11 3892 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3893 * @param[in] pState points to the state buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3894 */
saloutos 0:083111ae2a11 3895 void arm_fir_lattice_init_f32(
saloutos 0:083111ae2a11 3896 arm_fir_lattice_instance_f32 * S,
saloutos 0:083111ae2a11 3897 uint16_t numStages,
saloutos 0:083111ae2a11 3898 float32_t * pCoeffs,
saloutos 0:083111ae2a11 3899 float32_t * pState);
saloutos 0:083111ae2a11 3900
saloutos 0:083111ae2a11 3901
saloutos 0:083111ae2a11 3902 /**
saloutos 0:083111ae2a11 3903 * @brief Processing function for the floating-point FIR lattice filter.
saloutos 0:083111ae2a11 3904 * @param[in] S points to an instance of the floating-point FIR lattice structure.
saloutos 0:083111ae2a11 3905 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3906 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 3907 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3908 */
saloutos 0:083111ae2a11 3909 void arm_fir_lattice_f32(
saloutos 0:083111ae2a11 3910 const arm_fir_lattice_instance_f32 * S,
saloutos 0:083111ae2a11 3911 float32_t * pSrc,
saloutos 0:083111ae2a11 3912 float32_t * pDst,
saloutos 0:083111ae2a11 3913 uint32_t blockSize);
saloutos 0:083111ae2a11 3914
saloutos 0:083111ae2a11 3915
saloutos 0:083111ae2a11 3916 /**
saloutos 0:083111ae2a11 3917 * @brief Instance structure for the Q15 IIR lattice filter.
saloutos 0:083111ae2a11 3918 */
saloutos 0:083111ae2a11 3919 typedef struct
saloutos 0:083111ae2a11 3920 {
saloutos 0:083111ae2a11 3921 uint16_t numStages; /**< number of stages in the filter. */
saloutos 0:083111ae2a11 3922 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
saloutos 0:083111ae2a11 3923 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
saloutos 0:083111ae2a11 3924 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
saloutos 0:083111ae2a11 3925 } arm_iir_lattice_instance_q15;
saloutos 0:083111ae2a11 3926
saloutos 0:083111ae2a11 3927 /**
saloutos 0:083111ae2a11 3928 * @brief Instance structure for the Q31 IIR lattice filter.
saloutos 0:083111ae2a11 3929 */
saloutos 0:083111ae2a11 3930 typedef struct
saloutos 0:083111ae2a11 3931 {
saloutos 0:083111ae2a11 3932 uint16_t numStages; /**< number of stages in the filter. */
saloutos 0:083111ae2a11 3933 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
saloutos 0:083111ae2a11 3934 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
saloutos 0:083111ae2a11 3935 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
saloutos 0:083111ae2a11 3936 } arm_iir_lattice_instance_q31;
saloutos 0:083111ae2a11 3937
saloutos 0:083111ae2a11 3938 /**
saloutos 0:083111ae2a11 3939 * @brief Instance structure for the floating-point IIR lattice filter.
saloutos 0:083111ae2a11 3940 */
saloutos 0:083111ae2a11 3941 typedef struct
saloutos 0:083111ae2a11 3942 {
saloutos 0:083111ae2a11 3943 uint16_t numStages; /**< number of stages in the filter. */
saloutos 0:083111ae2a11 3944 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
saloutos 0:083111ae2a11 3945 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
saloutos 0:083111ae2a11 3946 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
saloutos 0:083111ae2a11 3947 } arm_iir_lattice_instance_f32;
saloutos 0:083111ae2a11 3948
saloutos 0:083111ae2a11 3949
saloutos 0:083111ae2a11 3950 /**
saloutos 0:083111ae2a11 3951 * @brief Processing function for the floating-point IIR lattice filter.
saloutos 0:083111ae2a11 3952 * @param[in] S points to an instance of the floating-point IIR lattice structure.
saloutos 0:083111ae2a11 3953 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3954 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 3955 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3956 */
saloutos 0:083111ae2a11 3957 void arm_iir_lattice_f32(
saloutos 0:083111ae2a11 3958 const arm_iir_lattice_instance_f32 * S,
saloutos 0:083111ae2a11 3959 float32_t * pSrc,
saloutos 0:083111ae2a11 3960 float32_t * pDst,
saloutos 0:083111ae2a11 3961 uint32_t blockSize);
saloutos 0:083111ae2a11 3962
saloutos 0:083111ae2a11 3963
saloutos 0:083111ae2a11 3964 /**
saloutos 0:083111ae2a11 3965 * @brief Initialization function for the floating-point IIR lattice filter.
saloutos 0:083111ae2a11 3966 * @param[in] S points to an instance of the floating-point IIR lattice structure.
saloutos 0:083111ae2a11 3967 * @param[in] numStages number of stages in the filter.
saloutos 0:083111ae2a11 3968 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
saloutos 0:083111ae2a11 3969 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
saloutos 0:083111ae2a11 3970 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
saloutos 0:083111ae2a11 3971 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3972 */
saloutos 0:083111ae2a11 3973 void arm_iir_lattice_init_f32(
saloutos 0:083111ae2a11 3974 arm_iir_lattice_instance_f32 * S,
saloutos 0:083111ae2a11 3975 uint16_t numStages,
saloutos 0:083111ae2a11 3976 float32_t * pkCoeffs,
saloutos 0:083111ae2a11 3977 float32_t * pvCoeffs,
saloutos 0:083111ae2a11 3978 float32_t * pState,
saloutos 0:083111ae2a11 3979 uint32_t blockSize);
saloutos 0:083111ae2a11 3980
saloutos 0:083111ae2a11 3981
saloutos 0:083111ae2a11 3982 /**
saloutos 0:083111ae2a11 3983 * @brief Processing function for the Q31 IIR lattice filter.
saloutos 0:083111ae2a11 3984 * @param[in] S points to an instance of the Q31 IIR lattice structure.
saloutos 0:083111ae2a11 3985 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 3986 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 3987 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 3988 */
saloutos 0:083111ae2a11 3989 void arm_iir_lattice_q31(
saloutos 0:083111ae2a11 3990 const arm_iir_lattice_instance_q31 * S,
saloutos 0:083111ae2a11 3991 q31_t * pSrc,
saloutos 0:083111ae2a11 3992 q31_t * pDst,
saloutos 0:083111ae2a11 3993 uint32_t blockSize);
saloutos 0:083111ae2a11 3994
saloutos 0:083111ae2a11 3995
saloutos 0:083111ae2a11 3996 /**
saloutos 0:083111ae2a11 3997 * @brief Initialization function for the Q31 IIR lattice filter.
saloutos 0:083111ae2a11 3998 * @param[in] S points to an instance of the Q31 IIR lattice structure.
saloutos 0:083111ae2a11 3999 * @param[in] numStages number of stages in the filter.
saloutos 0:083111ae2a11 4000 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
saloutos 0:083111ae2a11 4001 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
saloutos 0:083111ae2a11 4002 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
saloutos 0:083111ae2a11 4003 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4004 */
saloutos 0:083111ae2a11 4005 void arm_iir_lattice_init_q31(
saloutos 0:083111ae2a11 4006 arm_iir_lattice_instance_q31 * S,
saloutos 0:083111ae2a11 4007 uint16_t numStages,
saloutos 0:083111ae2a11 4008 q31_t * pkCoeffs,
saloutos 0:083111ae2a11 4009 q31_t * pvCoeffs,
saloutos 0:083111ae2a11 4010 q31_t * pState,
saloutos 0:083111ae2a11 4011 uint32_t blockSize);
saloutos 0:083111ae2a11 4012
saloutos 0:083111ae2a11 4013
saloutos 0:083111ae2a11 4014 /**
saloutos 0:083111ae2a11 4015 * @brief Processing function for the Q15 IIR lattice filter.
saloutos 0:083111ae2a11 4016 * @param[in] S points to an instance of the Q15 IIR lattice structure.
saloutos 0:083111ae2a11 4017 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4018 * @param[out] pDst points to the block of output data.
saloutos 0:083111ae2a11 4019 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4020 */
saloutos 0:083111ae2a11 4021 void arm_iir_lattice_q15(
saloutos 0:083111ae2a11 4022 const arm_iir_lattice_instance_q15 * S,
saloutos 0:083111ae2a11 4023 q15_t * pSrc,
saloutos 0:083111ae2a11 4024 q15_t * pDst,
saloutos 0:083111ae2a11 4025 uint32_t blockSize);
saloutos 0:083111ae2a11 4026
saloutos 0:083111ae2a11 4027
saloutos 0:083111ae2a11 4028 /**
saloutos 0:083111ae2a11 4029 * @brief Initialization function for the Q15 IIR lattice filter.
saloutos 0:083111ae2a11 4030 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
saloutos 0:083111ae2a11 4031 * @param[in] numStages number of stages in the filter.
saloutos 0:083111ae2a11 4032 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
saloutos 0:083111ae2a11 4033 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
saloutos 0:083111ae2a11 4034 * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
saloutos 0:083111ae2a11 4035 * @param[in] blockSize number of samples to process per call.
saloutos 0:083111ae2a11 4036 */
saloutos 0:083111ae2a11 4037 void arm_iir_lattice_init_q15(
saloutos 0:083111ae2a11 4038 arm_iir_lattice_instance_q15 * S,
saloutos 0:083111ae2a11 4039 uint16_t numStages,
saloutos 0:083111ae2a11 4040 q15_t * pkCoeffs,
saloutos 0:083111ae2a11 4041 q15_t * pvCoeffs,
saloutos 0:083111ae2a11 4042 q15_t * pState,
saloutos 0:083111ae2a11 4043 uint32_t blockSize);
saloutos 0:083111ae2a11 4044
saloutos 0:083111ae2a11 4045
saloutos 0:083111ae2a11 4046 /**
saloutos 0:083111ae2a11 4047 * @brief Instance structure for the floating-point LMS filter.
saloutos 0:083111ae2a11 4048 */
saloutos 0:083111ae2a11 4049 typedef struct
saloutos 0:083111ae2a11 4050 {
saloutos 0:083111ae2a11 4051 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4052 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 4053 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 4054 float32_t mu; /**< step size that controls filter coefficient updates. */
saloutos 0:083111ae2a11 4055 } arm_lms_instance_f32;
saloutos 0:083111ae2a11 4056
saloutos 0:083111ae2a11 4057
saloutos 0:083111ae2a11 4058 /**
saloutos 0:083111ae2a11 4059 * @brief Processing function for floating-point LMS filter.
saloutos 0:083111ae2a11 4060 * @param[in] S points to an instance of the floating-point LMS filter structure.
saloutos 0:083111ae2a11 4061 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4062 * @param[in] pRef points to the block of reference data.
saloutos 0:083111ae2a11 4063 * @param[out] pOut points to the block of output data.
saloutos 0:083111ae2a11 4064 * @param[out] pErr points to the block of error data.
saloutos 0:083111ae2a11 4065 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4066 */
saloutos 0:083111ae2a11 4067 void arm_lms_f32(
saloutos 0:083111ae2a11 4068 const arm_lms_instance_f32 * S,
saloutos 0:083111ae2a11 4069 float32_t * pSrc,
saloutos 0:083111ae2a11 4070 float32_t * pRef,
saloutos 0:083111ae2a11 4071 float32_t * pOut,
saloutos 0:083111ae2a11 4072 float32_t * pErr,
saloutos 0:083111ae2a11 4073 uint32_t blockSize);
saloutos 0:083111ae2a11 4074
saloutos 0:083111ae2a11 4075
saloutos 0:083111ae2a11 4076 /**
saloutos 0:083111ae2a11 4077 * @brief Initialization function for floating-point LMS filter.
saloutos 0:083111ae2a11 4078 * @param[in] S points to an instance of the floating-point LMS filter structure.
saloutos 0:083111ae2a11 4079 * @param[in] numTaps number of filter coefficients.
saloutos 0:083111ae2a11 4080 * @param[in] pCoeffs points to the coefficient buffer.
saloutos 0:083111ae2a11 4081 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 4082 * @param[in] mu step size that controls filter coefficient updates.
saloutos 0:083111ae2a11 4083 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4084 */
saloutos 0:083111ae2a11 4085 void arm_lms_init_f32(
saloutos 0:083111ae2a11 4086 arm_lms_instance_f32 * S,
saloutos 0:083111ae2a11 4087 uint16_t numTaps,
saloutos 0:083111ae2a11 4088 float32_t * pCoeffs,
saloutos 0:083111ae2a11 4089 float32_t * pState,
saloutos 0:083111ae2a11 4090 float32_t mu,
saloutos 0:083111ae2a11 4091 uint32_t blockSize);
saloutos 0:083111ae2a11 4092
saloutos 0:083111ae2a11 4093
saloutos 0:083111ae2a11 4094 /**
saloutos 0:083111ae2a11 4095 * @brief Instance structure for the Q15 LMS filter.
saloutos 0:083111ae2a11 4096 */
saloutos 0:083111ae2a11 4097 typedef struct
saloutos 0:083111ae2a11 4098 {
saloutos 0:083111ae2a11 4099 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4100 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 4101 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 4102 q15_t mu; /**< step size that controls filter coefficient updates. */
saloutos 0:083111ae2a11 4103 uint32_t postShift; /**< bit shift applied to coefficients. */
saloutos 0:083111ae2a11 4104 } arm_lms_instance_q15;
saloutos 0:083111ae2a11 4105
saloutos 0:083111ae2a11 4106
saloutos 0:083111ae2a11 4107 /**
saloutos 0:083111ae2a11 4108 * @brief Initialization function for the Q15 LMS filter.
saloutos 0:083111ae2a11 4109 * @param[in] S points to an instance of the Q15 LMS filter structure.
saloutos 0:083111ae2a11 4110 * @param[in] numTaps number of filter coefficients.
saloutos 0:083111ae2a11 4111 * @param[in] pCoeffs points to the coefficient buffer.
saloutos 0:083111ae2a11 4112 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 4113 * @param[in] mu step size that controls filter coefficient updates.
saloutos 0:083111ae2a11 4114 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4115 * @param[in] postShift bit shift applied to coefficients.
saloutos 0:083111ae2a11 4116 */
saloutos 0:083111ae2a11 4117 void arm_lms_init_q15(
saloutos 0:083111ae2a11 4118 arm_lms_instance_q15 * S,
saloutos 0:083111ae2a11 4119 uint16_t numTaps,
saloutos 0:083111ae2a11 4120 q15_t * pCoeffs,
saloutos 0:083111ae2a11 4121 q15_t * pState,
saloutos 0:083111ae2a11 4122 q15_t mu,
saloutos 0:083111ae2a11 4123 uint32_t blockSize,
saloutos 0:083111ae2a11 4124 uint32_t postShift);
saloutos 0:083111ae2a11 4125
saloutos 0:083111ae2a11 4126
saloutos 0:083111ae2a11 4127 /**
saloutos 0:083111ae2a11 4128 * @brief Processing function for Q15 LMS filter.
saloutos 0:083111ae2a11 4129 * @param[in] S points to an instance of the Q15 LMS filter structure.
saloutos 0:083111ae2a11 4130 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4131 * @param[in] pRef points to the block of reference data.
saloutos 0:083111ae2a11 4132 * @param[out] pOut points to the block of output data.
saloutos 0:083111ae2a11 4133 * @param[out] pErr points to the block of error data.
saloutos 0:083111ae2a11 4134 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4135 */
saloutos 0:083111ae2a11 4136 void arm_lms_q15(
saloutos 0:083111ae2a11 4137 const arm_lms_instance_q15 * S,
saloutos 0:083111ae2a11 4138 q15_t * pSrc,
saloutos 0:083111ae2a11 4139 q15_t * pRef,
saloutos 0:083111ae2a11 4140 q15_t * pOut,
saloutos 0:083111ae2a11 4141 q15_t * pErr,
saloutos 0:083111ae2a11 4142 uint32_t blockSize);
saloutos 0:083111ae2a11 4143
saloutos 0:083111ae2a11 4144
saloutos 0:083111ae2a11 4145 /**
saloutos 0:083111ae2a11 4146 * @brief Instance structure for the Q31 LMS filter.
saloutos 0:083111ae2a11 4147 */
saloutos 0:083111ae2a11 4148 typedef struct
saloutos 0:083111ae2a11 4149 {
saloutos 0:083111ae2a11 4150 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4151 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 4152 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 4153 q31_t mu; /**< step size that controls filter coefficient updates. */
saloutos 0:083111ae2a11 4154 uint32_t postShift; /**< bit shift applied to coefficients. */
saloutos 0:083111ae2a11 4155 } arm_lms_instance_q31;
saloutos 0:083111ae2a11 4156
saloutos 0:083111ae2a11 4157
saloutos 0:083111ae2a11 4158 /**
saloutos 0:083111ae2a11 4159 * @brief Processing function for Q31 LMS filter.
saloutos 0:083111ae2a11 4160 * @param[in] S points to an instance of the Q15 LMS filter structure.
saloutos 0:083111ae2a11 4161 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4162 * @param[in] pRef points to the block of reference data.
saloutos 0:083111ae2a11 4163 * @param[out] pOut points to the block of output data.
saloutos 0:083111ae2a11 4164 * @param[out] pErr points to the block of error data.
saloutos 0:083111ae2a11 4165 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4166 */
saloutos 0:083111ae2a11 4167 void arm_lms_q31(
saloutos 0:083111ae2a11 4168 const arm_lms_instance_q31 * S,
saloutos 0:083111ae2a11 4169 q31_t * pSrc,
saloutos 0:083111ae2a11 4170 q31_t * pRef,
saloutos 0:083111ae2a11 4171 q31_t * pOut,
saloutos 0:083111ae2a11 4172 q31_t * pErr,
saloutos 0:083111ae2a11 4173 uint32_t blockSize);
saloutos 0:083111ae2a11 4174
saloutos 0:083111ae2a11 4175
saloutos 0:083111ae2a11 4176 /**
saloutos 0:083111ae2a11 4177 * @brief Initialization function for Q31 LMS filter.
saloutos 0:083111ae2a11 4178 * @param[in] S points to an instance of the Q31 LMS filter structure.
saloutos 0:083111ae2a11 4179 * @param[in] numTaps number of filter coefficients.
saloutos 0:083111ae2a11 4180 * @param[in] pCoeffs points to coefficient buffer.
saloutos 0:083111ae2a11 4181 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 4182 * @param[in] mu step size that controls filter coefficient updates.
saloutos 0:083111ae2a11 4183 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4184 * @param[in] postShift bit shift applied to coefficients.
saloutos 0:083111ae2a11 4185 */
saloutos 0:083111ae2a11 4186 void arm_lms_init_q31(
saloutos 0:083111ae2a11 4187 arm_lms_instance_q31 * S,
saloutos 0:083111ae2a11 4188 uint16_t numTaps,
saloutos 0:083111ae2a11 4189 q31_t * pCoeffs,
saloutos 0:083111ae2a11 4190 q31_t * pState,
saloutos 0:083111ae2a11 4191 q31_t mu,
saloutos 0:083111ae2a11 4192 uint32_t blockSize,
saloutos 0:083111ae2a11 4193 uint32_t postShift);
saloutos 0:083111ae2a11 4194
saloutos 0:083111ae2a11 4195
saloutos 0:083111ae2a11 4196 /**
saloutos 0:083111ae2a11 4197 * @brief Instance structure for the floating-point normalized LMS filter.
saloutos 0:083111ae2a11 4198 */
saloutos 0:083111ae2a11 4199 typedef struct
saloutos 0:083111ae2a11 4200 {
saloutos 0:083111ae2a11 4201 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4202 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 4203 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 4204 float32_t mu; /**< step size that control filter coefficient updates. */
saloutos 0:083111ae2a11 4205 float32_t energy; /**< saves previous frame energy. */
saloutos 0:083111ae2a11 4206 float32_t x0; /**< saves previous input sample. */
saloutos 0:083111ae2a11 4207 } arm_lms_norm_instance_f32;
saloutos 0:083111ae2a11 4208
saloutos 0:083111ae2a11 4209
saloutos 0:083111ae2a11 4210 /**
saloutos 0:083111ae2a11 4211 * @brief Processing function for floating-point normalized LMS filter.
saloutos 0:083111ae2a11 4212 * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
saloutos 0:083111ae2a11 4213 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4214 * @param[in] pRef points to the block of reference data.
saloutos 0:083111ae2a11 4215 * @param[out] pOut points to the block of output data.
saloutos 0:083111ae2a11 4216 * @param[out] pErr points to the block of error data.
saloutos 0:083111ae2a11 4217 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4218 */
saloutos 0:083111ae2a11 4219 void arm_lms_norm_f32(
saloutos 0:083111ae2a11 4220 arm_lms_norm_instance_f32 * S,
saloutos 0:083111ae2a11 4221 float32_t * pSrc,
saloutos 0:083111ae2a11 4222 float32_t * pRef,
saloutos 0:083111ae2a11 4223 float32_t * pOut,
saloutos 0:083111ae2a11 4224 float32_t * pErr,
saloutos 0:083111ae2a11 4225 uint32_t blockSize);
saloutos 0:083111ae2a11 4226
saloutos 0:083111ae2a11 4227
saloutos 0:083111ae2a11 4228 /**
saloutos 0:083111ae2a11 4229 * @brief Initialization function for floating-point normalized LMS filter.
saloutos 0:083111ae2a11 4230 * @param[in] S points to an instance of the floating-point LMS filter structure.
saloutos 0:083111ae2a11 4231 * @param[in] numTaps number of filter coefficients.
saloutos 0:083111ae2a11 4232 * @param[in] pCoeffs points to coefficient buffer.
saloutos 0:083111ae2a11 4233 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 4234 * @param[in] mu step size that controls filter coefficient updates.
saloutos 0:083111ae2a11 4235 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4236 */
saloutos 0:083111ae2a11 4237 void arm_lms_norm_init_f32(
saloutos 0:083111ae2a11 4238 arm_lms_norm_instance_f32 * S,
saloutos 0:083111ae2a11 4239 uint16_t numTaps,
saloutos 0:083111ae2a11 4240 float32_t * pCoeffs,
saloutos 0:083111ae2a11 4241 float32_t * pState,
saloutos 0:083111ae2a11 4242 float32_t mu,
saloutos 0:083111ae2a11 4243 uint32_t blockSize);
saloutos 0:083111ae2a11 4244
saloutos 0:083111ae2a11 4245
saloutos 0:083111ae2a11 4246 /**
saloutos 0:083111ae2a11 4247 * @brief Instance structure for the Q31 normalized LMS filter.
saloutos 0:083111ae2a11 4248 */
saloutos 0:083111ae2a11 4249 typedef struct
saloutos 0:083111ae2a11 4250 {
saloutos 0:083111ae2a11 4251 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4252 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 4253 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 4254 q31_t mu; /**< step size that controls filter coefficient updates. */
saloutos 0:083111ae2a11 4255 uint8_t postShift; /**< bit shift applied to coefficients. */
saloutos 0:083111ae2a11 4256 q31_t *recipTable; /**< points to the reciprocal initial value table. */
saloutos 0:083111ae2a11 4257 q31_t energy; /**< saves previous frame energy. */
saloutos 0:083111ae2a11 4258 q31_t x0; /**< saves previous input sample. */
saloutos 0:083111ae2a11 4259 } arm_lms_norm_instance_q31;
saloutos 0:083111ae2a11 4260
saloutos 0:083111ae2a11 4261
saloutos 0:083111ae2a11 4262 /**
saloutos 0:083111ae2a11 4263 * @brief Processing function for Q31 normalized LMS filter.
saloutos 0:083111ae2a11 4264 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
saloutos 0:083111ae2a11 4265 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4266 * @param[in] pRef points to the block of reference data.
saloutos 0:083111ae2a11 4267 * @param[out] pOut points to the block of output data.
saloutos 0:083111ae2a11 4268 * @param[out] pErr points to the block of error data.
saloutos 0:083111ae2a11 4269 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4270 */
saloutos 0:083111ae2a11 4271 void arm_lms_norm_q31(
saloutos 0:083111ae2a11 4272 arm_lms_norm_instance_q31 * S,
saloutos 0:083111ae2a11 4273 q31_t * pSrc,
saloutos 0:083111ae2a11 4274 q31_t * pRef,
saloutos 0:083111ae2a11 4275 q31_t * pOut,
saloutos 0:083111ae2a11 4276 q31_t * pErr,
saloutos 0:083111ae2a11 4277 uint32_t blockSize);
saloutos 0:083111ae2a11 4278
saloutos 0:083111ae2a11 4279
saloutos 0:083111ae2a11 4280 /**
saloutos 0:083111ae2a11 4281 * @brief Initialization function for Q31 normalized LMS filter.
saloutos 0:083111ae2a11 4282 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
saloutos 0:083111ae2a11 4283 * @param[in] numTaps number of filter coefficients.
saloutos 0:083111ae2a11 4284 * @param[in] pCoeffs points to coefficient buffer.
saloutos 0:083111ae2a11 4285 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 4286 * @param[in] mu step size that controls filter coefficient updates.
saloutos 0:083111ae2a11 4287 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4288 * @param[in] postShift bit shift applied to coefficients.
saloutos 0:083111ae2a11 4289 */
saloutos 0:083111ae2a11 4290 void arm_lms_norm_init_q31(
saloutos 0:083111ae2a11 4291 arm_lms_norm_instance_q31 * S,
saloutos 0:083111ae2a11 4292 uint16_t numTaps,
saloutos 0:083111ae2a11 4293 q31_t * pCoeffs,
saloutos 0:083111ae2a11 4294 q31_t * pState,
saloutos 0:083111ae2a11 4295 q31_t mu,
saloutos 0:083111ae2a11 4296 uint32_t blockSize,
saloutos 0:083111ae2a11 4297 uint8_t postShift);
saloutos 0:083111ae2a11 4298
saloutos 0:083111ae2a11 4299
saloutos 0:083111ae2a11 4300 /**
saloutos 0:083111ae2a11 4301 * @brief Instance structure for the Q15 normalized LMS filter.
saloutos 0:083111ae2a11 4302 */
saloutos 0:083111ae2a11 4303 typedef struct
saloutos 0:083111ae2a11 4304 {
saloutos 0:083111ae2a11 4305 uint16_t numTaps; /**< Number of coefficients in the filter. */
saloutos 0:083111ae2a11 4306 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
saloutos 0:083111ae2a11 4307 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
saloutos 0:083111ae2a11 4308 q15_t mu; /**< step size that controls filter coefficient updates. */
saloutos 0:083111ae2a11 4309 uint8_t postShift; /**< bit shift applied to coefficients. */
saloutos 0:083111ae2a11 4310 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
saloutos 0:083111ae2a11 4311 q15_t energy; /**< saves previous frame energy. */
saloutos 0:083111ae2a11 4312 q15_t x0; /**< saves previous input sample. */
saloutos 0:083111ae2a11 4313 } arm_lms_norm_instance_q15;
saloutos 0:083111ae2a11 4314
saloutos 0:083111ae2a11 4315
saloutos 0:083111ae2a11 4316 /**
saloutos 0:083111ae2a11 4317 * @brief Processing function for Q15 normalized LMS filter.
saloutos 0:083111ae2a11 4318 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
saloutos 0:083111ae2a11 4319 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4320 * @param[in] pRef points to the block of reference data.
saloutos 0:083111ae2a11 4321 * @param[out] pOut points to the block of output data.
saloutos 0:083111ae2a11 4322 * @param[out] pErr points to the block of error data.
saloutos 0:083111ae2a11 4323 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4324 */
saloutos 0:083111ae2a11 4325 void arm_lms_norm_q15(
saloutos 0:083111ae2a11 4326 arm_lms_norm_instance_q15 * S,
saloutos 0:083111ae2a11 4327 q15_t * pSrc,
saloutos 0:083111ae2a11 4328 q15_t * pRef,
saloutos 0:083111ae2a11 4329 q15_t * pOut,
saloutos 0:083111ae2a11 4330 q15_t * pErr,
saloutos 0:083111ae2a11 4331 uint32_t blockSize);
saloutos 0:083111ae2a11 4332
saloutos 0:083111ae2a11 4333
saloutos 0:083111ae2a11 4334 /**
saloutos 0:083111ae2a11 4335 * @brief Initialization function for Q15 normalized LMS filter.
saloutos 0:083111ae2a11 4336 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
saloutos 0:083111ae2a11 4337 * @param[in] numTaps number of filter coefficients.
saloutos 0:083111ae2a11 4338 * @param[in] pCoeffs points to coefficient buffer.
saloutos 0:083111ae2a11 4339 * @param[in] pState points to state buffer.
saloutos 0:083111ae2a11 4340 * @param[in] mu step size that controls filter coefficient updates.
saloutos 0:083111ae2a11 4341 * @param[in] blockSize number of samples to process.
saloutos 0:083111ae2a11 4342 * @param[in] postShift bit shift applied to coefficients.
saloutos 0:083111ae2a11 4343 */
saloutos 0:083111ae2a11 4344 void arm_lms_norm_init_q15(
saloutos 0:083111ae2a11 4345 arm_lms_norm_instance_q15 * S,
saloutos 0:083111ae2a11 4346 uint16_t numTaps,
saloutos 0:083111ae2a11 4347 q15_t * pCoeffs,
saloutos 0:083111ae2a11 4348 q15_t * pState,
saloutos 0:083111ae2a11 4349 q15_t mu,
saloutos 0:083111ae2a11 4350 uint32_t blockSize,
saloutos 0:083111ae2a11 4351 uint8_t postShift);
saloutos 0:083111ae2a11 4352
saloutos 0:083111ae2a11 4353
saloutos 0:083111ae2a11 4354 /**
saloutos 0:083111ae2a11 4355 * @brief Correlation of floating-point sequences.
saloutos 0:083111ae2a11 4356 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4357 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4358 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4359 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4360 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4361 */
saloutos 0:083111ae2a11 4362 void arm_correlate_f32(
saloutos 0:083111ae2a11 4363 float32_t * pSrcA,
saloutos 0:083111ae2a11 4364 uint32_t srcALen,
saloutos 0:083111ae2a11 4365 float32_t * pSrcB,
saloutos 0:083111ae2a11 4366 uint32_t srcBLen,
saloutos 0:083111ae2a11 4367 float32_t * pDst);
saloutos 0:083111ae2a11 4368
saloutos 0:083111ae2a11 4369
saloutos 0:083111ae2a11 4370 /**
saloutos 0:083111ae2a11 4371 * @brief Correlation of Q15 sequences
saloutos 0:083111ae2a11 4372 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4373 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4374 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4375 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4376 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4377 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 4378 */
saloutos 0:083111ae2a11 4379 void arm_correlate_opt_q15(
saloutos 0:083111ae2a11 4380 q15_t * pSrcA,
saloutos 0:083111ae2a11 4381 uint32_t srcALen,
saloutos 0:083111ae2a11 4382 q15_t * pSrcB,
saloutos 0:083111ae2a11 4383 uint32_t srcBLen,
saloutos 0:083111ae2a11 4384 q15_t * pDst,
saloutos 0:083111ae2a11 4385 q15_t * pScratch);
saloutos 0:083111ae2a11 4386
saloutos 0:083111ae2a11 4387
saloutos 0:083111ae2a11 4388 /**
saloutos 0:083111ae2a11 4389 * @brief Correlation of Q15 sequences.
saloutos 0:083111ae2a11 4390 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4391 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4392 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4393 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4394 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4395 */
saloutos 0:083111ae2a11 4396
saloutos 0:083111ae2a11 4397 void arm_correlate_q15(
saloutos 0:083111ae2a11 4398 q15_t * pSrcA,
saloutos 0:083111ae2a11 4399 uint32_t srcALen,
saloutos 0:083111ae2a11 4400 q15_t * pSrcB,
saloutos 0:083111ae2a11 4401 uint32_t srcBLen,
saloutos 0:083111ae2a11 4402 q15_t * pDst);
saloutos 0:083111ae2a11 4403
saloutos 0:083111ae2a11 4404
saloutos 0:083111ae2a11 4405 /**
saloutos 0:083111ae2a11 4406 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 4407 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4408 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4409 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4410 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4411 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4412 */
saloutos 0:083111ae2a11 4413
saloutos 0:083111ae2a11 4414 void arm_correlate_fast_q15(
saloutos 0:083111ae2a11 4415 q15_t * pSrcA,
saloutos 0:083111ae2a11 4416 uint32_t srcALen,
saloutos 0:083111ae2a11 4417 q15_t * pSrcB,
saloutos 0:083111ae2a11 4418 uint32_t srcBLen,
saloutos 0:083111ae2a11 4419 q15_t * pDst);
saloutos 0:083111ae2a11 4420
saloutos 0:083111ae2a11 4421
saloutos 0:083111ae2a11 4422 /**
saloutos 0:083111ae2a11 4423 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
saloutos 0:083111ae2a11 4424 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4425 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4426 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4427 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4428 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4429 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 4430 */
saloutos 0:083111ae2a11 4431 void arm_correlate_fast_opt_q15(
saloutos 0:083111ae2a11 4432 q15_t * pSrcA,
saloutos 0:083111ae2a11 4433 uint32_t srcALen,
saloutos 0:083111ae2a11 4434 q15_t * pSrcB,
saloutos 0:083111ae2a11 4435 uint32_t srcBLen,
saloutos 0:083111ae2a11 4436 q15_t * pDst,
saloutos 0:083111ae2a11 4437 q15_t * pScratch);
saloutos 0:083111ae2a11 4438
saloutos 0:083111ae2a11 4439
saloutos 0:083111ae2a11 4440 /**
saloutos 0:083111ae2a11 4441 * @brief Correlation of Q31 sequences.
saloutos 0:083111ae2a11 4442 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4443 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4444 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4445 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4446 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4447 */
saloutos 0:083111ae2a11 4448 void arm_correlate_q31(
saloutos 0:083111ae2a11 4449 q31_t * pSrcA,
saloutos 0:083111ae2a11 4450 uint32_t srcALen,
saloutos 0:083111ae2a11 4451 q31_t * pSrcB,
saloutos 0:083111ae2a11 4452 uint32_t srcBLen,
saloutos 0:083111ae2a11 4453 q31_t * pDst);
saloutos 0:083111ae2a11 4454
saloutos 0:083111ae2a11 4455
saloutos 0:083111ae2a11 4456 /**
saloutos 0:083111ae2a11 4457 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
saloutos 0:083111ae2a11 4458 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4459 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4460 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4461 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4462 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4463 */
saloutos 0:083111ae2a11 4464 void arm_correlate_fast_q31(
saloutos 0:083111ae2a11 4465 q31_t * pSrcA,
saloutos 0:083111ae2a11 4466 uint32_t srcALen,
saloutos 0:083111ae2a11 4467 q31_t * pSrcB,
saloutos 0:083111ae2a11 4468 uint32_t srcBLen,
saloutos 0:083111ae2a11 4469 q31_t * pDst);
saloutos 0:083111ae2a11 4470
saloutos 0:083111ae2a11 4471
saloutos 0:083111ae2a11 4472 /**
saloutos 0:083111ae2a11 4473 * @brief Correlation of Q7 sequences.
saloutos 0:083111ae2a11 4474 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4475 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4476 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4477 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4478 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4479 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
saloutos 0:083111ae2a11 4480 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
saloutos 0:083111ae2a11 4481 */
saloutos 0:083111ae2a11 4482 void arm_correlate_opt_q7(
saloutos 0:083111ae2a11 4483 q7_t * pSrcA,
saloutos 0:083111ae2a11 4484 uint32_t srcALen,
saloutos 0:083111ae2a11 4485 q7_t * pSrcB,
saloutos 0:083111ae2a11 4486 uint32_t srcBLen,
saloutos 0:083111ae2a11 4487 q7_t * pDst,
saloutos 0:083111ae2a11 4488 q15_t * pScratch1,
saloutos 0:083111ae2a11 4489 q15_t * pScratch2);
saloutos 0:083111ae2a11 4490
saloutos 0:083111ae2a11 4491
saloutos 0:083111ae2a11 4492 /**
saloutos 0:083111ae2a11 4493 * @brief Correlation of Q7 sequences.
saloutos 0:083111ae2a11 4494 * @param[in] pSrcA points to the first input sequence.
saloutos 0:083111ae2a11 4495 * @param[in] srcALen length of the first input sequence.
saloutos 0:083111ae2a11 4496 * @param[in] pSrcB points to the second input sequence.
saloutos 0:083111ae2a11 4497 * @param[in] srcBLen length of the second input sequence.
saloutos 0:083111ae2a11 4498 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
saloutos 0:083111ae2a11 4499 */
saloutos 0:083111ae2a11 4500 void arm_correlate_q7(
saloutos 0:083111ae2a11 4501 q7_t * pSrcA,
saloutos 0:083111ae2a11 4502 uint32_t srcALen,
saloutos 0:083111ae2a11 4503 q7_t * pSrcB,
saloutos 0:083111ae2a11 4504 uint32_t srcBLen,
saloutos 0:083111ae2a11 4505 q7_t * pDst);
saloutos 0:083111ae2a11 4506
saloutos 0:083111ae2a11 4507
saloutos 0:083111ae2a11 4508 /**
saloutos 0:083111ae2a11 4509 * @brief Instance structure for the floating-point sparse FIR filter.
saloutos 0:083111ae2a11 4510 */
saloutos 0:083111ae2a11 4511 typedef struct
saloutos 0:083111ae2a11 4512 {
saloutos 0:083111ae2a11 4513 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4514 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
saloutos 0:083111ae2a11 4515 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
saloutos 0:083111ae2a11 4516 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 4517 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
saloutos 0:083111ae2a11 4518 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
saloutos 0:083111ae2a11 4519 } arm_fir_sparse_instance_f32;
saloutos 0:083111ae2a11 4520
saloutos 0:083111ae2a11 4521 /**
saloutos 0:083111ae2a11 4522 * @brief Instance structure for the Q31 sparse FIR filter.
saloutos 0:083111ae2a11 4523 */
saloutos 0:083111ae2a11 4524 typedef struct
saloutos 0:083111ae2a11 4525 {
saloutos 0:083111ae2a11 4526 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4527 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
saloutos 0:083111ae2a11 4528 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
saloutos 0:083111ae2a11 4529 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 4530 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
saloutos 0:083111ae2a11 4531 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
saloutos 0:083111ae2a11 4532 } arm_fir_sparse_instance_q31;
saloutos 0:083111ae2a11 4533
saloutos 0:083111ae2a11 4534 /**
saloutos 0:083111ae2a11 4535 * @brief Instance structure for the Q15 sparse FIR filter.
saloutos 0:083111ae2a11 4536 */
saloutos 0:083111ae2a11 4537 typedef struct
saloutos 0:083111ae2a11 4538 {
saloutos 0:083111ae2a11 4539 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4540 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
saloutos 0:083111ae2a11 4541 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
saloutos 0:083111ae2a11 4542 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 4543 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
saloutos 0:083111ae2a11 4544 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
saloutos 0:083111ae2a11 4545 } arm_fir_sparse_instance_q15;
saloutos 0:083111ae2a11 4546
saloutos 0:083111ae2a11 4547 /**
saloutos 0:083111ae2a11 4548 * @brief Instance structure for the Q7 sparse FIR filter.
saloutos 0:083111ae2a11 4549 */
saloutos 0:083111ae2a11 4550 typedef struct
saloutos 0:083111ae2a11 4551 {
saloutos 0:083111ae2a11 4552 uint16_t numTaps; /**< number of coefficients in the filter. */
saloutos 0:083111ae2a11 4553 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
saloutos 0:083111ae2a11 4554 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
saloutos 0:083111ae2a11 4555 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
saloutos 0:083111ae2a11 4556 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
saloutos 0:083111ae2a11 4557 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
saloutos 0:083111ae2a11 4558 } arm_fir_sparse_instance_q7;
saloutos 0:083111ae2a11 4559
saloutos 0:083111ae2a11 4560
saloutos 0:083111ae2a11 4561 /**
saloutos 0:083111ae2a11 4562 * @brief Processing function for the floating-point sparse FIR filter.
saloutos 0:083111ae2a11 4563 * @param[in] S points to an instance of the floating-point sparse FIR structure.
saloutos 0:083111ae2a11 4564 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4565 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 4566 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
saloutos 0:083111ae2a11 4567 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 4568 */
saloutos 0:083111ae2a11 4569 void arm_fir_sparse_f32(
saloutos 0:083111ae2a11 4570 arm_fir_sparse_instance_f32 * S,
saloutos 0:083111ae2a11 4571 float32_t * pSrc,
saloutos 0:083111ae2a11 4572 float32_t * pDst,
saloutos 0:083111ae2a11 4573 float32_t * pScratchIn,
saloutos 0:083111ae2a11 4574 uint32_t blockSize);
saloutos 0:083111ae2a11 4575
saloutos 0:083111ae2a11 4576
saloutos 0:083111ae2a11 4577 /**
saloutos 0:083111ae2a11 4578 * @brief Initialization function for the floating-point sparse FIR filter.
saloutos 0:083111ae2a11 4579 * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
saloutos 0:083111ae2a11 4580 * @param[in] numTaps number of nonzero coefficients in the filter.
saloutos 0:083111ae2a11 4581 * @param[in] pCoeffs points to the array of filter coefficients.
saloutos 0:083111ae2a11 4582 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 4583 * @param[in] pTapDelay points to the array of offset times.
saloutos 0:083111ae2a11 4584 * @param[in] maxDelay maximum offset time supported.
saloutos 0:083111ae2a11 4585 * @param[in] blockSize number of samples that will be processed per block.
saloutos 0:083111ae2a11 4586 */
saloutos 0:083111ae2a11 4587 void arm_fir_sparse_init_f32(
saloutos 0:083111ae2a11 4588 arm_fir_sparse_instance_f32 * S,
saloutos 0:083111ae2a11 4589 uint16_t numTaps,
saloutos 0:083111ae2a11 4590 float32_t * pCoeffs,
saloutos 0:083111ae2a11 4591 float32_t * pState,
saloutos 0:083111ae2a11 4592 int32_t * pTapDelay,
saloutos 0:083111ae2a11 4593 uint16_t maxDelay,
saloutos 0:083111ae2a11 4594 uint32_t blockSize);
saloutos 0:083111ae2a11 4595
saloutos 0:083111ae2a11 4596
saloutos 0:083111ae2a11 4597 /**
saloutos 0:083111ae2a11 4598 * @brief Processing function for the Q31 sparse FIR filter.
saloutos 0:083111ae2a11 4599 * @param[in] S points to an instance of the Q31 sparse FIR structure.
saloutos 0:083111ae2a11 4600 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4601 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 4602 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
saloutos 0:083111ae2a11 4603 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 4604 */
saloutos 0:083111ae2a11 4605 void arm_fir_sparse_q31(
saloutos 0:083111ae2a11 4606 arm_fir_sparse_instance_q31 * S,
saloutos 0:083111ae2a11 4607 q31_t * pSrc,
saloutos 0:083111ae2a11 4608 q31_t * pDst,
saloutos 0:083111ae2a11 4609 q31_t * pScratchIn,
saloutos 0:083111ae2a11 4610 uint32_t blockSize);
saloutos 0:083111ae2a11 4611
saloutos 0:083111ae2a11 4612
saloutos 0:083111ae2a11 4613 /**
saloutos 0:083111ae2a11 4614 * @brief Initialization function for the Q31 sparse FIR filter.
saloutos 0:083111ae2a11 4615 * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
saloutos 0:083111ae2a11 4616 * @param[in] numTaps number of nonzero coefficients in the filter.
saloutos 0:083111ae2a11 4617 * @param[in] pCoeffs points to the array of filter coefficients.
saloutos 0:083111ae2a11 4618 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 4619 * @param[in] pTapDelay points to the array of offset times.
saloutos 0:083111ae2a11 4620 * @param[in] maxDelay maximum offset time supported.
saloutos 0:083111ae2a11 4621 * @param[in] blockSize number of samples that will be processed per block.
saloutos 0:083111ae2a11 4622 */
saloutos 0:083111ae2a11 4623 void arm_fir_sparse_init_q31(
saloutos 0:083111ae2a11 4624 arm_fir_sparse_instance_q31 * S,
saloutos 0:083111ae2a11 4625 uint16_t numTaps,
saloutos 0:083111ae2a11 4626 q31_t * pCoeffs,
saloutos 0:083111ae2a11 4627 q31_t * pState,
saloutos 0:083111ae2a11 4628 int32_t * pTapDelay,
saloutos 0:083111ae2a11 4629 uint16_t maxDelay,
saloutos 0:083111ae2a11 4630 uint32_t blockSize);
saloutos 0:083111ae2a11 4631
saloutos 0:083111ae2a11 4632
saloutos 0:083111ae2a11 4633 /**
saloutos 0:083111ae2a11 4634 * @brief Processing function for the Q15 sparse FIR filter.
saloutos 0:083111ae2a11 4635 * @param[in] S points to an instance of the Q15 sparse FIR structure.
saloutos 0:083111ae2a11 4636 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4637 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 4638 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
saloutos 0:083111ae2a11 4639 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
saloutos 0:083111ae2a11 4640 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 4641 */
saloutos 0:083111ae2a11 4642 void arm_fir_sparse_q15(
saloutos 0:083111ae2a11 4643 arm_fir_sparse_instance_q15 * S,
saloutos 0:083111ae2a11 4644 q15_t * pSrc,
saloutos 0:083111ae2a11 4645 q15_t * pDst,
saloutos 0:083111ae2a11 4646 q15_t * pScratchIn,
saloutos 0:083111ae2a11 4647 q31_t * pScratchOut,
saloutos 0:083111ae2a11 4648 uint32_t blockSize);
saloutos 0:083111ae2a11 4649
saloutos 0:083111ae2a11 4650
saloutos 0:083111ae2a11 4651 /**
saloutos 0:083111ae2a11 4652 * @brief Initialization function for the Q15 sparse FIR filter.
saloutos 0:083111ae2a11 4653 * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
saloutos 0:083111ae2a11 4654 * @param[in] numTaps number of nonzero coefficients in the filter.
saloutos 0:083111ae2a11 4655 * @param[in] pCoeffs points to the array of filter coefficients.
saloutos 0:083111ae2a11 4656 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 4657 * @param[in] pTapDelay points to the array of offset times.
saloutos 0:083111ae2a11 4658 * @param[in] maxDelay maximum offset time supported.
saloutos 0:083111ae2a11 4659 * @param[in] blockSize number of samples that will be processed per block.
saloutos 0:083111ae2a11 4660 */
saloutos 0:083111ae2a11 4661 void arm_fir_sparse_init_q15(
saloutos 0:083111ae2a11 4662 arm_fir_sparse_instance_q15 * S,
saloutos 0:083111ae2a11 4663 uint16_t numTaps,
saloutos 0:083111ae2a11 4664 q15_t * pCoeffs,
saloutos 0:083111ae2a11 4665 q15_t * pState,
saloutos 0:083111ae2a11 4666 int32_t * pTapDelay,
saloutos 0:083111ae2a11 4667 uint16_t maxDelay,
saloutos 0:083111ae2a11 4668 uint32_t blockSize);
saloutos 0:083111ae2a11 4669
saloutos 0:083111ae2a11 4670
saloutos 0:083111ae2a11 4671 /**
saloutos 0:083111ae2a11 4672 * @brief Processing function for the Q7 sparse FIR filter.
saloutos 0:083111ae2a11 4673 * @param[in] S points to an instance of the Q7 sparse FIR structure.
saloutos 0:083111ae2a11 4674 * @param[in] pSrc points to the block of input data.
saloutos 0:083111ae2a11 4675 * @param[out] pDst points to the block of output data
saloutos 0:083111ae2a11 4676 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
saloutos 0:083111ae2a11 4677 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
saloutos 0:083111ae2a11 4678 * @param[in] blockSize number of input samples to process per call.
saloutos 0:083111ae2a11 4679 */
saloutos 0:083111ae2a11 4680 void arm_fir_sparse_q7(
saloutos 0:083111ae2a11 4681 arm_fir_sparse_instance_q7 * S,
saloutos 0:083111ae2a11 4682 q7_t * pSrc,
saloutos 0:083111ae2a11 4683 q7_t * pDst,
saloutos 0:083111ae2a11 4684 q7_t * pScratchIn,
saloutos 0:083111ae2a11 4685 q31_t * pScratchOut,
saloutos 0:083111ae2a11 4686 uint32_t blockSize);
saloutos 0:083111ae2a11 4687
saloutos 0:083111ae2a11 4688
saloutos 0:083111ae2a11 4689 /**
saloutos 0:083111ae2a11 4690 * @brief Initialization function for the Q7 sparse FIR filter.
saloutos 0:083111ae2a11 4691 * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
saloutos 0:083111ae2a11 4692 * @param[in] numTaps number of nonzero coefficients in the filter.
saloutos 0:083111ae2a11 4693 * @param[in] pCoeffs points to the array of filter coefficients.
saloutos 0:083111ae2a11 4694 * @param[in] pState points to the state buffer.
saloutos 0:083111ae2a11 4695 * @param[in] pTapDelay points to the array of offset times.
saloutos 0:083111ae2a11 4696 * @param[in] maxDelay maximum offset time supported.
saloutos 0:083111ae2a11 4697 * @param[in] blockSize number of samples that will be processed per block.
saloutos 0:083111ae2a11 4698 */
saloutos 0:083111ae2a11 4699 void arm_fir_sparse_init_q7(
saloutos 0:083111ae2a11 4700 arm_fir_sparse_instance_q7 * S,
saloutos 0:083111ae2a11 4701 uint16_t numTaps,
saloutos 0:083111ae2a11 4702 q7_t * pCoeffs,
saloutos 0:083111ae2a11 4703 q7_t * pState,
saloutos 0:083111ae2a11 4704 int32_t * pTapDelay,
saloutos 0:083111ae2a11 4705 uint16_t maxDelay,
saloutos 0:083111ae2a11 4706 uint32_t blockSize);
saloutos 0:083111ae2a11 4707
saloutos 0:083111ae2a11 4708
saloutos 0:083111ae2a11 4709 /**
saloutos 0:083111ae2a11 4710 * @brief Floating-point sin_cos function.
saloutos 0:083111ae2a11 4711 * @param[in] theta input value in degrees
saloutos 0:083111ae2a11 4712 * @param[out] pSinVal points to the processed sine output.
saloutos 0:083111ae2a11 4713 * @param[out] pCosVal points to the processed cos output.
saloutos 0:083111ae2a11 4714 */
saloutos 0:083111ae2a11 4715 void arm_sin_cos_f32(
saloutos 0:083111ae2a11 4716 float32_t theta,
saloutos 0:083111ae2a11 4717 float32_t * pSinVal,
saloutos 0:083111ae2a11 4718 float32_t * pCosVal);
saloutos 0:083111ae2a11 4719
saloutos 0:083111ae2a11 4720
saloutos 0:083111ae2a11 4721 /**
saloutos 0:083111ae2a11 4722 * @brief Q31 sin_cos function.
saloutos 0:083111ae2a11 4723 * @param[in] theta scaled input value in degrees
saloutos 0:083111ae2a11 4724 * @param[out] pSinVal points to the processed sine output.
saloutos 0:083111ae2a11 4725 * @param[out] pCosVal points to the processed cosine output.
saloutos 0:083111ae2a11 4726 */
saloutos 0:083111ae2a11 4727 void arm_sin_cos_q31(
saloutos 0:083111ae2a11 4728 q31_t theta,
saloutos 0:083111ae2a11 4729 q31_t * pSinVal,
saloutos 0:083111ae2a11 4730 q31_t * pCosVal);
saloutos 0:083111ae2a11 4731
saloutos 0:083111ae2a11 4732
saloutos 0:083111ae2a11 4733 /**
saloutos 0:083111ae2a11 4734 * @brief Floating-point complex conjugate.
saloutos 0:083111ae2a11 4735 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 4736 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 4737 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 4738 */
saloutos 0:083111ae2a11 4739 void arm_cmplx_conj_f32(
saloutos 0:083111ae2a11 4740 float32_t * pSrc,
saloutos 0:083111ae2a11 4741 float32_t * pDst,
saloutos 0:083111ae2a11 4742 uint32_t numSamples);
saloutos 0:083111ae2a11 4743
saloutos 0:083111ae2a11 4744 /**
saloutos 0:083111ae2a11 4745 * @brief Q31 complex conjugate.
saloutos 0:083111ae2a11 4746 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 4747 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 4748 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 4749 */
saloutos 0:083111ae2a11 4750 void arm_cmplx_conj_q31(
saloutos 0:083111ae2a11 4751 q31_t * pSrc,
saloutos 0:083111ae2a11 4752 q31_t * pDst,
saloutos 0:083111ae2a11 4753 uint32_t numSamples);
saloutos 0:083111ae2a11 4754
saloutos 0:083111ae2a11 4755
saloutos 0:083111ae2a11 4756 /**
saloutos 0:083111ae2a11 4757 * @brief Q15 complex conjugate.
saloutos 0:083111ae2a11 4758 * @param[in] pSrc points to the input vector
saloutos 0:083111ae2a11 4759 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 4760 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 4761 */
saloutos 0:083111ae2a11 4762 void arm_cmplx_conj_q15(
saloutos 0:083111ae2a11 4763 q15_t * pSrc,
saloutos 0:083111ae2a11 4764 q15_t * pDst,
saloutos 0:083111ae2a11 4765 uint32_t numSamples);
saloutos 0:083111ae2a11 4766
saloutos 0:083111ae2a11 4767
saloutos 0:083111ae2a11 4768 /**
saloutos 0:083111ae2a11 4769 * @brief Floating-point complex magnitude squared
saloutos 0:083111ae2a11 4770 * @param[in] pSrc points to the complex input vector
saloutos 0:083111ae2a11 4771 * @param[out] pDst points to the real output vector
saloutos 0:083111ae2a11 4772 * @param[in] numSamples number of complex samples in the input vector
saloutos 0:083111ae2a11 4773 */
saloutos 0:083111ae2a11 4774 void arm_cmplx_mag_squared_f32(
saloutos 0:083111ae2a11 4775 float32_t * pSrc,
saloutos 0:083111ae2a11 4776 float32_t * pDst,
saloutos 0:083111ae2a11 4777 uint32_t numSamples);
saloutos 0:083111ae2a11 4778
saloutos 0:083111ae2a11 4779
saloutos 0:083111ae2a11 4780 /**
saloutos 0:083111ae2a11 4781 * @brief Q31 complex magnitude squared
saloutos 0:083111ae2a11 4782 * @param[in] pSrc points to the complex input vector
saloutos 0:083111ae2a11 4783 * @param[out] pDst points to the real output vector
saloutos 0:083111ae2a11 4784 * @param[in] numSamples number of complex samples in the input vector
saloutos 0:083111ae2a11 4785 */
saloutos 0:083111ae2a11 4786 void arm_cmplx_mag_squared_q31(
saloutos 0:083111ae2a11 4787 q31_t * pSrc,
saloutos 0:083111ae2a11 4788 q31_t * pDst,
saloutos 0:083111ae2a11 4789 uint32_t numSamples);
saloutos 0:083111ae2a11 4790
saloutos 0:083111ae2a11 4791
saloutos 0:083111ae2a11 4792 /**
saloutos 0:083111ae2a11 4793 * @brief Q15 complex magnitude squared
saloutos 0:083111ae2a11 4794 * @param[in] pSrc points to the complex input vector
saloutos 0:083111ae2a11 4795 * @param[out] pDst points to the real output vector
saloutos 0:083111ae2a11 4796 * @param[in] numSamples number of complex samples in the input vector
saloutos 0:083111ae2a11 4797 */
saloutos 0:083111ae2a11 4798 void arm_cmplx_mag_squared_q15(
saloutos 0:083111ae2a11 4799 q15_t * pSrc,
saloutos 0:083111ae2a11 4800 q15_t * pDst,
saloutos 0:083111ae2a11 4801 uint32_t numSamples);
saloutos 0:083111ae2a11 4802
saloutos 0:083111ae2a11 4803
saloutos 0:083111ae2a11 4804 /**
saloutos 0:083111ae2a11 4805 * @ingroup groupController
saloutos 0:083111ae2a11 4806 */
saloutos 0:083111ae2a11 4807
saloutos 0:083111ae2a11 4808 /**
saloutos 0:083111ae2a11 4809 * @defgroup PID PID Motor Control
saloutos 0:083111ae2a11 4810 *
saloutos 0:083111ae2a11 4811 * A Proportional Integral Derivative (PID) controller is a generic feedback control
saloutos 0:083111ae2a11 4812 * loop mechanism widely used in industrial control systems.
saloutos 0:083111ae2a11 4813 * A PID controller is the most commonly used type of feedback controller.
saloutos 0:083111ae2a11 4814 *
saloutos 0:083111ae2a11 4815 * This set of functions implements (PID) controllers
saloutos 0:083111ae2a11 4816 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
saloutos 0:083111ae2a11 4817 * of data and each call to the function returns a single processed value.
saloutos 0:083111ae2a11 4818 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
saloutos 0:083111ae2a11 4819 * is the input sample value. The functions return the output value.
saloutos 0:083111ae2a11 4820 *
saloutos 0:083111ae2a11 4821 * \par Algorithm:
saloutos 0:083111ae2a11 4822 * <pre>
saloutos 0:083111ae2a11 4823 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
saloutos 0:083111ae2a11 4824 * A0 = Kp + Ki + Kd
saloutos 0:083111ae2a11 4825 * A1 = (-Kp ) - (2 * Kd )
saloutos 0:083111ae2a11 4826 * A2 = Kd </pre>
saloutos 0:083111ae2a11 4827 *
saloutos 0:083111ae2a11 4828 * \par
saloutos 0:083111ae2a11 4829 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
saloutos 0:083111ae2a11 4830 *
saloutos 0:083111ae2a11 4831 * \par
saloutos 0:083111ae2a11 4832 * \image html PID.gif "Proportional Integral Derivative Controller"
saloutos 0:083111ae2a11 4833 *
saloutos 0:083111ae2a11 4834 * \par
saloutos 0:083111ae2a11 4835 * The PID controller calculates an "error" value as the difference between
saloutos 0:083111ae2a11 4836 * the measured output and the reference input.
saloutos 0:083111ae2a11 4837 * The controller attempts to minimize the error by adjusting the process control inputs.
saloutos 0:083111ae2a11 4838 * The proportional value determines the reaction to the current error,
saloutos 0:083111ae2a11 4839 * the integral value determines the reaction based on the sum of recent errors,
saloutos 0:083111ae2a11 4840 * and the derivative value determines the reaction based on the rate at which the error has been changing.
saloutos 0:083111ae2a11 4841 *
saloutos 0:083111ae2a11 4842 * \par Instance Structure
saloutos 0:083111ae2a11 4843 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
saloutos 0:083111ae2a11 4844 * A separate instance structure must be defined for each PID Controller.
saloutos 0:083111ae2a11 4845 * There are separate instance structure declarations for each of the 3 supported data types.
saloutos 0:083111ae2a11 4846 *
saloutos 0:083111ae2a11 4847 * \par Reset Functions
saloutos 0:083111ae2a11 4848 * There is also an associated reset function for each data type which clears the state array.
saloutos 0:083111ae2a11 4849 *
saloutos 0:083111ae2a11 4850 * \par Initialization Functions
saloutos 0:083111ae2a11 4851 * There is also an associated initialization function for each data type.
saloutos 0:083111ae2a11 4852 * The initialization function performs the following operations:
saloutos 0:083111ae2a11 4853 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
saloutos 0:083111ae2a11 4854 * - Zeros out the values in the state buffer.
saloutos 0:083111ae2a11 4855 *
saloutos 0:083111ae2a11 4856 * \par
saloutos 0:083111ae2a11 4857 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
saloutos 0:083111ae2a11 4858 *
saloutos 0:083111ae2a11 4859 * \par Fixed-Point Behavior
saloutos 0:083111ae2a11 4860 * Care must be taken when using the fixed-point versions of the PID Controller functions.
saloutos 0:083111ae2a11 4861 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
saloutos 0:083111ae2a11 4862 * Refer to the function specific documentation below for usage guidelines.
saloutos 0:083111ae2a11 4863 */
saloutos 0:083111ae2a11 4864
saloutos 0:083111ae2a11 4865 /**
saloutos 0:083111ae2a11 4866 * @addtogroup PID
saloutos 0:083111ae2a11 4867 * @{
saloutos 0:083111ae2a11 4868 */
saloutos 0:083111ae2a11 4869
saloutos 0:083111ae2a11 4870 /**
saloutos 0:083111ae2a11 4871 * @brief Process function for the floating-point PID Control.
saloutos 0:083111ae2a11 4872 * @param[in,out] S is an instance of the floating-point PID Control structure
saloutos 0:083111ae2a11 4873 * @param[in] in input sample to process
saloutos 0:083111ae2a11 4874 * @return out processed output sample.
saloutos 0:083111ae2a11 4875 */
saloutos 0:083111ae2a11 4876 CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32(
saloutos 0:083111ae2a11 4877 arm_pid_instance_f32 * S,
saloutos 0:083111ae2a11 4878 float32_t in)
saloutos 0:083111ae2a11 4879 {
saloutos 0:083111ae2a11 4880 float32_t out;
saloutos 0:083111ae2a11 4881
saloutos 0:083111ae2a11 4882 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
saloutos 0:083111ae2a11 4883 out = (S->A0 * in) +
saloutos 0:083111ae2a11 4884 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
saloutos 0:083111ae2a11 4885
saloutos 0:083111ae2a11 4886 /* Update state */
saloutos 0:083111ae2a11 4887 S->state[1] = S->state[0];
saloutos 0:083111ae2a11 4888 S->state[0] = in;
saloutos 0:083111ae2a11 4889 S->state[2] = out;
saloutos 0:083111ae2a11 4890
saloutos 0:083111ae2a11 4891 /* return to application */
saloutos 0:083111ae2a11 4892 return (out);
saloutos 0:083111ae2a11 4893
saloutos 0:083111ae2a11 4894 }
saloutos 0:083111ae2a11 4895
saloutos 0:083111ae2a11 4896 /**
saloutos 0:083111ae2a11 4897 * @brief Process function for the Q31 PID Control.
saloutos 0:083111ae2a11 4898 * @param[in,out] S points to an instance of the Q31 PID Control structure
saloutos 0:083111ae2a11 4899 * @param[in] in input sample to process
saloutos 0:083111ae2a11 4900 * @return out processed output sample.
saloutos 0:083111ae2a11 4901 *
saloutos 0:083111ae2a11 4902 * <b>Scaling and Overflow Behavior:</b>
saloutos 0:083111ae2a11 4903 * \par
saloutos 0:083111ae2a11 4904 * The function is implemented using an internal 64-bit accumulator.
saloutos 0:083111ae2a11 4905 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
saloutos 0:083111ae2a11 4906 * Thus, if the accumulator result overflows it wraps around rather than clip.
saloutos 0:083111ae2a11 4907 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
saloutos 0:083111ae2a11 4908 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
saloutos 0:083111ae2a11 4909 */
saloutos 0:083111ae2a11 4910 CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31(
saloutos 0:083111ae2a11 4911 arm_pid_instance_q31 * S,
saloutos 0:083111ae2a11 4912 q31_t in)
saloutos 0:083111ae2a11 4913 {
saloutos 0:083111ae2a11 4914 q63_t acc;
saloutos 0:083111ae2a11 4915 q31_t out;
saloutos 0:083111ae2a11 4916
saloutos 0:083111ae2a11 4917 /* acc = A0 * x[n] */
saloutos 0:083111ae2a11 4918 acc = (q63_t) S->A0 * in;
saloutos 0:083111ae2a11 4919
saloutos 0:083111ae2a11 4920 /* acc += A1 * x[n-1] */
saloutos 0:083111ae2a11 4921 acc += (q63_t) S->A1 * S->state[0];
saloutos 0:083111ae2a11 4922
saloutos 0:083111ae2a11 4923 /* acc += A2 * x[n-2] */
saloutos 0:083111ae2a11 4924 acc += (q63_t) S->A2 * S->state[1];
saloutos 0:083111ae2a11 4925
saloutos 0:083111ae2a11 4926 /* convert output to 1.31 format to add y[n-1] */
saloutos 0:083111ae2a11 4927 out = (q31_t) (acc >> 31u);
saloutos 0:083111ae2a11 4928
saloutos 0:083111ae2a11 4929 /* out += y[n-1] */
saloutos 0:083111ae2a11 4930 out += S->state[2];
saloutos 0:083111ae2a11 4931
saloutos 0:083111ae2a11 4932 /* Update state */
saloutos 0:083111ae2a11 4933 S->state[1] = S->state[0];
saloutos 0:083111ae2a11 4934 S->state[0] = in;
saloutos 0:083111ae2a11 4935 S->state[2] = out;
saloutos 0:083111ae2a11 4936
saloutos 0:083111ae2a11 4937 /* return to application */
saloutos 0:083111ae2a11 4938 return (out);
saloutos 0:083111ae2a11 4939 }
saloutos 0:083111ae2a11 4940
saloutos 0:083111ae2a11 4941
saloutos 0:083111ae2a11 4942 /**
saloutos 0:083111ae2a11 4943 * @brief Process function for the Q15 PID Control.
saloutos 0:083111ae2a11 4944 * @param[in,out] S points to an instance of the Q15 PID Control structure
saloutos 0:083111ae2a11 4945 * @param[in] in input sample to process
saloutos 0:083111ae2a11 4946 * @return out processed output sample.
saloutos 0:083111ae2a11 4947 *
saloutos 0:083111ae2a11 4948 * <b>Scaling and Overflow Behavior:</b>
saloutos 0:083111ae2a11 4949 * \par
saloutos 0:083111ae2a11 4950 * The function is implemented using a 64-bit internal accumulator.
saloutos 0:083111ae2a11 4951 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
saloutos 0:083111ae2a11 4952 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
saloutos 0:083111ae2a11 4953 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
saloutos 0:083111ae2a11 4954 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
saloutos 0:083111ae2a11 4955 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
saloutos 0:083111ae2a11 4956 */
saloutos 0:083111ae2a11 4957 CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15(
saloutos 0:083111ae2a11 4958 arm_pid_instance_q15 * S,
saloutos 0:083111ae2a11 4959 q15_t in)
saloutos 0:083111ae2a11 4960 {
saloutos 0:083111ae2a11 4961 q63_t acc;
saloutos 0:083111ae2a11 4962 q15_t out;
saloutos 0:083111ae2a11 4963
saloutos 0:083111ae2a11 4964 #if defined (ARM_MATH_DSP)
saloutos 0:083111ae2a11 4965 __SIMD32_TYPE *vstate;
saloutos 0:083111ae2a11 4966
saloutos 0:083111ae2a11 4967 /* Implementation of PID controller */
saloutos 0:083111ae2a11 4968
saloutos 0:083111ae2a11 4969 /* acc = A0 * x[n] */
saloutos 0:083111ae2a11 4970 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
saloutos 0:083111ae2a11 4971
saloutos 0:083111ae2a11 4972 /* acc += A1 * x[n-1] + A2 * x[n-2] */
saloutos 0:083111ae2a11 4973 vstate = __SIMD32_CONST(S->state);
saloutos 0:083111ae2a11 4974 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
saloutos 0:083111ae2a11 4975 #else
saloutos 0:083111ae2a11 4976 /* acc = A0 * x[n] */
saloutos 0:083111ae2a11 4977 acc = ((q31_t) S->A0) * in;
saloutos 0:083111ae2a11 4978
saloutos 0:083111ae2a11 4979 /* acc += A1 * x[n-1] + A2 * x[n-2] */
saloutos 0:083111ae2a11 4980 acc += (q31_t) S->A1 * S->state[0];
saloutos 0:083111ae2a11 4981 acc += (q31_t) S->A2 * S->state[1];
saloutos 0:083111ae2a11 4982 #endif
saloutos 0:083111ae2a11 4983
saloutos 0:083111ae2a11 4984 /* acc += y[n-1] */
saloutos 0:083111ae2a11 4985 acc += (q31_t) S->state[2] << 15;
saloutos 0:083111ae2a11 4986
saloutos 0:083111ae2a11 4987 /* saturate the output */
saloutos 0:083111ae2a11 4988 out = (q15_t) (__SSAT((acc >> 15), 16));
saloutos 0:083111ae2a11 4989
saloutos 0:083111ae2a11 4990 /* Update state */
saloutos 0:083111ae2a11 4991 S->state[1] = S->state[0];
saloutos 0:083111ae2a11 4992 S->state[0] = in;
saloutos 0:083111ae2a11 4993 S->state[2] = out;
saloutos 0:083111ae2a11 4994
saloutos 0:083111ae2a11 4995 /* return to application */
saloutos 0:083111ae2a11 4996 return (out);
saloutos 0:083111ae2a11 4997 }
saloutos 0:083111ae2a11 4998
saloutos 0:083111ae2a11 4999 /**
saloutos 0:083111ae2a11 5000 * @} end of PID group
saloutos 0:083111ae2a11 5001 */
saloutos 0:083111ae2a11 5002
saloutos 0:083111ae2a11 5003
saloutos 0:083111ae2a11 5004 /**
saloutos 0:083111ae2a11 5005 * @brief Floating-point matrix inverse.
saloutos 0:083111ae2a11 5006 * @param[in] src points to the instance of the input floating-point matrix structure.
saloutos 0:083111ae2a11 5007 * @param[out] dst points to the instance of the output floating-point matrix structure.
saloutos 0:083111ae2a11 5008 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
saloutos 0:083111ae2a11 5009 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
saloutos 0:083111ae2a11 5010 */
saloutos 0:083111ae2a11 5011 arm_status arm_mat_inverse_f32(
saloutos 0:083111ae2a11 5012 const arm_matrix_instance_f32 * src,
saloutos 0:083111ae2a11 5013 arm_matrix_instance_f32 * dst);
saloutos 0:083111ae2a11 5014
saloutos 0:083111ae2a11 5015
saloutos 0:083111ae2a11 5016 /**
saloutos 0:083111ae2a11 5017 * @brief Floating-point matrix inverse.
saloutos 0:083111ae2a11 5018 * @param[in] src points to the instance of the input floating-point matrix structure.
saloutos 0:083111ae2a11 5019 * @param[out] dst points to the instance of the output floating-point matrix structure.
saloutos 0:083111ae2a11 5020 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
saloutos 0:083111ae2a11 5021 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
saloutos 0:083111ae2a11 5022 */
saloutos 0:083111ae2a11 5023 arm_status arm_mat_inverse_f64(
saloutos 0:083111ae2a11 5024 const arm_matrix_instance_f64 * src,
saloutos 0:083111ae2a11 5025 arm_matrix_instance_f64 * dst);
saloutos 0:083111ae2a11 5026
saloutos 0:083111ae2a11 5027
saloutos 0:083111ae2a11 5028
saloutos 0:083111ae2a11 5029 /**
saloutos 0:083111ae2a11 5030 * @ingroup groupController
saloutos 0:083111ae2a11 5031 */
saloutos 0:083111ae2a11 5032
saloutos 0:083111ae2a11 5033 /**
saloutos 0:083111ae2a11 5034 * @defgroup clarke Vector Clarke Transform
saloutos 0:083111ae2a11 5035 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
saloutos 0:083111ae2a11 5036 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
saloutos 0:083111ae2a11 5037 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
saloutos 0:083111ae2a11 5038 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
saloutos 0:083111ae2a11 5039 * \image html clarke.gif Stator current space vector and its components in (a,b).
saloutos 0:083111ae2a11 5040 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
saloutos 0:083111ae2a11 5041 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
saloutos 0:083111ae2a11 5042 *
saloutos 0:083111ae2a11 5043 * The function operates on a single sample of data and each call to the function returns the processed output.
saloutos 0:083111ae2a11 5044 * The library provides separate functions for Q31 and floating-point data types.
saloutos 0:083111ae2a11 5045 * \par Algorithm
saloutos 0:083111ae2a11 5046 * \image html clarkeFormula.gif
saloutos 0:083111ae2a11 5047 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
saloutos 0:083111ae2a11 5048 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
saloutos 0:083111ae2a11 5049 * \par Fixed-Point Behavior
saloutos 0:083111ae2a11 5050 * Care must be taken when using the Q31 version of the Clarke transform.
saloutos 0:083111ae2a11 5051 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
saloutos 0:083111ae2a11 5052 * Refer to the function specific documentation below for usage guidelines.
saloutos 0:083111ae2a11 5053 */
saloutos 0:083111ae2a11 5054
saloutos 0:083111ae2a11 5055 /**
saloutos 0:083111ae2a11 5056 * @addtogroup clarke
saloutos 0:083111ae2a11 5057 * @{
saloutos 0:083111ae2a11 5058 */
saloutos 0:083111ae2a11 5059
saloutos 0:083111ae2a11 5060 /**
saloutos 0:083111ae2a11 5061 *
saloutos 0:083111ae2a11 5062 * @brief Floating-point Clarke transform
saloutos 0:083111ae2a11 5063 * @param[in] Ia input three-phase coordinate <code>a</code>
saloutos 0:083111ae2a11 5064 * @param[in] Ib input three-phase coordinate <code>b</code>
saloutos 0:083111ae2a11 5065 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
saloutos 0:083111ae2a11 5066 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
saloutos 0:083111ae2a11 5067 */
saloutos 0:083111ae2a11 5068 CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32(
saloutos 0:083111ae2a11 5069 float32_t Ia,
saloutos 0:083111ae2a11 5070 float32_t Ib,
saloutos 0:083111ae2a11 5071 float32_t * pIalpha,
saloutos 0:083111ae2a11 5072 float32_t * pIbeta)
saloutos 0:083111ae2a11 5073 {
saloutos 0:083111ae2a11 5074 /* Calculate pIalpha using the equation, pIalpha = Ia */
saloutos 0:083111ae2a11 5075 *pIalpha = Ia;
saloutos 0:083111ae2a11 5076
saloutos 0:083111ae2a11 5077 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
saloutos 0:083111ae2a11 5078 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
saloutos 0:083111ae2a11 5079 }
saloutos 0:083111ae2a11 5080
saloutos 0:083111ae2a11 5081
saloutos 0:083111ae2a11 5082 /**
saloutos 0:083111ae2a11 5083 * @brief Clarke transform for Q31 version
saloutos 0:083111ae2a11 5084 * @param[in] Ia input three-phase coordinate <code>a</code>
saloutos 0:083111ae2a11 5085 * @param[in] Ib input three-phase coordinate <code>b</code>
saloutos 0:083111ae2a11 5086 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
saloutos 0:083111ae2a11 5087 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
saloutos 0:083111ae2a11 5088 *
saloutos 0:083111ae2a11 5089 * <b>Scaling and Overflow Behavior:</b>
saloutos 0:083111ae2a11 5090 * \par
saloutos 0:083111ae2a11 5091 * The function is implemented using an internal 32-bit accumulator.
saloutos 0:083111ae2a11 5092 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
saloutos 0:083111ae2a11 5093 * There is saturation on the addition, hence there is no risk of overflow.
saloutos 0:083111ae2a11 5094 */
saloutos 0:083111ae2a11 5095 CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31(
saloutos 0:083111ae2a11 5096 q31_t Ia,
saloutos 0:083111ae2a11 5097 q31_t Ib,
saloutos 0:083111ae2a11 5098 q31_t * pIalpha,
saloutos 0:083111ae2a11 5099 q31_t * pIbeta)
saloutos 0:083111ae2a11 5100 {
saloutos 0:083111ae2a11 5101 q31_t product1, product2; /* Temporary variables used to store intermediate results */
saloutos 0:083111ae2a11 5102
saloutos 0:083111ae2a11 5103 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
saloutos 0:083111ae2a11 5104 *pIalpha = Ia;
saloutos 0:083111ae2a11 5105
saloutos 0:083111ae2a11 5106 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
saloutos 0:083111ae2a11 5107 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
saloutos 0:083111ae2a11 5108
saloutos 0:083111ae2a11 5109 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
saloutos 0:083111ae2a11 5110 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
saloutos 0:083111ae2a11 5111
saloutos 0:083111ae2a11 5112 /* pIbeta is calculated by adding the intermediate products */
saloutos 0:083111ae2a11 5113 *pIbeta = __QADD(product1, product2);
saloutos 0:083111ae2a11 5114 }
saloutos 0:083111ae2a11 5115
saloutos 0:083111ae2a11 5116 /**
saloutos 0:083111ae2a11 5117 * @} end of clarke group
saloutos 0:083111ae2a11 5118 */
saloutos 0:083111ae2a11 5119
saloutos 0:083111ae2a11 5120 /**
saloutos 0:083111ae2a11 5121 * @brief Converts the elements of the Q7 vector to Q31 vector.
saloutos 0:083111ae2a11 5122 * @param[in] pSrc input pointer
saloutos 0:083111ae2a11 5123 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 5124 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 5125 */
saloutos 0:083111ae2a11 5126 void arm_q7_to_q31(
saloutos 0:083111ae2a11 5127 q7_t * pSrc,
saloutos 0:083111ae2a11 5128 q31_t * pDst,
saloutos 0:083111ae2a11 5129 uint32_t blockSize);
saloutos 0:083111ae2a11 5130
saloutos 0:083111ae2a11 5131
saloutos 0:083111ae2a11 5132
saloutos 0:083111ae2a11 5133 /**
saloutos 0:083111ae2a11 5134 * @ingroup groupController
saloutos 0:083111ae2a11 5135 */
saloutos 0:083111ae2a11 5136
saloutos 0:083111ae2a11 5137 /**
saloutos 0:083111ae2a11 5138 * @defgroup inv_clarke Vector Inverse Clarke Transform
saloutos 0:083111ae2a11 5139 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
saloutos 0:083111ae2a11 5140 *
saloutos 0:083111ae2a11 5141 * The function operates on a single sample of data and each call to the function returns the processed output.
saloutos 0:083111ae2a11 5142 * The library provides separate functions for Q31 and floating-point data types.
saloutos 0:083111ae2a11 5143 * \par Algorithm
saloutos 0:083111ae2a11 5144 * \image html clarkeInvFormula.gif
saloutos 0:083111ae2a11 5145 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
saloutos 0:083111ae2a11 5146 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
saloutos 0:083111ae2a11 5147 * \par Fixed-Point Behavior
saloutos 0:083111ae2a11 5148 * Care must be taken when using the Q31 version of the Clarke transform.
saloutos 0:083111ae2a11 5149 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
saloutos 0:083111ae2a11 5150 * Refer to the function specific documentation below for usage guidelines.
saloutos 0:083111ae2a11 5151 */
saloutos 0:083111ae2a11 5152
saloutos 0:083111ae2a11 5153 /**
saloutos 0:083111ae2a11 5154 * @addtogroup inv_clarke
saloutos 0:083111ae2a11 5155 * @{
saloutos 0:083111ae2a11 5156 */
saloutos 0:083111ae2a11 5157
saloutos 0:083111ae2a11 5158 /**
saloutos 0:083111ae2a11 5159 * @brief Floating-point Inverse Clarke transform
saloutos 0:083111ae2a11 5160 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
saloutos 0:083111ae2a11 5161 * @param[in] Ibeta input two-phase orthogonal vector axis beta
saloutos 0:083111ae2a11 5162 * @param[out] pIa points to output three-phase coordinate <code>a</code>
saloutos 0:083111ae2a11 5163 * @param[out] pIb points to output three-phase coordinate <code>b</code>
saloutos 0:083111ae2a11 5164 */
saloutos 0:083111ae2a11 5165 CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32(
saloutos 0:083111ae2a11 5166 float32_t Ialpha,
saloutos 0:083111ae2a11 5167 float32_t Ibeta,
saloutos 0:083111ae2a11 5168 float32_t * pIa,
saloutos 0:083111ae2a11 5169 float32_t * pIb)
saloutos 0:083111ae2a11 5170 {
saloutos 0:083111ae2a11 5171 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
saloutos 0:083111ae2a11 5172 *pIa = Ialpha;
saloutos 0:083111ae2a11 5173
saloutos 0:083111ae2a11 5174 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
saloutos 0:083111ae2a11 5175 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
saloutos 0:083111ae2a11 5176 }
saloutos 0:083111ae2a11 5177
saloutos 0:083111ae2a11 5178
saloutos 0:083111ae2a11 5179 /**
saloutos 0:083111ae2a11 5180 * @brief Inverse Clarke transform for Q31 version
saloutos 0:083111ae2a11 5181 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
saloutos 0:083111ae2a11 5182 * @param[in] Ibeta input two-phase orthogonal vector axis beta
saloutos 0:083111ae2a11 5183 * @param[out] pIa points to output three-phase coordinate <code>a</code>
saloutos 0:083111ae2a11 5184 * @param[out] pIb points to output three-phase coordinate <code>b</code>
saloutos 0:083111ae2a11 5185 *
saloutos 0:083111ae2a11 5186 * <b>Scaling and Overflow Behavior:</b>
saloutos 0:083111ae2a11 5187 * \par
saloutos 0:083111ae2a11 5188 * The function is implemented using an internal 32-bit accumulator.
saloutos 0:083111ae2a11 5189 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
saloutos 0:083111ae2a11 5190 * There is saturation on the subtraction, hence there is no risk of overflow.
saloutos 0:083111ae2a11 5191 */
saloutos 0:083111ae2a11 5192 CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31(
saloutos 0:083111ae2a11 5193 q31_t Ialpha,
saloutos 0:083111ae2a11 5194 q31_t Ibeta,
saloutos 0:083111ae2a11 5195 q31_t * pIa,
saloutos 0:083111ae2a11 5196 q31_t * pIb)
saloutos 0:083111ae2a11 5197 {
saloutos 0:083111ae2a11 5198 q31_t product1, product2; /* Temporary variables used to store intermediate results */
saloutos 0:083111ae2a11 5199
saloutos 0:083111ae2a11 5200 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
saloutos 0:083111ae2a11 5201 *pIa = Ialpha;
saloutos 0:083111ae2a11 5202
saloutos 0:083111ae2a11 5203 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
saloutos 0:083111ae2a11 5204 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
saloutos 0:083111ae2a11 5205
saloutos 0:083111ae2a11 5206 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
saloutos 0:083111ae2a11 5207 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
saloutos 0:083111ae2a11 5208
saloutos 0:083111ae2a11 5209 /* pIb is calculated by subtracting the products */
saloutos 0:083111ae2a11 5210 *pIb = __QSUB(product2, product1);
saloutos 0:083111ae2a11 5211 }
saloutos 0:083111ae2a11 5212
saloutos 0:083111ae2a11 5213 /**
saloutos 0:083111ae2a11 5214 * @} end of inv_clarke group
saloutos 0:083111ae2a11 5215 */
saloutos 0:083111ae2a11 5216
saloutos 0:083111ae2a11 5217 /**
saloutos 0:083111ae2a11 5218 * @brief Converts the elements of the Q7 vector to Q15 vector.
saloutos 0:083111ae2a11 5219 * @param[in] pSrc input pointer
saloutos 0:083111ae2a11 5220 * @param[out] pDst output pointer
saloutos 0:083111ae2a11 5221 * @param[in] blockSize number of samples to process
saloutos 0:083111ae2a11 5222 */
saloutos 0:083111ae2a11 5223 void arm_q7_to_q15(
saloutos 0:083111ae2a11 5224 q7_t * pSrc,
saloutos 0:083111ae2a11 5225 q15_t * pDst,
saloutos 0:083111ae2a11 5226 uint32_t blockSize);
saloutos 0:083111ae2a11 5227
saloutos 0:083111ae2a11 5228
saloutos 0:083111ae2a11 5229
saloutos 0:083111ae2a11 5230 /**
saloutos 0:083111ae2a11 5231 * @ingroup groupController
saloutos 0:083111ae2a11 5232 */
saloutos 0:083111ae2a11 5233
saloutos 0:083111ae2a11 5234 /**
saloutos 0:083111ae2a11 5235 * @defgroup park Vector Park Transform
saloutos 0:083111ae2a11 5236 *
saloutos 0:083111ae2a11 5237 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
saloutos 0:083111ae2a11 5238 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
saloutos 0:083111ae2a11 5239 * from the stationary to the moving reference frame and control the spatial relationship between
saloutos 0:083111ae2a11 5240 * the stator vector current and rotor flux vector.
saloutos 0:083111ae2a11 5241 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
saloutos 0:083111ae2a11 5242 * current vector and the relationship from the two reference frames:
saloutos 0:083111ae2a11 5243 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
saloutos 0:083111ae2a11 5244 *
saloutos 0:083111ae2a11 5245 * The function operates on a single sample of data and each call to the function returns the processed output.
saloutos 0:083111ae2a11 5246 * The library provides separate functions for Q31 and floating-point data types.
saloutos 0:083111ae2a11 5247 * \par Algorithm
saloutos 0:083111ae2a11 5248 * \image html parkFormula.gif
saloutos 0:083111ae2a11 5249 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
saloutos 0:083111ae2a11 5250 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
saloutos 0:083111ae2a11 5251 * cosine and sine values of theta (rotor flux position).
saloutos 0:083111ae2a11 5252 * \par Fixed-Point Behavior
saloutos 0:083111ae2a11 5253 * Care must be taken when using the Q31 version of the Park transform.
saloutos 0:083111ae2a11 5254 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
saloutos 0:083111ae2a11 5255 * Refer to the function specific documentation below for usage guidelines.
saloutos 0:083111ae2a11 5256 */
saloutos 0:083111ae2a11 5257
saloutos 0:083111ae2a11 5258 /**
saloutos 0:083111ae2a11 5259 * @addtogroup park
saloutos 0:083111ae2a11 5260 * @{
saloutos 0:083111ae2a11 5261 */
saloutos 0:083111ae2a11 5262
saloutos 0:083111ae2a11 5263 /**
saloutos 0:083111ae2a11 5264 * @brief Floating-point Park transform
saloutos 0:083111ae2a11 5265 * @param[in] Ialpha input two-phase vector coordinate alpha
saloutos 0:083111ae2a11 5266 * @param[in] Ibeta input two-phase vector coordinate beta
saloutos 0:083111ae2a11 5267 * @param[out] pId points to output rotor reference frame d
saloutos 0:083111ae2a11 5268 * @param[out] pIq points to output rotor reference frame q
saloutos 0:083111ae2a11 5269 * @param[in] sinVal sine value of rotation angle theta
saloutos 0:083111ae2a11 5270 * @param[in] cosVal cosine value of rotation angle theta
saloutos 0:083111ae2a11 5271 *
saloutos 0:083111ae2a11 5272 * The function implements the forward Park transform.
saloutos 0:083111ae2a11 5273 *
saloutos 0:083111ae2a11 5274 */
saloutos 0:083111ae2a11 5275 CMSIS_INLINE __STATIC_INLINE void arm_park_f32(
saloutos 0:083111ae2a11 5276 float32_t Ialpha,
saloutos 0:083111ae2a11 5277 float32_t Ibeta,
saloutos 0:083111ae2a11 5278 float32_t * pId,
saloutos 0:083111ae2a11 5279 float32_t * pIq,
saloutos 0:083111ae2a11 5280 float32_t sinVal,
saloutos 0:083111ae2a11 5281 float32_t cosVal)
saloutos 0:083111ae2a11 5282 {
saloutos 0:083111ae2a11 5283 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
saloutos 0:083111ae2a11 5284 *pId = Ialpha * cosVal + Ibeta * sinVal;
saloutos 0:083111ae2a11 5285
saloutos 0:083111ae2a11 5286 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
saloutos 0:083111ae2a11 5287 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
saloutos 0:083111ae2a11 5288 }
saloutos 0:083111ae2a11 5289
saloutos 0:083111ae2a11 5290
saloutos 0:083111ae2a11 5291 /**
saloutos 0:083111ae2a11 5292 * @brief Park transform for Q31 version
saloutos 0:083111ae2a11 5293 * @param[in] Ialpha input two-phase vector coordinate alpha
saloutos 0:083111ae2a11 5294 * @param[in] Ibeta input two-phase vector coordinate beta
saloutos 0:083111ae2a11 5295 * @param[out] pId points to output rotor reference frame d
saloutos 0:083111ae2a11 5296 * @param[out] pIq points to output rotor reference frame q
saloutos 0:083111ae2a11 5297 * @param[in] sinVal sine value of rotation angle theta
saloutos 0:083111ae2a11 5298 * @param[in] cosVal cosine value of rotation angle theta
saloutos 0:083111ae2a11 5299 *
saloutos 0:083111ae2a11 5300 * <b>Scaling and Overflow Behavior:</b>
saloutos 0:083111ae2a11 5301 * \par
saloutos 0:083111ae2a11 5302 * The function is implemented using an internal 32-bit accumulator.
saloutos 0:083111ae2a11 5303 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
saloutos 0:083111ae2a11 5304 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
saloutos 0:083111ae2a11 5305 */
saloutos 0:083111ae2a11 5306 CMSIS_INLINE __STATIC_INLINE void arm_park_q31(
saloutos 0:083111ae2a11 5307 q31_t Ialpha,
saloutos 0:083111ae2a11 5308 q31_t Ibeta,
saloutos 0:083111ae2a11 5309 q31_t * pId,
saloutos 0:083111ae2a11 5310 q31_t * pIq,
saloutos 0:083111ae2a11 5311 q31_t sinVal,
saloutos 0:083111ae2a11 5312 q31_t cosVal)
saloutos 0:083111ae2a11 5313 {
saloutos 0:083111ae2a11 5314 q31_t product1, product2; /* Temporary variables used to store intermediate results */
saloutos 0:083111ae2a11 5315 q31_t product3, product4; /* Temporary variables used to store intermediate results */
saloutos 0:083111ae2a11 5316
saloutos 0:083111ae2a11 5317 /* Intermediate product is calculated by (Ialpha * cosVal) */
saloutos 0:083111ae2a11 5318 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
saloutos 0:083111ae2a11 5319
saloutos 0:083111ae2a11 5320 /* Intermediate product is calculated by (Ibeta * sinVal) */
saloutos 0:083111ae2a11 5321 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
saloutos 0:083111ae2a11 5322
saloutos 0:083111ae2a11 5323
saloutos 0:083111ae2a11 5324 /* Intermediate product is calculated by (Ialpha * sinVal) */
saloutos 0:083111ae2a11 5325 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
saloutos 0:083111ae2a11 5326
saloutos 0:083111ae2a11 5327 /* Intermediate product is calculated by (Ibeta * cosVal) */
saloutos 0:083111ae2a11 5328 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
saloutos 0:083111ae2a11 5329
saloutos 0:083111ae2a11 5330 /* Calculate pId by adding the two intermediate products 1 and 2 */
saloutos 0:083111ae2a11 5331 *pId = __QADD(product1, product2);
saloutos 0:083111ae2a11 5332
saloutos 0:083111ae2a11 5333 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
saloutos 0:083111ae2a11 5334 *pIq = __QSUB(product4, product3);
saloutos 0:083111ae2a11 5335 }
saloutos 0:083111ae2a11 5336
saloutos 0:083111ae2a11 5337 /**
saloutos 0:083111ae2a11 5338 * @} end of park group
saloutos 0:083111ae2a11 5339 */
saloutos 0:083111ae2a11 5340
saloutos 0:083111ae2a11 5341 /**
saloutos 0:083111ae2a11 5342 * @brief Converts the elements of the Q7 vector to floating-point vector.
saloutos 0:083111ae2a11 5343 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 5344 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 5345 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 5346 */
saloutos 0:083111ae2a11 5347 void arm_q7_to_float(
saloutos 0:083111ae2a11 5348 q7_t * pSrc,
saloutos 0:083111ae2a11 5349 float32_t * pDst,
saloutos 0:083111ae2a11 5350 uint32_t blockSize);
saloutos 0:083111ae2a11 5351
saloutos 0:083111ae2a11 5352
saloutos 0:083111ae2a11 5353 /**
saloutos 0:083111ae2a11 5354 * @ingroup groupController
saloutos 0:083111ae2a11 5355 */
saloutos 0:083111ae2a11 5356
saloutos 0:083111ae2a11 5357 /**
saloutos 0:083111ae2a11 5358 * @defgroup inv_park Vector Inverse Park transform
saloutos 0:083111ae2a11 5359 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
saloutos 0:083111ae2a11 5360 *
saloutos 0:083111ae2a11 5361 * The function operates on a single sample of data and each call to the function returns the processed output.
saloutos 0:083111ae2a11 5362 * The library provides separate functions for Q31 and floating-point data types.
saloutos 0:083111ae2a11 5363 * \par Algorithm
saloutos 0:083111ae2a11 5364 * \image html parkInvFormula.gif
saloutos 0:083111ae2a11 5365 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
saloutos 0:083111ae2a11 5366 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
saloutos 0:083111ae2a11 5367 * cosine and sine values of theta (rotor flux position).
saloutos 0:083111ae2a11 5368 * \par Fixed-Point Behavior
saloutos 0:083111ae2a11 5369 * Care must be taken when using the Q31 version of the Park transform.
saloutos 0:083111ae2a11 5370 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
saloutos 0:083111ae2a11 5371 * Refer to the function specific documentation below for usage guidelines.
saloutos 0:083111ae2a11 5372 */
saloutos 0:083111ae2a11 5373
saloutos 0:083111ae2a11 5374 /**
saloutos 0:083111ae2a11 5375 * @addtogroup inv_park
saloutos 0:083111ae2a11 5376 * @{
saloutos 0:083111ae2a11 5377 */
saloutos 0:083111ae2a11 5378
saloutos 0:083111ae2a11 5379 /**
saloutos 0:083111ae2a11 5380 * @brief Floating-point Inverse Park transform
saloutos 0:083111ae2a11 5381 * @param[in] Id input coordinate of rotor reference frame d
saloutos 0:083111ae2a11 5382 * @param[in] Iq input coordinate of rotor reference frame q
saloutos 0:083111ae2a11 5383 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
saloutos 0:083111ae2a11 5384 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
saloutos 0:083111ae2a11 5385 * @param[in] sinVal sine value of rotation angle theta
saloutos 0:083111ae2a11 5386 * @param[in] cosVal cosine value of rotation angle theta
saloutos 0:083111ae2a11 5387 */
saloutos 0:083111ae2a11 5388 CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32(
saloutos 0:083111ae2a11 5389 float32_t Id,
saloutos 0:083111ae2a11 5390 float32_t Iq,
saloutos 0:083111ae2a11 5391 float32_t * pIalpha,
saloutos 0:083111ae2a11 5392 float32_t * pIbeta,
saloutos 0:083111ae2a11 5393 float32_t sinVal,
saloutos 0:083111ae2a11 5394 float32_t cosVal)
saloutos 0:083111ae2a11 5395 {
saloutos 0:083111ae2a11 5396 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
saloutos 0:083111ae2a11 5397 *pIalpha = Id * cosVal - Iq * sinVal;
saloutos 0:083111ae2a11 5398
saloutos 0:083111ae2a11 5399 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
saloutos 0:083111ae2a11 5400 *pIbeta = Id * sinVal + Iq * cosVal;
saloutos 0:083111ae2a11 5401 }
saloutos 0:083111ae2a11 5402
saloutos 0:083111ae2a11 5403
saloutos 0:083111ae2a11 5404 /**
saloutos 0:083111ae2a11 5405 * @brief Inverse Park transform for Q31 version
saloutos 0:083111ae2a11 5406 * @param[in] Id input coordinate of rotor reference frame d
saloutos 0:083111ae2a11 5407 * @param[in] Iq input coordinate of rotor reference frame q
saloutos 0:083111ae2a11 5408 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
saloutos 0:083111ae2a11 5409 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
saloutos 0:083111ae2a11 5410 * @param[in] sinVal sine value of rotation angle theta
saloutos 0:083111ae2a11 5411 * @param[in] cosVal cosine value of rotation angle theta
saloutos 0:083111ae2a11 5412 *
saloutos 0:083111ae2a11 5413 * <b>Scaling and Overflow Behavior:</b>
saloutos 0:083111ae2a11 5414 * \par
saloutos 0:083111ae2a11 5415 * The function is implemented using an internal 32-bit accumulator.
saloutos 0:083111ae2a11 5416 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
saloutos 0:083111ae2a11 5417 * There is saturation on the addition, hence there is no risk of overflow.
saloutos 0:083111ae2a11 5418 */
saloutos 0:083111ae2a11 5419 CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31(
saloutos 0:083111ae2a11 5420 q31_t Id,
saloutos 0:083111ae2a11 5421 q31_t Iq,
saloutos 0:083111ae2a11 5422 q31_t * pIalpha,
saloutos 0:083111ae2a11 5423 q31_t * pIbeta,
saloutos 0:083111ae2a11 5424 q31_t sinVal,
saloutos 0:083111ae2a11 5425 q31_t cosVal)
saloutos 0:083111ae2a11 5426 {
saloutos 0:083111ae2a11 5427 q31_t product1, product2; /* Temporary variables used to store intermediate results */
saloutos 0:083111ae2a11 5428 q31_t product3, product4; /* Temporary variables used to store intermediate results */
saloutos 0:083111ae2a11 5429
saloutos 0:083111ae2a11 5430 /* Intermediate product is calculated by (Id * cosVal) */
saloutos 0:083111ae2a11 5431 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
saloutos 0:083111ae2a11 5432
saloutos 0:083111ae2a11 5433 /* Intermediate product is calculated by (Iq * sinVal) */
saloutos 0:083111ae2a11 5434 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
saloutos 0:083111ae2a11 5435
saloutos 0:083111ae2a11 5436
saloutos 0:083111ae2a11 5437 /* Intermediate product is calculated by (Id * sinVal) */
saloutos 0:083111ae2a11 5438 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
saloutos 0:083111ae2a11 5439
saloutos 0:083111ae2a11 5440 /* Intermediate product is calculated by (Iq * cosVal) */
saloutos 0:083111ae2a11 5441 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
saloutos 0:083111ae2a11 5442
saloutos 0:083111ae2a11 5443 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
saloutos 0:083111ae2a11 5444 *pIalpha = __QSUB(product1, product2);
saloutos 0:083111ae2a11 5445
saloutos 0:083111ae2a11 5446 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
saloutos 0:083111ae2a11 5447 *pIbeta = __QADD(product4, product3);
saloutos 0:083111ae2a11 5448 }
saloutos 0:083111ae2a11 5449
saloutos 0:083111ae2a11 5450 /**
saloutos 0:083111ae2a11 5451 * @} end of Inverse park group
saloutos 0:083111ae2a11 5452 */
saloutos 0:083111ae2a11 5453
saloutos 0:083111ae2a11 5454
saloutos 0:083111ae2a11 5455 /**
saloutos 0:083111ae2a11 5456 * @brief Converts the elements of the Q31 vector to floating-point vector.
saloutos 0:083111ae2a11 5457 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 5458 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 5459 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 5460 */
saloutos 0:083111ae2a11 5461 void arm_q31_to_float(
saloutos 0:083111ae2a11 5462 q31_t * pSrc,
saloutos 0:083111ae2a11 5463 float32_t * pDst,
saloutos 0:083111ae2a11 5464 uint32_t blockSize);
saloutos 0:083111ae2a11 5465
saloutos 0:083111ae2a11 5466 /**
saloutos 0:083111ae2a11 5467 * @ingroup groupInterpolation
saloutos 0:083111ae2a11 5468 */
saloutos 0:083111ae2a11 5469
saloutos 0:083111ae2a11 5470 /**
saloutos 0:083111ae2a11 5471 * @defgroup LinearInterpolate Linear Interpolation
saloutos 0:083111ae2a11 5472 *
saloutos 0:083111ae2a11 5473 * Linear interpolation is a method of curve fitting using linear polynomials.
saloutos 0:083111ae2a11 5474 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
saloutos 0:083111ae2a11 5475 *
saloutos 0:083111ae2a11 5476 * \par
saloutos 0:083111ae2a11 5477 * \image html LinearInterp.gif "Linear interpolation"
saloutos 0:083111ae2a11 5478 *
saloutos 0:083111ae2a11 5479 * \par
saloutos 0:083111ae2a11 5480 * A Linear Interpolate function calculates an output value(y), for the input(x)
saloutos 0:083111ae2a11 5481 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
saloutos 0:083111ae2a11 5482 *
saloutos 0:083111ae2a11 5483 * \par Algorithm:
saloutos 0:083111ae2a11 5484 * <pre>
saloutos 0:083111ae2a11 5485 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
saloutos 0:083111ae2a11 5486 * where x0, x1 are nearest values of input x
saloutos 0:083111ae2a11 5487 * y0, y1 are nearest values to output y
saloutos 0:083111ae2a11 5488 * </pre>
saloutos 0:083111ae2a11 5489 *
saloutos 0:083111ae2a11 5490 * \par
saloutos 0:083111ae2a11 5491 * This set of functions implements Linear interpolation process
saloutos 0:083111ae2a11 5492 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
saloutos 0:083111ae2a11 5493 * sample of data and each call to the function returns a single processed value.
saloutos 0:083111ae2a11 5494 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
saloutos 0:083111ae2a11 5495 * <code>x</code> is the input sample value. The functions returns the output value.
saloutos 0:083111ae2a11 5496 *
saloutos 0:083111ae2a11 5497 * \par
saloutos 0:083111ae2a11 5498 * if x is outside of the table boundary, Linear interpolation returns first value of the table
saloutos 0:083111ae2a11 5499 * if x is below input range and returns last value of table if x is above range.
saloutos 0:083111ae2a11 5500 */
saloutos 0:083111ae2a11 5501
saloutos 0:083111ae2a11 5502 /**
saloutos 0:083111ae2a11 5503 * @addtogroup LinearInterpolate
saloutos 0:083111ae2a11 5504 * @{
saloutos 0:083111ae2a11 5505 */
saloutos 0:083111ae2a11 5506
saloutos 0:083111ae2a11 5507 /**
saloutos 0:083111ae2a11 5508 * @brief Process function for the floating-point Linear Interpolation Function.
saloutos 0:083111ae2a11 5509 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
saloutos 0:083111ae2a11 5510 * @param[in] x input sample to process
saloutos 0:083111ae2a11 5511 * @return y processed output sample.
saloutos 0:083111ae2a11 5512 *
saloutos 0:083111ae2a11 5513 */
saloutos 0:083111ae2a11 5514 CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32(
saloutos 0:083111ae2a11 5515 arm_linear_interp_instance_f32 * S,
saloutos 0:083111ae2a11 5516 float32_t x)
saloutos 0:083111ae2a11 5517 {
saloutos 0:083111ae2a11 5518 float32_t y;
saloutos 0:083111ae2a11 5519 float32_t x0, x1; /* Nearest input values */
saloutos 0:083111ae2a11 5520 float32_t y0, y1; /* Nearest output values */
saloutos 0:083111ae2a11 5521 float32_t xSpacing = S->xSpacing; /* spacing between input values */
saloutos 0:083111ae2a11 5522 int32_t i; /* Index variable */
saloutos 0:083111ae2a11 5523 float32_t *pYData = S->pYData; /* pointer to output table */
saloutos 0:083111ae2a11 5524
saloutos 0:083111ae2a11 5525 /* Calculation of index */
saloutos 0:083111ae2a11 5526 i = (int32_t) ((x - S->x1) / xSpacing);
saloutos 0:083111ae2a11 5527
saloutos 0:083111ae2a11 5528 if (i < 0)
saloutos 0:083111ae2a11 5529 {
saloutos 0:083111ae2a11 5530 /* Iniatilize output for below specified range as least output value of table */
saloutos 0:083111ae2a11 5531 y = pYData[0];
saloutos 0:083111ae2a11 5532 }
saloutos 0:083111ae2a11 5533 else if ((uint32_t)i >= S->nValues)
saloutos 0:083111ae2a11 5534 {
saloutos 0:083111ae2a11 5535 /* Iniatilize output for above specified range as last output value of table */
saloutos 0:083111ae2a11 5536 y = pYData[S->nValues - 1];
saloutos 0:083111ae2a11 5537 }
saloutos 0:083111ae2a11 5538 else
saloutos 0:083111ae2a11 5539 {
saloutos 0:083111ae2a11 5540 /* Calculation of nearest input values */
saloutos 0:083111ae2a11 5541 x0 = S->x1 + i * xSpacing;
saloutos 0:083111ae2a11 5542 x1 = S->x1 + (i + 1) * xSpacing;
saloutos 0:083111ae2a11 5543
saloutos 0:083111ae2a11 5544 /* Read of nearest output values */
saloutos 0:083111ae2a11 5545 y0 = pYData[i];
saloutos 0:083111ae2a11 5546 y1 = pYData[i + 1];
saloutos 0:083111ae2a11 5547
saloutos 0:083111ae2a11 5548 /* Calculation of output */
saloutos 0:083111ae2a11 5549 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
saloutos 0:083111ae2a11 5550
saloutos 0:083111ae2a11 5551 }
saloutos 0:083111ae2a11 5552
saloutos 0:083111ae2a11 5553 /* returns output value */
saloutos 0:083111ae2a11 5554 return (y);
saloutos 0:083111ae2a11 5555 }
saloutos 0:083111ae2a11 5556
saloutos 0:083111ae2a11 5557
saloutos 0:083111ae2a11 5558 /**
saloutos 0:083111ae2a11 5559 *
saloutos 0:083111ae2a11 5560 * @brief Process function for the Q31 Linear Interpolation Function.
saloutos 0:083111ae2a11 5561 * @param[in] pYData pointer to Q31 Linear Interpolation table
saloutos 0:083111ae2a11 5562 * @param[in] x input sample to process
saloutos 0:083111ae2a11 5563 * @param[in] nValues number of table values
saloutos 0:083111ae2a11 5564 * @return y processed output sample.
saloutos 0:083111ae2a11 5565 *
saloutos 0:083111ae2a11 5566 * \par
saloutos 0:083111ae2a11 5567 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
saloutos 0:083111ae2a11 5568 * This function can support maximum of table size 2^12.
saloutos 0:083111ae2a11 5569 *
saloutos 0:083111ae2a11 5570 */
saloutos 0:083111ae2a11 5571 CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31(
saloutos 0:083111ae2a11 5572 q31_t * pYData,
saloutos 0:083111ae2a11 5573 q31_t x,
saloutos 0:083111ae2a11 5574 uint32_t nValues)
saloutos 0:083111ae2a11 5575 {
saloutos 0:083111ae2a11 5576 q31_t y; /* output */
saloutos 0:083111ae2a11 5577 q31_t y0, y1; /* Nearest output values */
saloutos 0:083111ae2a11 5578 q31_t fract; /* fractional part */
saloutos 0:083111ae2a11 5579 int32_t index; /* Index to read nearest output values */
saloutos 0:083111ae2a11 5580
saloutos 0:083111ae2a11 5581 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 5582 /* 12 bits for the table index */
saloutos 0:083111ae2a11 5583 /* Index value calculation */
saloutos 0:083111ae2a11 5584 index = ((x & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 5585
saloutos 0:083111ae2a11 5586 if (index >= (int32_t)(nValues - 1))
saloutos 0:083111ae2a11 5587 {
saloutos 0:083111ae2a11 5588 return (pYData[nValues - 1]);
saloutos 0:083111ae2a11 5589 }
saloutos 0:083111ae2a11 5590 else if (index < 0)
saloutos 0:083111ae2a11 5591 {
saloutos 0:083111ae2a11 5592 return (pYData[0]);
saloutos 0:083111ae2a11 5593 }
saloutos 0:083111ae2a11 5594 else
saloutos 0:083111ae2a11 5595 {
saloutos 0:083111ae2a11 5596 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 5597 /* shift left by 11 to keep fract in 1.31 format */
saloutos 0:083111ae2a11 5598 fract = (x & 0x000FFFFF) << 11;
saloutos 0:083111ae2a11 5599
saloutos 0:083111ae2a11 5600 /* Read two nearest output values from the index in 1.31(q31) format */
saloutos 0:083111ae2a11 5601 y0 = pYData[index];
saloutos 0:083111ae2a11 5602 y1 = pYData[index + 1];
saloutos 0:083111ae2a11 5603
saloutos 0:083111ae2a11 5604 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
saloutos 0:083111ae2a11 5605 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
saloutos 0:083111ae2a11 5606
saloutos 0:083111ae2a11 5607 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
saloutos 0:083111ae2a11 5608 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
saloutos 0:083111ae2a11 5609
saloutos 0:083111ae2a11 5610 /* Convert y to 1.31 format */
saloutos 0:083111ae2a11 5611 return (y << 1u);
saloutos 0:083111ae2a11 5612 }
saloutos 0:083111ae2a11 5613 }
saloutos 0:083111ae2a11 5614
saloutos 0:083111ae2a11 5615
saloutos 0:083111ae2a11 5616 /**
saloutos 0:083111ae2a11 5617 *
saloutos 0:083111ae2a11 5618 * @brief Process function for the Q15 Linear Interpolation Function.
saloutos 0:083111ae2a11 5619 * @param[in] pYData pointer to Q15 Linear Interpolation table
saloutos 0:083111ae2a11 5620 * @param[in] x input sample to process
saloutos 0:083111ae2a11 5621 * @param[in] nValues number of table values
saloutos 0:083111ae2a11 5622 * @return y processed output sample.
saloutos 0:083111ae2a11 5623 *
saloutos 0:083111ae2a11 5624 * \par
saloutos 0:083111ae2a11 5625 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
saloutos 0:083111ae2a11 5626 * This function can support maximum of table size 2^12.
saloutos 0:083111ae2a11 5627 *
saloutos 0:083111ae2a11 5628 */
saloutos 0:083111ae2a11 5629 CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15(
saloutos 0:083111ae2a11 5630 q15_t * pYData,
saloutos 0:083111ae2a11 5631 q31_t x,
saloutos 0:083111ae2a11 5632 uint32_t nValues)
saloutos 0:083111ae2a11 5633 {
saloutos 0:083111ae2a11 5634 q63_t y; /* output */
saloutos 0:083111ae2a11 5635 q15_t y0, y1; /* Nearest output values */
saloutos 0:083111ae2a11 5636 q31_t fract; /* fractional part */
saloutos 0:083111ae2a11 5637 int32_t index; /* Index to read nearest output values */
saloutos 0:083111ae2a11 5638
saloutos 0:083111ae2a11 5639 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 5640 /* 12 bits for the table index */
saloutos 0:083111ae2a11 5641 /* Index value calculation */
saloutos 0:083111ae2a11 5642 index = ((x & (int32_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 5643
saloutos 0:083111ae2a11 5644 if (index >= (int32_t)(nValues - 1))
saloutos 0:083111ae2a11 5645 {
saloutos 0:083111ae2a11 5646 return (pYData[nValues - 1]);
saloutos 0:083111ae2a11 5647 }
saloutos 0:083111ae2a11 5648 else if (index < 0)
saloutos 0:083111ae2a11 5649 {
saloutos 0:083111ae2a11 5650 return (pYData[0]);
saloutos 0:083111ae2a11 5651 }
saloutos 0:083111ae2a11 5652 else
saloutos 0:083111ae2a11 5653 {
saloutos 0:083111ae2a11 5654 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 5655 /* fract is in 12.20 format */
saloutos 0:083111ae2a11 5656 fract = (x & 0x000FFFFF);
saloutos 0:083111ae2a11 5657
saloutos 0:083111ae2a11 5658 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 5659 y0 = pYData[index];
saloutos 0:083111ae2a11 5660 y1 = pYData[index + 1];
saloutos 0:083111ae2a11 5661
saloutos 0:083111ae2a11 5662 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
saloutos 0:083111ae2a11 5663 y = ((q63_t) y0 * (0xFFFFF - fract));
saloutos 0:083111ae2a11 5664
saloutos 0:083111ae2a11 5665 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
saloutos 0:083111ae2a11 5666 y += ((q63_t) y1 * (fract));
saloutos 0:083111ae2a11 5667
saloutos 0:083111ae2a11 5668 /* convert y to 1.15 format */
saloutos 0:083111ae2a11 5669 return (q15_t) (y >> 20);
saloutos 0:083111ae2a11 5670 }
saloutos 0:083111ae2a11 5671 }
saloutos 0:083111ae2a11 5672
saloutos 0:083111ae2a11 5673
saloutos 0:083111ae2a11 5674 /**
saloutos 0:083111ae2a11 5675 *
saloutos 0:083111ae2a11 5676 * @brief Process function for the Q7 Linear Interpolation Function.
saloutos 0:083111ae2a11 5677 * @param[in] pYData pointer to Q7 Linear Interpolation table
saloutos 0:083111ae2a11 5678 * @param[in] x input sample to process
saloutos 0:083111ae2a11 5679 * @param[in] nValues number of table values
saloutos 0:083111ae2a11 5680 * @return y processed output sample.
saloutos 0:083111ae2a11 5681 *
saloutos 0:083111ae2a11 5682 * \par
saloutos 0:083111ae2a11 5683 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
saloutos 0:083111ae2a11 5684 * This function can support maximum of table size 2^12.
saloutos 0:083111ae2a11 5685 */
saloutos 0:083111ae2a11 5686 CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7(
saloutos 0:083111ae2a11 5687 q7_t * pYData,
saloutos 0:083111ae2a11 5688 q31_t x,
saloutos 0:083111ae2a11 5689 uint32_t nValues)
saloutos 0:083111ae2a11 5690 {
saloutos 0:083111ae2a11 5691 q31_t y; /* output */
saloutos 0:083111ae2a11 5692 q7_t y0, y1; /* Nearest output values */
saloutos 0:083111ae2a11 5693 q31_t fract; /* fractional part */
saloutos 0:083111ae2a11 5694 uint32_t index; /* Index to read nearest output values */
saloutos 0:083111ae2a11 5695
saloutos 0:083111ae2a11 5696 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 5697 /* 12 bits for the table index */
saloutos 0:083111ae2a11 5698 /* Index value calculation */
saloutos 0:083111ae2a11 5699 if (x < 0)
saloutos 0:083111ae2a11 5700 {
saloutos 0:083111ae2a11 5701 return (pYData[0]);
saloutos 0:083111ae2a11 5702 }
saloutos 0:083111ae2a11 5703 index = (x >> 20) & 0xfff;
saloutos 0:083111ae2a11 5704
saloutos 0:083111ae2a11 5705 if (index >= (nValues - 1))
saloutos 0:083111ae2a11 5706 {
saloutos 0:083111ae2a11 5707 return (pYData[nValues - 1]);
saloutos 0:083111ae2a11 5708 }
saloutos 0:083111ae2a11 5709 else
saloutos 0:083111ae2a11 5710 {
saloutos 0:083111ae2a11 5711 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 5712 /* fract is in 12.20 format */
saloutos 0:083111ae2a11 5713 fract = (x & 0x000FFFFF);
saloutos 0:083111ae2a11 5714
saloutos 0:083111ae2a11 5715 /* Read two nearest output values from the index and are in 1.7(q7) format */
saloutos 0:083111ae2a11 5716 y0 = pYData[index];
saloutos 0:083111ae2a11 5717 y1 = pYData[index + 1];
saloutos 0:083111ae2a11 5718
saloutos 0:083111ae2a11 5719 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
saloutos 0:083111ae2a11 5720 y = ((y0 * (0xFFFFF - fract)));
saloutos 0:083111ae2a11 5721
saloutos 0:083111ae2a11 5722 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
saloutos 0:083111ae2a11 5723 y += (y1 * fract);
saloutos 0:083111ae2a11 5724
saloutos 0:083111ae2a11 5725 /* convert y to 1.7(q7) format */
saloutos 0:083111ae2a11 5726 return (q7_t) (y >> 20);
saloutos 0:083111ae2a11 5727 }
saloutos 0:083111ae2a11 5728 }
saloutos 0:083111ae2a11 5729
saloutos 0:083111ae2a11 5730 /**
saloutos 0:083111ae2a11 5731 * @} end of LinearInterpolate group
saloutos 0:083111ae2a11 5732 */
saloutos 0:083111ae2a11 5733
saloutos 0:083111ae2a11 5734 /**
saloutos 0:083111ae2a11 5735 * @brief Fast approximation to the trigonometric sine function for floating-point data.
saloutos 0:083111ae2a11 5736 * @param[in] x input value in radians.
saloutos 0:083111ae2a11 5737 * @return sin(x).
saloutos 0:083111ae2a11 5738 */
saloutos 0:083111ae2a11 5739 float32_t arm_sin_f32(
saloutos 0:083111ae2a11 5740 float32_t x);
saloutos 0:083111ae2a11 5741
saloutos 0:083111ae2a11 5742
saloutos 0:083111ae2a11 5743 /**
saloutos 0:083111ae2a11 5744 * @brief Fast approximation to the trigonometric sine function for Q31 data.
saloutos 0:083111ae2a11 5745 * @param[in] x Scaled input value in radians.
saloutos 0:083111ae2a11 5746 * @return sin(x).
saloutos 0:083111ae2a11 5747 */
saloutos 0:083111ae2a11 5748 q31_t arm_sin_q31(
saloutos 0:083111ae2a11 5749 q31_t x);
saloutos 0:083111ae2a11 5750
saloutos 0:083111ae2a11 5751
saloutos 0:083111ae2a11 5752 /**
saloutos 0:083111ae2a11 5753 * @brief Fast approximation to the trigonometric sine function for Q15 data.
saloutos 0:083111ae2a11 5754 * @param[in] x Scaled input value in radians.
saloutos 0:083111ae2a11 5755 * @return sin(x).
saloutos 0:083111ae2a11 5756 */
saloutos 0:083111ae2a11 5757 q15_t arm_sin_q15(
saloutos 0:083111ae2a11 5758 q15_t x);
saloutos 0:083111ae2a11 5759
saloutos 0:083111ae2a11 5760
saloutos 0:083111ae2a11 5761 /**
saloutos 0:083111ae2a11 5762 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
saloutos 0:083111ae2a11 5763 * @param[in] x input value in radians.
saloutos 0:083111ae2a11 5764 * @return cos(x).
saloutos 0:083111ae2a11 5765 */
saloutos 0:083111ae2a11 5766 float32_t arm_cos_f32(
saloutos 0:083111ae2a11 5767 float32_t x);
saloutos 0:083111ae2a11 5768
saloutos 0:083111ae2a11 5769
saloutos 0:083111ae2a11 5770 /**
saloutos 0:083111ae2a11 5771 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
saloutos 0:083111ae2a11 5772 * @param[in] x Scaled input value in radians.
saloutos 0:083111ae2a11 5773 * @return cos(x).
saloutos 0:083111ae2a11 5774 */
saloutos 0:083111ae2a11 5775 q31_t arm_cos_q31(
saloutos 0:083111ae2a11 5776 q31_t x);
saloutos 0:083111ae2a11 5777
saloutos 0:083111ae2a11 5778
saloutos 0:083111ae2a11 5779 /**
saloutos 0:083111ae2a11 5780 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
saloutos 0:083111ae2a11 5781 * @param[in] x Scaled input value in radians.
saloutos 0:083111ae2a11 5782 * @return cos(x).
saloutos 0:083111ae2a11 5783 */
saloutos 0:083111ae2a11 5784 q15_t arm_cos_q15(
saloutos 0:083111ae2a11 5785 q15_t x);
saloutos 0:083111ae2a11 5786
saloutos 0:083111ae2a11 5787
saloutos 0:083111ae2a11 5788 /**
saloutos 0:083111ae2a11 5789 * @ingroup groupFastMath
saloutos 0:083111ae2a11 5790 */
saloutos 0:083111ae2a11 5791
saloutos 0:083111ae2a11 5792
saloutos 0:083111ae2a11 5793 /**
saloutos 0:083111ae2a11 5794 * @defgroup SQRT Square Root
saloutos 0:083111ae2a11 5795 *
saloutos 0:083111ae2a11 5796 * Computes the square root of a number.
saloutos 0:083111ae2a11 5797 * There are separate functions for Q15, Q31, and floating-point data types.
saloutos 0:083111ae2a11 5798 * The square root function is computed using the Newton-Raphson algorithm.
saloutos 0:083111ae2a11 5799 * This is an iterative algorithm of the form:
saloutos 0:083111ae2a11 5800 * <pre>
saloutos 0:083111ae2a11 5801 * x1 = x0 - f(x0)/f'(x0)
saloutos 0:083111ae2a11 5802 * </pre>
saloutos 0:083111ae2a11 5803 * where <code>x1</code> is the current estimate,
saloutos 0:083111ae2a11 5804 * <code>x0</code> is the previous estimate, and
saloutos 0:083111ae2a11 5805 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
saloutos 0:083111ae2a11 5806 * For the square root function, the algorithm reduces to:
saloutos 0:083111ae2a11 5807 * <pre>
saloutos 0:083111ae2a11 5808 * x0 = in/2 [initial guess]
saloutos 0:083111ae2a11 5809 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
saloutos 0:083111ae2a11 5810 * </pre>
saloutos 0:083111ae2a11 5811 */
saloutos 0:083111ae2a11 5812
saloutos 0:083111ae2a11 5813
saloutos 0:083111ae2a11 5814 /**
saloutos 0:083111ae2a11 5815 * @addtogroup SQRT
saloutos 0:083111ae2a11 5816 * @{
saloutos 0:083111ae2a11 5817 */
saloutos 0:083111ae2a11 5818
saloutos 0:083111ae2a11 5819 /**
saloutos 0:083111ae2a11 5820 * @brief Floating-point square root function.
saloutos 0:083111ae2a11 5821 * @param[in] in input value.
saloutos 0:083111ae2a11 5822 * @param[out] pOut square root of input value.
saloutos 0:083111ae2a11 5823 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
saloutos 0:083111ae2a11 5824 * <code>in</code> is negative value and returns zero output for negative values.
saloutos 0:083111ae2a11 5825 */
saloutos 0:083111ae2a11 5826 CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32(
saloutos 0:083111ae2a11 5827 float32_t in,
saloutos 0:083111ae2a11 5828 float32_t * pOut)
saloutos 0:083111ae2a11 5829 {
saloutos 0:083111ae2a11 5830 if (in >= 0.0f)
saloutos 0:083111ae2a11 5831 {
saloutos 0:083111ae2a11 5832
saloutos 0:083111ae2a11 5833 #if (__FPU_USED == 1) && defined ( __CC_ARM )
saloutos 0:083111ae2a11 5834 *pOut = __sqrtf(in);
saloutos 0:083111ae2a11 5835 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
saloutos 0:083111ae2a11 5836 *pOut = __builtin_sqrtf(in);
saloutos 0:083111ae2a11 5837 #elif (__FPU_USED == 1) && defined(__GNUC__)
saloutos 0:083111ae2a11 5838 *pOut = __builtin_sqrtf(in);
saloutos 0:083111ae2a11 5839 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
saloutos 0:083111ae2a11 5840 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
saloutos 0:083111ae2a11 5841 #else
saloutos 0:083111ae2a11 5842 *pOut = sqrtf(in);
saloutos 0:083111ae2a11 5843 #endif
saloutos 0:083111ae2a11 5844
saloutos 0:083111ae2a11 5845 return (ARM_MATH_SUCCESS);
saloutos 0:083111ae2a11 5846 }
saloutos 0:083111ae2a11 5847 else
saloutos 0:083111ae2a11 5848 {
saloutos 0:083111ae2a11 5849 *pOut = 0.0f;
saloutos 0:083111ae2a11 5850 return (ARM_MATH_ARGUMENT_ERROR);
saloutos 0:083111ae2a11 5851 }
saloutos 0:083111ae2a11 5852 }
saloutos 0:083111ae2a11 5853
saloutos 0:083111ae2a11 5854
saloutos 0:083111ae2a11 5855 /**
saloutos 0:083111ae2a11 5856 * @brief Q31 square root function.
saloutos 0:083111ae2a11 5857 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
saloutos 0:083111ae2a11 5858 * @param[out] pOut square root of input value.
saloutos 0:083111ae2a11 5859 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
saloutos 0:083111ae2a11 5860 * <code>in</code> is negative value and returns zero output for negative values.
saloutos 0:083111ae2a11 5861 */
saloutos 0:083111ae2a11 5862 arm_status arm_sqrt_q31(
saloutos 0:083111ae2a11 5863 q31_t in,
saloutos 0:083111ae2a11 5864 q31_t * pOut);
saloutos 0:083111ae2a11 5865
saloutos 0:083111ae2a11 5866
saloutos 0:083111ae2a11 5867 /**
saloutos 0:083111ae2a11 5868 * @brief Q15 square root function.
saloutos 0:083111ae2a11 5869 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
saloutos 0:083111ae2a11 5870 * @param[out] pOut square root of input value.
saloutos 0:083111ae2a11 5871 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
saloutos 0:083111ae2a11 5872 * <code>in</code> is negative value and returns zero output for negative values.
saloutos 0:083111ae2a11 5873 */
saloutos 0:083111ae2a11 5874 arm_status arm_sqrt_q15(
saloutos 0:083111ae2a11 5875 q15_t in,
saloutos 0:083111ae2a11 5876 q15_t * pOut);
saloutos 0:083111ae2a11 5877
saloutos 0:083111ae2a11 5878 /**
saloutos 0:083111ae2a11 5879 * @} end of SQRT group
saloutos 0:083111ae2a11 5880 */
saloutos 0:083111ae2a11 5881
saloutos 0:083111ae2a11 5882
saloutos 0:083111ae2a11 5883 /**
saloutos 0:083111ae2a11 5884 * @brief floating-point Circular write function.
saloutos 0:083111ae2a11 5885 */
saloutos 0:083111ae2a11 5886 CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32(
saloutos 0:083111ae2a11 5887 int32_t * circBuffer,
saloutos 0:083111ae2a11 5888 int32_t L,
saloutos 0:083111ae2a11 5889 uint16_t * writeOffset,
saloutos 0:083111ae2a11 5890 int32_t bufferInc,
saloutos 0:083111ae2a11 5891 const int32_t * src,
saloutos 0:083111ae2a11 5892 int32_t srcInc,
saloutos 0:083111ae2a11 5893 uint32_t blockSize)
saloutos 0:083111ae2a11 5894 {
saloutos 0:083111ae2a11 5895 uint32_t i = 0u;
saloutos 0:083111ae2a11 5896 int32_t wOffset;
saloutos 0:083111ae2a11 5897
saloutos 0:083111ae2a11 5898 /* Copy the value of Index pointer that points
saloutos 0:083111ae2a11 5899 * to the current location where the input samples to be copied */
saloutos 0:083111ae2a11 5900 wOffset = *writeOffset;
saloutos 0:083111ae2a11 5901
saloutos 0:083111ae2a11 5902 /* Loop over the blockSize */
saloutos 0:083111ae2a11 5903 i = blockSize;
saloutos 0:083111ae2a11 5904
saloutos 0:083111ae2a11 5905 while (i > 0u)
saloutos 0:083111ae2a11 5906 {
saloutos 0:083111ae2a11 5907 /* copy the input sample to the circular buffer */
saloutos 0:083111ae2a11 5908 circBuffer[wOffset] = *src;
saloutos 0:083111ae2a11 5909
saloutos 0:083111ae2a11 5910 /* Update the input pointer */
saloutos 0:083111ae2a11 5911 src += srcInc;
saloutos 0:083111ae2a11 5912
saloutos 0:083111ae2a11 5913 /* Circularly update wOffset. Watch out for positive and negative value */
saloutos 0:083111ae2a11 5914 wOffset += bufferInc;
saloutos 0:083111ae2a11 5915 if (wOffset >= L)
saloutos 0:083111ae2a11 5916 wOffset -= L;
saloutos 0:083111ae2a11 5917
saloutos 0:083111ae2a11 5918 /* Decrement the loop counter */
saloutos 0:083111ae2a11 5919 i--;
saloutos 0:083111ae2a11 5920 }
saloutos 0:083111ae2a11 5921
saloutos 0:083111ae2a11 5922 /* Update the index pointer */
saloutos 0:083111ae2a11 5923 *writeOffset = (uint16_t)wOffset;
saloutos 0:083111ae2a11 5924 }
saloutos 0:083111ae2a11 5925
saloutos 0:083111ae2a11 5926
saloutos 0:083111ae2a11 5927
saloutos 0:083111ae2a11 5928 /**
saloutos 0:083111ae2a11 5929 * @brief floating-point Circular Read function.
saloutos 0:083111ae2a11 5930 */
saloutos 0:083111ae2a11 5931 CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32(
saloutos 0:083111ae2a11 5932 int32_t * circBuffer,
saloutos 0:083111ae2a11 5933 int32_t L,
saloutos 0:083111ae2a11 5934 int32_t * readOffset,
saloutos 0:083111ae2a11 5935 int32_t bufferInc,
saloutos 0:083111ae2a11 5936 int32_t * dst,
saloutos 0:083111ae2a11 5937 int32_t * dst_base,
saloutos 0:083111ae2a11 5938 int32_t dst_length,
saloutos 0:083111ae2a11 5939 int32_t dstInc,
saloutos 0:083111ae2a11 5940 uint32_t blockSize)
saloutos 0:083111ae2a11 5941 {
saloutos 0:083111ae2a11 5942 uint32_t i = 0u;
saloutos 0:083111ae2a11 5943 int32_t rOffset, dst_end;
saloutos 0:083111ae2a11 5944
saloutos 0:083111ae2a11 5945 /* Copy the value of Index pointer that points
saloutos 0:083111ae2a11 5946 * to the current location from where the input samples to be read */
saloutos 0:083111ae2a11 5947 rOffset = *readOffset;
saloutos 0:083111ae2a11 5948 dst_end = (int32_t) (dst_base + dst_length);
saloutos 0:083111ae2a11 5949
saloutos 0:083111ae2a11 5950 /* Loop over the blockSize */
saloutos 0:083111ae2a11 5951 i = blockSize;
saloutos 0:083111ae2a11 5952
saloutos 0:083111ae2a11 5953 while (i > 0u)
saloutos 0:083111ae2a11 5954 {
saloutos 0:083111ae2a11 5955 /* copy the sample from the circular buffer to the destination buffer */
saloutos 0:083111ae2a11 5956 *dst = circBuffer[rOffset];
saloutos 0:083111ae2a11 5957
saloutos 0:083111ae2a11 5958 /* Update the input pointer */
saloutos 0:083111ae2a11 5959 dst += dstInc;
saloutos 0:083111ae2a11 5960
saloutos 0:083111ae2a11 5961 if (dst == (int32_t *) dst_end)
saloutos 0:083111ae2a11 5962 {
saloutos 0:083111ae2a11 5963 dst = dst_base;
saloutos 0:083111ae2a11 5964 }
saloutos 0:083111ae2a11 5965
saloutos 0:083111ae2a11 5966 /* Circularly update rOffset. Watch out for positive and negative value */
saloutos 0:083111ae2a11 5967 rOffset += bufferInc;
saloutos 0:083111ae2a11 5968
saloutos 0:083111ae2a11 5969 if (rOffset >= L)
saloutos 0:083111ae2a11 5970 {
saloutos 0:083111ae2a11 5971 rOffset -= L;
saloutos 0:083111ae2a11 5972 }
saloutos 0:083111ae2a11 5973
saloutos 0:083111ae2a11 5974 /* Decrement the loop counter */
saloutos 0:083111ae2a11 5975 i--;
saloutos 0:083111ae2a11 5976 }
saloutos 0:083111ae2a11 5977
saloutos 0:083111ae2a11 5978 /* Update the index pointer */
saloutos 0:083111ae2a11 5979 *readOffset = rOffset;
saloutos 0:083111ae2a11 5980 }
saloutos 0:083111ae2a11 5981
saloutos 0:083111ae2a11 5982
saloutos 0:083111ae2a11 5983 /**
saloutos 0:083111ae2a11 5984 * @brief Q15 Circular write function.
saloutos 0:083111ae2a11 5985 */
saloutos 0:083111ae2a11 5986 CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15(
saloutos 0:083111ae2a11 5987 q15_t * circBuffer,
saloutos 0:083111ae2a11 5988 int32_t L,
saloutos 0:083111ae2a11 5989 uint16_t * writeOffset,
saloutos 0:083111ae2a11 5990 int32_t bufferInc,
saloutos 0:083111ae2a11 5991 const q15_t * src,
saloutos 0:083111ae2a11 5992 int32_t srcInc,
saloutos 0:083111ae2a11 5993 uint32_t blockSize)
saloutos 0:083111ae2a11 5994 {
saloutos 0:083111ae2a11 5995 uint32_t i = 0u;
saloutos 0:083111ae2a11 5996 int32_t wOffset;
saloutos 0:083111ae2a11 5997
saloutos 0:083111ae2a11 5998 /* Copy the value of Index pointer that points
saloutos 0:083111ae2a11 5999 * to the current location where the input samples to be copied */
saloutos 0:083111ae2a11 6000 wOffset = *writeOffset;
saloutos 0:083111ae2a11 6001
saloutos 0:083111ae2a11 6002 /* Loop over the blockSize */
saloutos 0:083111ae2a11 6003 i = blockSize;
saloutos 0:083111ae2a11 6004
saloutos 0:083111ae2a11 6005 while (i > 0u)
saloutos 0:083111ae2a11 6006 {
saloutos 0:083111ae2a11 6007 /* copy the input sample to the circular buffer */
saloutos 0:083111ae2a11 6008 circBuffer[wOffset] = *src;
saloutos 0:083111ae2a11 6009
saloutos 0:083111ae2a11 6010 /* Update the input pointer */
saloutos 0:083111ae2a11 6011 src += srcInc;
saloutos 0:083111ae2a11 6012
saloutos 0:083111ae2a11 6013 /* Circularly update wOffset. Watch out for positive and negative value */
saloutos 0:083111ae2a11 6014 wOffset += bufferInc;
saloutos 0:083111ae2a11 6015 if (wOffset >= L)
saloutos 0:083111ae2a11 6016 wOffset -= L;
saloutos 0:083111ae2a11 6017
saloutos 0:083111ae2a11 6018 /* Decrement the loop counter */
saloutos 0:083111ae2a11 6019 i--;
saloutos 0:083111ae2a11 6020 }
saloutos 0:083111ae2a11 6021
saloutos 0:083111ae2a11 6022 /* Update the index pointer */
saloutos 0:083111ae2a11 6023 *writeOffset = (uint16_t)wOffset;
saloutos 0:083111ae2a11 6024 }
saloutos 0:083111ae2a11 6025
saloutos 0:083111ae2a11 6026
saloutos 0:083111ae2a11 6027 /**
saloutos 0:083111ae2a11 6028 * @brief Q15 Circular Read function.
saloutos 0:083111ae2a11 6029 */
saloutos 0:083111ae2a11 6030 CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15(
saloutos 0:083111ae2a11 6031 q15_t * circBuffer,
saloutos 0:083111ae2a11 6032 int32_t L,
saloutos 0:083111ae2a11 6033 int32_t * readOffset,
saloutos 0:083111ae2a11 6034 int32_t bufferInc,
saloutos 0:083111ae2a11 6035 q15_t * dst,
saloutos 0:083111ae2a11 6036 q15_t * dst_base,
saloutos 0:083111ae2a11 6037 int32_t dst_length,
saloutos 0:083111ae2a11 6038 int32_t dstInc,
saloutos 0:083111ae2a11 6039 uint32_t blockSize)
saloutos 0:083111ae2a11 6040 {
saloutos 0:083111ae2a11 6041 uint32_t i = 0;
saloutos 0:083111ae2a11 6042 int32_t rOffset, dst_end;
saloutos 0:083111ae2a11 6043
saloutos 0:083111ae2a11 6044 /* Copy the value of Index pointer that points
saloutos 0:083111ae2a11 6045 * to the current location from where the input samples to be read */
saloutos 0:083111ae2a11 6046 rOffset = *readOffset;
saloutos 0:083111ae2a11 6047
saloutos 0:083111ae2a11 6048 dst_end = (int32_t) (dst_base + dst_length);
saloutos 0:083111ae2a11 6049
saloutos 0:083111ae2a11 6050 /* Loop over the blockSize */
saloutos 0:083111ae2a11 6051 i = blockSize;
saloutos 0:083111ae2a11 6052
saloutos 0:083111ae2a11 6053 while (i > 0u)
saloutos 0:083111ae2a11 6054 {
saloutos 0:083111ae2a11 6055 /* copy the sample from the circular buffer to the destination buffer */
saloutos 0:083111ae2a11 6056 *dst = circBuffer[rOffset];
saloutos 0:083111ae2a11 6057
saloutos 0:083111ae2a11 6058 /* Update the input pointer */
saloutos 0:083111ae2a11 6059 dst += dstInc;
saloutos 0:083111ae2a11 6060
saloutos 0:083111ae2a11 6061 if (dst == (q15_t *) dst_end)
saloutos 0:083111ae2a11 6062 {
saloutos 0:083111ae2a11 6063 dst = dst_base;
saloutos 0:083111ae2a11 6064 }
saloutos 0:083111ae2a11 6065
saloutos 0:083111ae2a11 6066 /* Circularly update wOffset. Watch out for positive and negative value */
saloutos 0:083111ae2a11 6067 rOffset += bufferInc;
saloutos 0:083111ae2a11 6068
saloutos 0:083111ae2a11 6069 if (rOffset >= L)
saloutos 0:083111ae2a11 6070 {
saloutos 0:083111ae2a11 6071 rOffset -= L;
saloutos 0:083111ae2a11 6072 }
saloutos 0:083111ae2a11 6073
saloutos 0:083111ae2a11 6074 /* Decrement the loop counter */
saloutos 0:083111ae2a11 6075 i--;
saloutos 0:083111ae2a11 6076 }
saloutos 0:083111ae2a11 6077
saloutos 0:083111ae2a11 6078 /* Update the index pointer */
saloutos 0:083111ae2a11 6079 *readOffset = rOffset;
saloutos 0:083111ae2a11 6080 }
saloutos 0:083111ae2a11 6081
saloutos 0:083111ae2a11 6082
saloutos 0:083111ae2a11 6083 /**
saloutos 0:083111ae2a11 6084 * @brief Q7 Circular write function.
saloutos 0:083111ae2a11 6085 */
saloutos 0:083111ae2a11 6086 CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7(
saloutos 0:083111ae2a11 6087 q7_t * circBuffer,
saloutos 0:083111ae2a11 6088 int32_t L,
saloutos 0:083111ae2a11 6089 uint16_t * writeOffset,
saloutos 0:083111ae2a11 6090 int32_t bufferInc,
saloutos 0:083111ae2a11 6091 const q7_t * src,
saloutos 0:083111ae2a11 6092 int32_t srcInc,
saloutos 0:083111ae2a11 6093 uint32_t blockSize)
saloutos 0:083111ae2a11 6094 {
saloutos 0:083111ae2a11 6095 uint32_t i = 0u;
saloutos 0:083111ae2a11 6096 int32_t wOffset;
saloutos 0:083111ae2a11 6097
saloutos 0:083111ae2a11 6098 /* Copy the value of Index pointer that points
saloutos 0:083111ae2a11 6099 * to the current location where the input samples to be copied */
saloutos 0:083111ae2a11 6100 wOffset = *writeOffset;
saloutos 0:083111ae2a11 6101
saloutos 0:083111ae2a11 6102 /* Loop over the blockSize */
saloutos 0:083111ae2a11 6103 i = blockSize;
saloutos 0:083111ae2a11 6104
saloutos 0:083111ae2a11 6105 while (i > 0u)
saloutos 0:083111ae2a11 6106 {
saloutos 0:083111ae2a11 6107 /* copy the input sample to the circular buffer */
saloutos 0:083111ae2a11 6108 circBuffer[wOffset] = *src;
saloutos 0:083111ae2a11 6109
saloutos 0:083111ae2a11 6110 /* Update the input pointer */
saloutos 0:083111ae2a11 6111 src += srcInc;
saloutos 0:083111ae2a11 6112
saloutos 0:083111ae2a11 6113 /* Circularly update wOffset. Watch out for positive and negative value */
saloutos 0:083111ae2a11 6114 wOffset += bufferInc;
saloutos 0:083111ae2a11 6115 if (wOffset >= L)
saloutos 0:083111ae2a11 6116 wOffset -= L;
saloutos 0:083111ae2a11 6117
saloutos 0:083111ae2a11 6118 /* Decrement the loop counter */
saloutos 0:083111ae2a11 6119 i--;
saloutos 0:083111ae2a11 6120 }
saloutos 0:083111ae2a11 6121
saloutos 0:083111ae2a11 6122 /* Update the index pointer */
saloutos 0:083111ae2a11 6123 *writeOffset = (uint16_t)wOffset;
saloutos 0:083111ae2a11 6124 }
saloutos 0:083111ae2a11 6125
saloutos 0:083111ae2a11 6126
saloutos 0:083111ae2a11 6127 /**
saloutos 0:083111ae2a11 6128 * @brief Q7 Circular Read function.
saloutos 0:083111ae2a11 6129 */
saloutos 0:083111ae2a11 6130 CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7(
saloutos 0:083111ae2a11 6131 q7_t * circBuffer,
saloutos 0:083111ae2a11 6132 int32_t L,
saloutos 0:083111ae2a11 6133 int32_t * readOffset,
saloutos 0:083111ae2a11 6134 int32_t bufferInc,
saloutos 0:083111ae2a11 6135 q7_t * dst,
saloutos 0:083111ae2a11 6136 q7_t * dst_base,
saloutos 0:083111ae2a11 6137 int32_t dst_length,
saloutos 0:083111ae2a11 6138 int32_t dstInc,
saloutos 0:083111ae2a11 6139 uint32_t blockSize)
saloutos 0:083111ae2a11 6140 {
saloutos 0:083111ae2a11 6141 uint32_t i = 0;
saloutos 0:083111ae2a11 6142 int32_t rOffset, dst_end;
saloutos 0:083111ae2a11 6143
saloutos 0:083111ae2a11 6144 /* Copy the value of Index pointer that points
saloutos 0:083111ae2a11 6145 * to the current location from where the input samples to be read */
saloutos 0:083111ae2a11 6146 rOffset = *readOffset;
saloutos 0:083111ae2a11 6147
saloutos 0:083111ae2a11 6148 dst_end = (int32_t) (dst_base + dst_length);
saloutos 0:083111ae2a11 6149
saloutos 0:083111ae2a11 6150 /* Loop over the blockSize */
saloutos 0:083111ae2a11 6151 i = blockSize;
saloutos 0:083111ae2a11 6152
saloutos 0:083111ae2a11 6153 while (i > 0u)
saloutos 0:083111ae2a11 6154 {
saloutos 0:083111ae2a11 6155 /* copy the sample from the circular buffer to the destination buffer */
saloutos 0:083111ae2a11 6156 *dst = circBuffer[rOffset];
saloutos 0:083111ae2a11 6157
saloutos 0:083111ae2a11 6158 /* Update the input pointer */
saloutos 0:083111ae2a11 6159 dst += dstInc;
saloutos 0:083111ae2a11 6160
saloutos 0:083111ae2a11 6161 if (dst == (q7_t *) dst_end)
saloutos 0:083111ae2a11 6162 {
saloutos 0:083111ae2a11 6163 dst = dst_base;
saloutos 0:083111ae2a11 6164 }
saloutos 0:083111ae2a11 6165
saloutos 0:083111ae2a11 6166 /* Circularly update rOffset. Watch out for positive and negative value */
saloutos 0:083111ae2a11 6167 rOffset += bufferInc;
saloutos 0:083111ae2a11 6168
saloutos 0:083111ae2a11 6169 if (rOffset >= L)
saloutos 0:083111ae2a11 6170 {
saloutos 0:083111ae2a11 6171 rOffset -= L;
saloutos 0:083111ae2a11 6172 }
saloutos 0:083111ae2a11 6173
saloutos 0:083111ae2a11 6174 /* Decrement the loop counter */
saloutos 0:083111ae2a11 6175 i--;
saloutos 0:083111ae2a11 6176 }
saloutos 0:083111ae2a11 6177
saloutos 0:083111ae2a11 6178 /* Update the index pointer */
saloutos 0:083111ae2a11 6179 *readOffset = rOffset;
saloutos 0:083111ae2a11 6180 }
saloutos 0:083111ae2a11 6181
saloutos 0:083111ae2a11 6182
saloutos 0:083111ae2a11 6183 /**
saloutos 0:083111ae2a11 6184 * @brief Sum of the squares of the elements of a Q31 vector.
saloutos 0:083111ae2a11 6185 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6186 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6187 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6188 */
saloutos 0:083111ae2a11 6189 void arm_power_q31(
saloutos 0:083111ae2a11 6190 q31_t * pSrc,
saloutos 0:083111ae2a11 6191 uint32_t blockSize,
saloutos 0:083111ae2a11 6192 q63_t * pResult);
saloutos 0:083111ae2a11 6193
saloutos 0:083111ae2a11 6194
saloutos 0:083111ae2a11 6195 /**
saloutos 0:083111ae2a11 6196 * @brief Sum of the squares of the elements of a floating-point vector.
saloutos 0:083111ae2a11 6197 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6198 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6199 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6200 */
saloutos 0:083111ae2a11 6201 void arm_power_f32(
saloutos 0:083111ae2a11 6202 float32_t * pSrc,
saloutos 0:083111ae2a11 6203 uint32_t blockSize,
saloutos 0:083111ae2a11 6204 float32_t * pResult);
saloutos 0:083111ae2a11 6205
saloutos 0:083111ae2a11 6206
saloutos 0:083111ae2a11 6207 /**
saloutos 0:083111ae2a11 6208 * @brief Sum of the squares of the elements of a Q15 vector.
saloutos 0:083111ae2a11 6209 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6210 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6211 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6212 */
saloutos 0:083111ae2a11 6213 void arm_power_q15(
saloutos 0:083111ae2a11 6214 q15_t * pSrc,
saloutos 0:083111ae2a11 6215 uint32_t blockSize,
saloutos 0:083111ae2a11 6216 q63_t * pResult);
saloutos 0:083111ae2a11 6217
saloutos 0:083111ae2a11 6218
saloutos 0:083111ae2a11 6219 /**
saloutos 0:083111ae2a11 6220 * @brief Sum of the squares of the elements of a Q7 vector.
saloutos 0:083111ae2a11 6221 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6222 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6223 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6224 */
saloutos 0:083111ae2a11 6225 void arm_power_q7(
saloutos 0:083111ae2a11 6226 q7_t * pSrc,
saloutos 0:083111ae2a11 6227 uint32_t blockSize,
saloutos 0:083111ae2a11 6228 q31_t * pResult);
saloutos 0:083111ae2a11 6229
saloutos 0:083111ae2a11 6230
saloutos 0:083111ae2a11 6231 /**
saloutos 0:083111ae2a11 6232 * @brief Mean value of a Q7 vector.
saloutos 0:083111ae2a11 6233 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6234 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6235 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6236 */
saloutos 0:083111ae2a11 6237 void arm_mean_q7(
saloutos 0:083111ae2a11 6238 q7_t * pSrc,
saloutos 0:083111ae2a11 6239 uint32_t blockSize,
saloutos 0:083111ae2a11 6240 q7_t * pResult);
saloutos 0:083111ae2a11 6241
saloutos 0:083111ae2a11 6242
saloutos 0:083111ae2a11 6243 /**
saloutos 0:083111ae2a11 6244 * @brief Mean value of a Q15 vector.
saloutos 0:083111ae2a11 6245 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6246 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6247 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6248 */
saloutos 0:083111ae2a11 6249 void arm_mean_q15(
saloutos 0:083111ae2a11 6250 q15_t * pSrc,
saloutos 0:083111ae2a11 6251 uint32_t blockSize,
saloutos 0:083111ae2a11 6252 q15_t * pResult);
saloutos 0:083111ae2a11 6253
saloutos 0:083111ae2a11 6254
saloutos 0:083111ae2a11 6255 /**
saloutos 0:083111ae2a11 6256 * @brief Mean value of a Q31 vector.
saloutos 0:083111ae2a11 6257 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6258 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6259 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6260 */
saloutos 0:083111ae2a11 6261 void arm_mean_q31(
saloutos 0:083111ae2a11 6262 q31_t * pSrc,
saloutos 0:083111ae2a11 6263 uint32_t blockSize,
saloutos 0:083111ae2a11 6264 q31_t * pResult);
saloutos 0:083111ae2a11 6265
saloutos 0:083111ae2a11 6266
saloutos 0:083111ae2a11 6267 /**
saloutos 0:083111ae2a11 6268 * @brief Mean value of a floating-point vector.
saloutos 0:083111ae2a11 6269 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6270 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6271 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6272 */
saloutos 0:083111ae2a11 6273 void arm_mean_f32(
saloutos 0:083111ae2a11 6274 float32_t * pSrc,
saloutos 0:083111ae2a11 6275 uint32_t blockSize,
saloutos 0:083111ae2a11 6276 float32_t * pResult);
saloutos 0:083111ae2a11 6277
saloutos 0:083111ae2a11 6278
saloutos 0:083111ae2a11 6279 /**
saloutos 0:083111ae2a11 6280 * @brief Variance of the elements of a floating-point vector.
saloutos 0:083111ae2a11 6281 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6282 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6283 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6284 */
saloutos 0:083111ae2a11 6285 void arm_var_f32(
saloutos 0:083111ae2a11 6286 float32_t * pSrc,
saloutos 0:083111ae2a11 6287 uint32_t blockSize,
saloutos 0:083111ae2a11 6288 float32_t * pResult);
saloutos 0:083111ae2a11 6289
saloutos 0:083111ae2a11 6290
saloutos 0:083111ae2a11 6291 /**
saloutos 0:083111ae2a11 6292 * @brief Variance of the elements of a Q31 vector.
saloutos 0:083111ae2a11 6293 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6294 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6295 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6296 */
saloutos 0:083111ae2a11 6297 void arm_var_q31(
saloutos 0:083111ae2a11 6298 q31_t * pSrc,
saloutos 0:083111ae2a11 6299 uint32_t blockSize,
saloutos 0:083111ae2a11 6300 q31_t * pResult);
saloutos 0:083111ae2a11 6301
saloutos 0:083111ae2a11 6302
saloutos 0:083111ae2a11 6303 /**
saloutos 0:083111ae2a11 6304 * @brief Variance of the elements of a Q15 vector.
saloutos 0:083111ae2a11 6305 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6306 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6307 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6308 */
saloutos 0:083111ae2a11 6309 void arm_var_q15(
saloutos 0:083111ae2a11 6310 q15_t * pSrc,
saloutos 0:083111ae2a11 6311 uint32_t blockSize,
saloutos 0:083111ae2a11 6312 q15_t * pResult);
saloutos 0:083111ae2a11 6313
saloutos 0:083111ae2a11 6314
saloutos 0:083111ae2a11 6315 /**
saloutos 0:083111ae2a11 6316 * @brief Root Mean Square of the elements of a floating-point vector.
saloutos 0:083111ae2a11 6317 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6318 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6319 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6320 */
saloutos 0:083111ae2a11 6321 void arm_rms_f32(
saloutos 0:083111ae2a11 6322 float32_t * pSrc,
saloutos 0:083111ae2a11 6323 uint32_t blockSize,
saloutos 0:083111ae2a11 6324 float32_t * pResult);
saloutos 0:083111ae2a11 6325
saloutos 0:083111ae2a11 6326
saloutos 0:083111ae2a11 6327 /**
saloutos 0:083111ae2a11 6328 * @brief Root Mean Square of the elements of a Q31 vector.
saloutos 0:083111ae2a11 6329 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6330 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6331 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6332 */
saloutos 0:083111ae2a11 6333 void arm_rms_q31(
saloutos 0:083111ae2a11 6334 q31_t * pSrc,
saloutos 0:083111ae2a11 6335 uint32_t blockSize,
saloutos 0:083111ae2a11 6336 q31_t * pResult);
saloutos 0:083111ae2a11 6337
saloutos 0:083111ae2a11 6338
saloutos 0:083111ae2a11 6339 /**
saloutos 0:083111ae2a11 6340 * @brief Root Mean Square of the elements of a Q15 vector.
saloutos 0:083111ae2a11 6341 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6342 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6343 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6344 */
saloutos 0:083111ae2a11 6345 void arm_rms_q15(
saloutos 0:083111ae2a11 6346 q15_t * pSrc,
saloutos 0:083111ae2a11 6347 uint32_t blockSize,
saloutos 0:083111ae2a11 6348 q15_t * pResult);
saloutos 0:083111ae2a11 6349
saloutos 0:083111ae2a11 6350
saloutos 0:083111ae2a11 6351 /**
saloutos 0:083111ae2a11 6352 * @brief Standard deviation of the elements of a floating-point vector.
saloutos 0:083111ae2a11 6353 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6354 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6355 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6356 */
saloutos 0:083111ae2a11 6357 void arm_std_f32(
saloutos 0:083111ae2a11 6358 float32_t * pSrc,
saloutos 0:083111ae2a11 6359 uint32_t blockSize,
saloutos 0:083111ae2a11 6360 float32_t * pResult);
saloutos 0:083111ae2a11 6361
saloutos 0:083111ae2a11 6362
saloutos 0:083111ae2a11 6363 /**
saloutos 0:083111ae2a11 6364 * @brief Standard deviation of the elements of a Q31 vector.
saloutos 0:083111ae2a11 6365 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6366 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6367 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6368 */
saloutos 0:083111ae2a11 6369 void arm_std_q31(
saloutos 0:083111ae2a11 6370 q31_t * pSrc,
saloutos 0:083111ae2a11 6371 uint32_t blockSize,
saloutos 0:083111ae2a11 6372 q31_t * pResult);
saloutos 0:083111ae2a11 6373
saloutos 0:083111ae2a11 6374
saloutos 0:083111ae2a11 6375 /**
saloutos 0:083111ae2a11 6376 * @brief Standard deviation of the elements of a Q15 vector.
saloutos 0:083111ae2a11 6377 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6378 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6379 * @param[out] pResult is output value.
saloutos 0:083111ae2a11 6380 */
saloutos 0:083111ae2a11 6381 void arm_std_q15(
saloutos 0:083111ae2a11 6382 q15_t * pSrc,
saloutos 0:083111ae2a11 6383 uint32_t blockSize,
saloutos 0:083111ae2a11 6384 q15_t * pResult);
saloutos 0:083111ae2a11 6385
saloutos 0:083111ae2a11 6386
saloutos 0:083111ae2a11 6387 /**
saloutos 0:083111ae2a11 6388 * @brief Floating-point complex magnitude
saloutos 0:083111ae2a11 6389 * @param[in] pSrc points to the complex input vector
saloutos 0:083111ae2a11 6390 * @param[out] pDst points to the real output vector
saloutos 0:083111ae2a11 6391 * @param[in] numSamples number of complex samples in the input vector
saloutos 0:083111ae2a11 6392 */
saloutos 0:083111ae2a11 6393 void arm_cmplx_mag_f32(
saloutos 0:083111ae2a11 6394 float32_t * pSrc,
saloutos 0:083111ae2a11 6395 float32_t * pDst,
saloutos 0:083111ae2a11 6396 uint32_t numSamples);
saloutos 0:083111ae2a11 6397
saloutos 0:083111ae2a11 6398
saloutos 0:083111ae2a11 6399 /**
saloutos 0:083111ae2a11 6400 * @brief Q31 complex magnitude
saloutos 0:083111ae2a11 6401 * @param[in] pSrc points to the complex input vector
saloutos 0:083111ae2a11 6402 * @param[out] pDst points to the real output vector
saloutos 0:083111ae2a11 6403 * @param[in] numSamples number of complex samples in the input vector
saloutos 0:083111ae2a11 6404 */
saloutos 0:083111ae2a11 6405 void arm_cmplx_mag_q31(
saloutos 0:083111ae2a11 6406 q31_t * pSrc,
saloutos 0:083111ae2a11 6407 q31_t * pDst,
saloutos 0:083111ae2a11 6408 uint32_t numSamples);
saloutos 0:083111ae2a11 6409
saloutos 0:083111ae2a11 6410
saloutos 0:083111ae2a11 6411 /**
saloutos 0:083111ae2a11 6412 * @brief Q15 complex magnitude
saloutos 0:083111ae2a11 6413 * @param[in] pSrc points to the complex input vector
saloutos 0:083111ae2a11 6414 * @param[out] pDst points to the real output vector
saloutos 0:083111ae2a11 6415 * @param[in] numSamples number of complex samples in the input vector
saloutos 0:083111ae2a11 6416 */
saloutos 0:083111ae2a11 6417 void arm_cmplx_mag_q15(
saloutos 0:083111ae2a11 6418 q15_t * pSrc,
saloutos 0:083111ae2a11 6419 q15_t * pDst,
saloutos 0:083111ae2a11 6420 uint32_t numSamples);
saloutos 0:083111ae2a11 6421
saloutos 0:083111ae2a11 6422
saloutos 0:083111ae2a11 6423 /**
saloutos 0:083111ae2a11 6424 * @brief Q15 complex dot product
saloutos 0:083111ae2a11 6425 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 6426 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 6427 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 6428 * @param[out] realResult real part of the result returned here
saloutos 0:083111ae2a11 6429 * @param[out] imagResult imaginary part of the result returned here
saloutos 0:083111ae2a11 6430 */
saloutos 0:083111ae2a11 6431 void arm_cmplx_dot_prod_q15(
saloutos 0:083111ae2a11 6432 q15_t * pSrcA,
saloutos 0:083111ae2a11 6433 q15_t * pSrcB,
saloutos 0:083111ae2a11 6434 uint32_t numSamples,
saloutos 0:083111ae2a11 6435 q31_t * realResult,
saloutos 0:083111ae2a11 6436 q31_t * imagResult);
saloutos 0:083111ae2a11 6437
saloutos 0:083111ae2a11 6438
saloutos 0:083111ae2a11 6439 /**
saloutos 0:083111ae2a11 6440 * @brief Q31 complex dot product
saloutos 0:083111ae2a11 6441 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 6442 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 6443 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 6444 * @param[out] realResult real part of the result returned here
saloutos 0:083111ae2a11 6445 * @param[out] imagResult imaginary part of the result returned here
saloutos 0:083111ae2a11 6446 */
saloutos 0:083111ae2a11 6447 void arm_cmplx_dot_prod_q31(
saloutos 0:083111ae2a11 6448 q31_t * pSrcA,
saloutos 0:083111ae2a11 6449 q31_t * pSrcB,
saloutos 0:083111ae2a11 6450 uint32_t numSamples,
saloutos 0:083111ae2a11 6451 q63_t * realResult,
saloutos 0:083111ae2a11 6452 q63_t * imagResult);
saloutos 0:083111ae2a11 6453
saloutos 0:083111ae2a11 6454
saloutos 0:083111ae2a11 6455 /**
saloutos 0:083111ae2a11 6456 * @brief Floating-point complex dot product
saloutos 0:083111ae2a11 6457 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 6458 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 6459 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 6460 * @param[out] realResult real part of the result returned here
saloutos 0:083111ae2a11 6461 * @param[out] imagResult imaginary part of the result returned here
saloutos 0:083111ae2a11 6462 */
saloutos 0:083111ae2a11 6463 void arm_cmplx_dot_prod_f32(
saloutos 0:083111ae2a11 6464 float32_t * pSrcA,
saloutos 0:083111ae2a11 6465 float32_t * pSrcB,
saloutos 0:083111ae2a11 6466 uint32_t numSamples,
saloutos 0:083111ae2a11 6467 float32_t * realResult,
saloutos 0:083111ae2a11 6468 float32_t * imagResult);
saloutos 0:083111ae2a11 6469
saloutos 0:083111ae2a11 6470
saloutos 0:083111ae2a11 6471 /**
saloutos 0:083111ae2a11 6472 * @brief Q15 complex-by-real multiplication
saloutos 0:083111ae2a11 6473 * @param[in] pSrcCmplx points to the complex input vector
saloutos 0:083111ae2a11 6474 * @param[in] pSrcReal points to the real input vector
saloutos 0:083111ae2a11 6475 * @param[out] pCmplxDst points to the complex output vector
saloutos 0:083111ae2a11 6476 * @param[in] numSamples number of samples in each vector
saloutos 0:083111ae2a11 6477 */
saloutos 0:083111ae2a11 6478 void arm_cmplx_mult_real_q15(
saloutos 0:083111ae2a11 6479 q15_t * pSrcCmplx,
saloutos 0:083111ae2a11 6480 q15_t * pSrcReal,
saloutos 0:083111ae2a11 6481 q15_t * pCmplxDst,
saloutos 0:083111ae2a11 6482 uint32_t numSamples);
saloutos 0:083111ae2a11 6483
saloutos 0:083111ae2a11 6484
saloutos 0:083111ae2a11 6485 /**
saloutos 0:083111ae2a11 6486 * @brief Q31 complex-by-real multiplication
saloutos 0:083111ae2a11 6487 * @param[in] pSrcCmplx points to the complex input vector
saloutos 0:083111ae2a11 6488 * @param[in] pSrcReal points to the real input vector
saloutos 0:083111ae2a11 6489 * @param[out] pCmplxDst points to the complex output vector
saloutos 0:083111ae2a11 6490 * @param[in] numSamples number of samples in each vector
saloutos 0:083111ae2a11 6491 */
saloutos 0:083111ae2a11 6492 void arm_cmplx_mult_real_q31(
saloutos 0:083111ae2a11 6493 q31_t * pSrcCmplx,
saloutos 0:083111ae2a11 6494 q31_t * pSrcReal,
saloutos 0:083111ae2a11 6495 q31_t * pCmplxDst,
saloutos 0:083111ae2a11 6496 uint32_t numSamples);
saloutos 0:083111ae2a11 6497
saloutos 0:083111ae2a11 6498
saloutos 0:083111ae2a11 6499 /**
saloutos 0:083111ae2a11 6500 * @brief Floating-point complex-by-real multiplication
saloutos 0:083111ae2a11 6501 * @param[in] pSrcCmplx points to the complex input vector
saloutos 0:083111ae2a11 6502 * @param[in] pSrcReal points to the real input vector
saloutos 0:083111ae2a11 6503 * @param[out] pCmplxDst points to the complex output vector
saloutos 0:083111ae2a11 6504 * @param[in] numSamples number of samples in each vector
saloutos 0:083111ae2a11 6505 */
saloutos 0:083111ae2a11 6506 void arm_cmplx_mult_real_f32(
saloutos 0:083111ae2a11 6507 float32_t * pSrcCmplx,
saloutos 0:083111ae2a11 6508 float32_t * pSrcReal,
saloutos 0:083111ae2a11 6509 float32_t * pCmplxDst,
saloutos 0:083111ae2a11 6510 uint32_t numSamples);
saloutos 0:083111ae2a11 6511
saloutos 0:083111ae2a11 6512
saloutos 0:083111ae2a11 6513 /**
saloutos 0:083111ae2a11 6514 * @brief Minimum value of a Q7 vector.
saloutos 0:083111ae2a11 6515 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6516 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6517 * @param[out] result is output pointer
saloutos 0:083111ae2a11 6518 * @param[in] index is the array index of the minimum value in the input buffer.
saloutos 0:083111ae2a11 6519 */
saloutos 0:083111ae2a11 6520 void arm_min_q7(
saloutos 0:083111ae2a11 6521 q7_t * pSrc,
saloutos 0:083111ae2a11 6522 uint32_t blockSize,
saloutos 0:083111ae2a11 6523 q7_t * result,
saloutos 0:083111ae2a11 6524 uint32_t * index);
saloutos 0:083111ae2a11 6525
saloutos 0:083111ae2a11 6526
saloutos 0:083111ae2a11 6527 /**
saloutos 0:083111ae2a11 6528 * @brief Minimum value of a Q15 vector.
saloutos 0:083111ae2a11 6529 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6530 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6531 * @param[out] pResult is output pointer
saloutos 0:083111ae2a11 6532 * @param[in] pIndex is the array index of the minimum value in the input buffer.
saloutos 0:083111ae2a11 6533 */
saloutos 0:083111ae2a11 6534 void arm_min_q15(
saloutos 0:083111ae2a11 6535 q15_t * pSrc,
saloutos 0:083111ae2a11 6536 uint32_t blockSize,
saloutos 0:083111ae2a11 6537 q15_t * pResult,
saloutos 0:083111ae2a11 6538 uint32_t * pIndex);
saloutos 0:083111ae2a11 6539
saloutos 0:083111ae2a11 6540
saloutos 0:083111ae2a11 6541 /**
saloutos 0:083111ae2a11 6542 * @brief Minimum value of a Q31 vector.
saloutos 0:083111ae2a11 6543 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6544 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6545 * @param[out] pResult is output pointer
saloutos 0:083111ae2a11 6546 * @param[out] pIndex is the array index of the minimum value in the input buffer.
saloutos 0:083111ae2a11 6547 */
saloutos 0:083111ae2a11 6548 void arm_min_q31(
saloutos 0:083111ae2a11 6549 q31_t * pSrc,
saloutos 0:083111ae2a11 6550 uint32_t blockSize,
saloutos 0:083111ae2a11 6551 q31_t * pResult,
saloutos 0:083111ae2a11 6552 uint32_t * pIndex);
saloutos 0:083111ae2a11 6553
saloutos 0:083111ae2a11 6554
saloutos 0:083111ae2a11 6555 /**
saloutos 0:083111ae2a11 6556 * @brief Minimum value of a floating-point vector.
saloutos 0:083111ae2a11 6557 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6558 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6559 * @param[out] pResult is output pointer
saloutos 0:083111ae2a11 6560 * @param[out] pIndex is the array index of the minimum value in the input buffer.
saloutos 0:083111ae2a11 6561 */
saloutos 0:083111ae2a11 6562 void arm_min_f32(
saloutos 0:083111ae2a11 6563 float32_t * pSrc,
saloutos 0:083111ae2a11 6564 uint32_t blockSize,
saloutos 0:083111ae2a11 6565 float32_t * pResult,
saloutos 0:083111ae2a11 6566 uint32_t * pIndex);
saloutos 0:083111ae2a11 6567
saloutos 0:083111ae2a11 6568
saloutos 0:083111ae2a11 6569 /**
saloutos 0:083111ae2a11 6570 * @brief Maximum value of a Q7 vector.
saloutos 0:083111ae2a11 6571 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 6572 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6573 * @param[out] pResult maximum value returned here
saloutos 0:083111ae2a11 6574 * @param[out] pIndex index of maximum value returned here
saloutos 0:083111ae2a11 6575 */
saloutos 0:083111ae2a11 6576 void arm_max_q7(
saloutos 0:083111ae2a11 6577 q7_t * pSrc,
saloutos 0:083111ae2a11 6578 uint32_t blockSize,
saloutos 0:083111ae2a11 6579 q7_t * pResult,
saloutos 0:083111ae2a11 6580 uint32_t * pIndex);
saloutos 0:083111ae2a11 6581
saloutos 0:083111ae2a11 6582
saloutos 0:083111ae2a11 6583 /**
saloutos 0:083111ae2a11 6584 * @brief Maximum value of a Q15 vector.
saloutos 0:083111ae2a11 6585 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 6586 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6587 * @param[out] pResult maximum value returned here
saloutos 0:083111ae2a11 6588 * @param[out] pIndex index of maximum value returned here
saloutos 0:083111ae2a11 6589 */
saloutos 0:083111ae2a11 6590 void arm_max_q15(
saloutos 0:083111ae2a11 6591 q15_t * pSrc,
saloutos 0:083111ae2a11 6592 uint32_t blockSize,
saloutos 0:083111ae2a11 6593 q15_t * pResult,
saloutos 0:083111ae2a11 6594 uint32_t * pIndex);
saloutos 0:083111ae2a11 6595
saloutos 0:083111ae2a11 6596
saloutos 0:083111ae2a11 6597 /**
saloutos 0:083111ae2a11 6598 * @brief Maximum value of a Q31 vector.
saloutos 0:083111ae2a11 6599 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 6600 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6601 * @param[out] pResult maximum value returned here
saloutos 0:083111ae2a11 6602 * @param[out] pIndex index of maximum value returned here
saloutos 0:083111ae2a11 6603 */
saloutos 0:083111ae2a11 6604 void arm_max_q31(
saloutos 0:083111ae2a11 6605 q31_t * pSrc,
saloutos 0:083111ae2a11 6606 uint32_t blockSize,
saloutos 0:083111ae2a11 6607 q31_t * pResult,
saloutos 0:083111ae2a11 6608 uint32_t * pIndex);
saloutos 0:083111ae2a11 6609
saloutos 0:083111ae2a11 6610
saloutos 0:083111ae2a11 6611 /**
saloutos 0:083111ae2a11 6612 * @brief Maximum value of a floating-point vector.
saloutos 0:083111ae2a11 6613 * @param[in] pSrc points to the input buffer
saloutos 0:083111ae2a11 6614 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6615 * @param[out] pResult maximum value returned here
saloutos 0:083111ae2a11 6616 * @param[out] pIndex index of maximum value returned here
saloutos 0:083111ae2a11 6617 */
saloutos 0:083111ae2a11 6618 void arm_max_f32(
saloutos 0:083111ae2a11 6619 float32_t * pSrc,
saloutos 0:083111ae2a11 6620 uint32_t blockSize,
saloutos 0:083111ae2a11 6621 float32_t * pResult,
saloutos 0:083111ae2a11 6622 uint32_t * pIndex);
saloutos 0:083111ae2a11 6623
saloutos 0:083111ae2a11 6624
saloutos 0:083111ae2a11 6625 /**
saloutos 0:083111ae2a11 6626 * @brief Q15 complex-by-complex multiplication
saloutos 0:083111ae2a11 6627 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 6628 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 6629 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 6630 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 6631 */
saloutos 0:083111ae2a11 6632 void arm_cmplx_mult_cmplx_q15(
saloutos 0:083111ae2a11 6633 q15_t * pSrcA,
saloutos 0:083111ae2a11 6634 q15_t * pSrcB,
saloutos 0:083111ae2a11 6635 q15_t * pDst,
saloutos 0:083111ae2a11 6636 uint32_t numSamples);
saloutos 0:083111ae2a11 6637
saloutos 0:083111ae2a11 6638
saloutos 0:083111ae2a11 6639 /**
saloutos 0:083111ae2a11 6640 * @brief Q31 complex-by-complex multiplication
saloutos 0:083111ae2a11 6641 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 6642 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 6643 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 6644 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 6645 */
saloutos 0:083111ae2a11 6646 void arm_cmplx_mult_cmplx_q31(
saloutos 0:083111ae2a11 6647 q31_t * pSrcA,
saloutos 0:083111ae2a11 6648 q31_t * pSrcB,
saloutos 0:083111ae2a11 6649 q31_t * pDst,
saloutos 0:083111ae2a11 6650 uint32_t numSamples);
saloutos 0:083111ae2a11 6651
saloutos 0:083111ae2a11 6652
saloutos 0:083111ae2a11 6653 /**
saloutos 0:083111ae2a11 6654 * @brief Floating-point complex-by-complex multiplication
saloutos 0:083111ae2a11 6655 * @param[in] pSrcA points to the first input vector
saloutos 0:083111ae2a11 6656 * @param[in] pSrcB points to the second input vector
saloutos 0:083111ae2a11 6657 * @param[out] pDst points to the output vector
saloutos 0:083111ae2a11 6658 * @param[in] numSamples number of complex samples in each vector
saloutos 0:083111ae2a11 6659 */
saloutos 0:083111ae2a11 6660 void arm_cmplx_mult_cmplx_f32(
saloutos 0:083111ae2a11 6661 float32_t * pSrcA,
saloutos 0:083111ae2a11 6662 float32_t * pSrcB,
saloutos 0:083111ae2a11 6663 float32_t * pDst,
saloutos 0:083111ae2a11 6664 uint32_t numSamples);
saloutos 0:083111ae2a11 6665
saloutos 0:083111ae2a11 6666
saloutos 0:083111ae2a11 6667 /**
saloutos 0:083111ae2a11 6668 * @brief Converts the elements of the floating-point vector to Q31 vector.
saloutos 0:083111ae2a11 6669 * @param[in] pSrc points to the floating-point input vector
saloutos 0:083111ae2a11 6670 * @param[out] pDst points to the Q31 output vector
saloutos 0:083111ae2a11 6671 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6672 */
saloutos 0:083111ae2a11 6673 void arm_float_to_q31(
saloutos 0:083111ae2a11 6674 float32_t * pSrc,
saloutos 0:083111ae2a11 6675 q31_t * pDst,
saloutos 0:083111ae2a11 6676 uint32_t blockSize);
saloutos 0:083111ae2a11 6677
saloutos 0:083111ae2a11 6678
saloutos 0:083111ae2a11 6679 /**
saloutos 0:083111ae2a11 6680 * @brief Converts the elements of the floating-point vector to Q15 vector.
saloutos 0:083111ae2a11 6681 * @param[in] pSrc points to the floating-point input vector
saloutos 0:083111ae2a11 6682 * @param[out] pDst points to the Q15 output vector
saloutos 0:083111ae2a11 6683 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6684 */
saloutos 0:083111ae2a11 6685 void arm_float_to_q15(
saloutos 0:083111ae2a11 6686 float32_t * pSrc,
saloutos 0:083111ae2a11 6687 q15_t * pDst,
saloutos 0:083111ae2a11 6688 uint32_t blockSize);
saloutos 0:083111ae2a11 6689
saloutos 0:083111ae2a11 6690
saloutos 0:083111ae2a11 6691 /**
saloutos 0:083111ae2a11 6692 * @brief Converts the elements of the floating-point vector to Q7 vector.
saloutos 0:083111ae2a11 6693 * @param[in] pSrc points to the floating-point input vector
saloutos 0:083111ae2a11 6694 * @param[out] pDst points to the Q7 output vector
saloutos 0:083111ae2a11 6695 * @param[in] blockSize length of the input vector
saloutos 0:083111ae2a11 6696 */
saloutos 0:083111ae2a11 6697 void arm_float_to_q7(
saloutos 0:083111ae2a11 6698 float32_t * pSrc,
saloutos 0:083111ae2a11 6699 q7_t * pDst,
saloutos 0:083111ae2a11 6700 uint32_t blockSize);
saloutos 0:083111ae2a11 6701
saloutos 0:083111ae2a11 6702
saloutos 0:083111ae2a11 6703 /**
saloutos 0:083111ae2a11 6704 * @brief Converts the elements of the Q31 vector to Q15 vector.
saloutos 0:083111ae2a11 6705 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6706 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 6707 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6708 */
saloutos 0:083111ae2a11 6709 void arm_q31_to_q15(
saloutos 0:083111ae2a11 6710 q31_t * pSrc,
saloutos 0:083111ae2a11 6711 q15_t * pDst,
saloutos 0:083111ae2a11 6712 uint32_t blockSize);
saloutos 0:083111ae2a11 6713
saloutos 0:083111ae2a11 6714
saloutos 0:083111ae2a11 6715 /**
saloutos 0:083111ae2a11 6716 * @brief Converts the elements of the Q31 vector to Q7 vector.
saloutos 0:083111ae2a11 6717 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6718 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 6719 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6720 */
saloutos 0:083111ae2a11 6721 void arm_q31_to_q7(
saloutos 0:083111ae2a11 6722 q31_t * pSrc,
saloutos 0:083111ae2a11 6723 q7_t * pDst,
saloutos 0:083111ae2a11 6724 uint32_t blockSize);
saloutos 0:083111ae2a11 6725
saloutos 0:083111ae2a11 6726
saloutos 0:083111ae2a11 6727 /**
saloutos 0:083111ae2a11 6728 * @brief Converts the elements of the Q15 vector to floating-point vector.
saloutos 0:083111ae2a11 6729 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6730 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 6731 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6732 */
saloutos 0:083111ae2a11 6733 void arm_q15_to_float(
saloutos 0:083111ae2a11 6734 q15_t * pSrc,
saloutos 0:083111ae2a11 6735 float32_t * pDst,
saloutos 0:083111ae2a11 6736 uint32_t blockSize);
saloutos 0:083111ae2a11 6737
saloutos 0:083111ae2a11 6738
saloutos 0:083111ae2a11 6739 /**
saloutos 0:083111ae2a11 6740 * @brief Converts the elements of the Q15 vector to Q31 vector.
saloutos 0:083111ae2a11 6741 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6742 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 6743 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6744 */
saloutos 0:083111ae2a11 6745 void arm_q15_to_q31(
saloutos 0:083111ae2a11 6746 q15_t * pSrc,
saloutos 0:083111ae2a11 6747 q31_t * pDst,
saloutos 0:083111ae2a11 6748 uint32_t blockSize);
saloutos 0:083111ae2a11 6749
saloutos 0:083111ae2a11 6750
saloutos 0:083111ae2a11 6751 /**
saloutos 0:083111ae2a11 6752 * @brief Converts the elements of the Q15 vector to Q7 vector.
saloutos 0:083111ae2a11 6753 * @param[in] pSrc is input pointer
saloutos 0:083111ae2a11 6754 * @param[out] pDst is output pointer
saloutos 0:083111ae2a11 6755 * @param[in] blockSize is the number of samples to process
saloutos 0:083111ae2a11 6756 */
saloutos 0:083111ae2a11 6757 void arm_q15_to_q7(
saloutos 0:083111ae2a11 6758 q15_t * pSrc,
saloutos 0:083111ae2a11 6759 q7_t * pDst,
saloutos 0:083111ae2a11 6760 uint32_t blockSize);
saloutos 0:083111ae2a11 6761
saloutos 0:083111ae2a11 6762
saloutos 0:083111ae2a11 6763 /**
saloutos 0:083111ae2a11 6764 * @ingroup groupInterpolation
saloutos 0:083111ae2a11 6765 */
saloutos 0:083111ae2a11 6766
saloutos 0:083111ae2a11 6767 /**
saloutos 0:083111ae2a11 6768 * @defgroup BilinearInterpolate Bilinear Interpolation
saloutos 0:083111ae2a11 6769 *
saloutos 0:083111ae2a11 6770 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
saloutos 0:083111ae2a11 6771 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
saloutos 0:083111ae2a11 6772 * determines values between the grid points.
saloutos 0:083111ae2a11 6773 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
saloutos 0:083111ae2a11 6774 * Bilinear interpolation is often used in image processing to rescale images.
saloutos 0:083111ae2a11 6775 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
saloutos 0:083111ae2a11 6776 *
saloutos 0:083111ae2a11 6777 * <b>Algorithm</b>
saloutos 0:083111ae2a11 6778 * \par
saloutos 0:083111ae2a11 6779 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
saloutos 0:083111ae2a11 6780 * For floating-point, the instance structure is defined as:
saloutos 0:083111ae2a11 6781 * <pre>
saloutos 0:083111ae2a11 6782 * typedef struct
saloutos 0:083111ae2a11 6783 * {
saloutos 0:083111ae2a11 6784 * uint16_t numRows;
saloutos 0:083111ae2a11 6785 * uint16_t numCols;
saloutos 0:083111ae2a11 6786 * float32_t *pData;
saloutos 0:083111ae2a11 6787 * } arm_bilinear_interp_instance_f32;
saloutos 0:083111ae2a11 6788 * </pre>
saloutos 0:083111ae2a11 6789 *
saloutos 0:083111ae2a11 6790 * \par
saloutos 0:083111ae2a11 6791 * where <code>numRows</code> specifies the number of rows in the table;
saloutos 0:083111ae2a11 6792 * <code>numCols</code> specifies the number of columns in the table;
saloutos 0:083111ae2a11 6793 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
saloutos 0:083111ae2a11 6794 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
saloutos 0:083111ae2a11 6795 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
saloutos 0:083111ae2a11 6796 *
saloutos 0:083111ae2a11 6797 * \par
saloutos 0:083111ae2a11 6798 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
saloutos 0:083111ae2a11 6799 * <pre>
saloutos 0:083111ae2a11 6800 * XF = floor(x)
saloutos 0:083111ae2a11 6801 * YF = floor(y)
saloutos 0:083111ae2a11 6802 * </pre>
saloutos 0:083111ae2a11 6803 * \par
saloutos 0:083111ae2a11 6804 * The interpolated output point is computed as:
saloutos 0:083111ae2a11 6805 * <pre>
saloutos 0:083111ae2a11 6806 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
saloutos 0:083111ae2a11 6807 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
saloutos 0:083111ae2a11 6808 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
saloutos 0:083111ae2a11 6809 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
saloutos 0:083111ae2a11 6810 * </pre>
saloutos 0:083111ae2a11 6811 * Note that the coordinates (x, y) contain integer and fractional components.
saloutos 0:083111ae2a11 6812 * The integer components specify which portion of the table to use while the
saloutos 0:083111ae2a11 6813 * fractional components control the interpolation processor.
saloutos 0:083111ae2a11 6814 *
saloutos 0:083111ae2a11 6815 * \par
saloutos 0:083111ae2a11 6816 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
saloutos 0:083111ae2a11 6817 */
saloutos 0:083111ae2a11 6818
saloutos 0:083111ae2a11 6819 /**
saloutos 0:083111ae2a11 6820 * @addtogroup BilinearInterpolate
saloutos 0:083111ae2a11 6821 * @{
saloutos 0:083111ae2a11 6822 */
saloutos 0:083111ae2a11 6823
saloutos 0:083111ae2a11 6824
saloutos 0:083111ae2a11 6825 /**
saloutos 0:083111ae2a11 6826 *
saloutos 0:083111ae2a11 6827 * @brief Floating-point bilinear interpolation.
saloutos 0:083111ae2a11 6828 * @param[in,out] S points to an instance of the interpolation structure.
saloutos 0:083111ae2a11 6829 * @param[in] X interpolation coordinate.
saloutos 0:083111ae2a11 6830 * @param[in] Y interpolation coordinate.
saloutos 0:083111ae2a11 6831 * @return out interpolated value.
saloutos 0:083111ae2a11 6832 */
saloutos 0:083111ae2a11 6833 CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32(
saloutos 0:083111ae2a11 6834 const arm_bilinear_interp_instance_f32 * S,
saloutos 0:083111ae2a11 6835 float32_t X,
saloutos 0:083111ae2a11 6836 float32_t Y)
saloutos 0:083111ae2a11 6837 {
saloutos 0:083111ae2a11 6838 float32_t out;
saloutos 0:083111ae2a11 6839 float32_t f00, f01, f10, f11;
saloutos 0:083111ae2a11 6840 float32_t *pData = S->pData;
saloutos 0:083111ae2a11 6841 int32_t xIndex, yIndex, index;
saloutos 0:083111ae2a11 6842 float32_t xdiff, ydiff;
saloutos 0:083111ae2a11 6843 float32_t b1, b2, b3, b4;
saloutos 0:083111ae2a11 6844
saloutos 0:083111ae2a11 6845 xIndex = (int32_t) X;
saloutos 0:083111ae2a11 6846 yIndex = (int32_t) Y;
saloutos 0:083111ae2a11 6847
saloutos 0:083111ae2a11 6848 /* Care taken for table outside boundary */
saloutos 0:083111ae2a11 6849 /* Returns zero output when values are outside table boundary */
saloutos 0:083111ae2a11 6850 if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
saloutos 0:083111ae2a11 6851 {
saloutos 0:083111ae2a11 6852 return (0);
saloutos 0:083111ae2a11 6853 }
saloutos 0:083111ae2a11 6854
saloutos 0:083111ae2a11 6855 /* Calculation of index for two nearest points in X-direction */
saloutos 0:083111ae2a11 6856 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
saloutos 0:083111ae2a11 6857
saloutos 0:083111ae2a11 6858
saloutos 0:083111ae2a11 6859 /* Read two nearest points in X-direction */
saloutos 0:083111ae2a11 6860 f00 = pData[index];
saloutos 0:083111ae2a11 6861 f01 = pData[index + 1];
saloutos 0:083111ae2a11 6862
saloutos 0:083111ae2a11 6863 /* Calculation of index for two nearest points in Y-direction */
saloutos 0:083111ae2a11 6864 index = (xIndex - 1) + (yIndex) * S->numCols;
saloutos 0:083111ae2a11 6865
saloutos 0:083111ae2a11 6866
saloutos 0:083111ae2a11 6867 /* Read two nearest points in Y-direction */
saloutos 0:083111ae2a11 6868 f10 = pData[index];
saloutos 0:083111ae2a11 6869 f11 = pData[index + 1];
saloutos 0:083111ae2a11 6870
saloutos 0:083111ae2a11 6871 /* Calculation of intermediate values */
saloutos 0:083111ae2a11 6872 b1 = f00;
saloutos 0:083111ae2a11 6873 b2 = f01 - f00;
saloutos 0:083111ae2a11 6874 b3 = f10 - f00;
saloutos 0:083111ae2a11 6875 b4 = f00 - f01 - f10 + f11;
saloutos 0:083111ae2a11 6876
saloutos 0:083111ae2a11 6877 /* Calculation of fractional part in X */
saloutos 0:083111ae2a11 6878 xdiff = X - xIndex;
saloutos 0:083111ae2a11 6879
saloutos 0:083111ae2a11 6880 /* Calculation of fractional part in Y */
saloutos 0:083111ae2a11 6881 ydiff = Y - yIndex;
saloutos 0:083111ae2a11 6882
saloutos 0:083111ae2a11 6883 /* Calculation of bi-linear interpolated output */
saloutos 0:083111ae2a11 6884 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
saloutos 0:083111ae2a11 6885
saloutos 0:083111ae2a11 6886 /* return to application */
saloutos 0:083111ae2a11 6887 return (out);
saloutos 0:083111ae2a11 6888 }
saloutos 0:083111ae2a11 6889
saloutos 0:083111ae2a11 6890
saloutos 0:083111ae2a11 6891 /**
saloutos 0:083111ae2a11 6892 *
saloutos 0:083111ae2a11 6893 * @brief Q31 bilinear interpolation.
saloutos 0:083111ae2a11 6894 * @param[in,out] S points to an instance of the interpolation structure.
saloutos 0:083111ae2a11 6895 * @param[in] X interpolation coordinate in 12.20 format.
saloutos 0:083111ae2a11 6896 * @param[in] Y interpolation coordinate in 12.20 format.
saloutos 0:083111ae2a11 6897 * @return out interpolated value.
saloutos 0:083111ae2a11 6898 */
saloutos 0:083111ae2a11 6899 CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31(
saloutos 0:083111ae2a11 6900 arm_bilinear_interp_instance_q31 * S,
saloutos 0:083111ae2a11 6901 q31_t X,
saloutos 0:083111ae2a11 6902 q31_t Y)
saloutos 0:083111ae2a11 6903 {
saloutos 0:083111ae2a11 6904 q31_t out; /* Temporary output */
saloutos 0:083111ae2a11 6905 q31_t acc = 0; /* output */
saloutos 0:083111ae2a11 6906 q31_t xfract, yfract; /* X, Y fractional parts */
saloutos 0:083111ae2a11 6907 q31_t x1, x2, y1, y2; /* Nearest output values */
saloutos 0:083111ae2a11 6908 int32_t rI, cI; /* Row and column indices */
saloutos 0:083111ae2a11 6909 q31_t *pYData = S->pData; /* pointer to output table values */
saloutos 0:083111ae2a11 6910 uint32_t nCols = S->numCols; /* num of rows */
saloutos 0:083111ae2a11 6911
saloutos 0:083111ae2a11 6912 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 6913 /* 12 bits for the table index */
saloutos 0:083111ae2a11 6914 /* Index value calculation */
saloutos 0:083111ae2a11 6915 rI = ((X & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 6916
saloutos 0:083111ae2a11 6917 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 6918 /* 12 bits for the table index */
saloutos 0:083111ae2a11 6919 /* Index value calculation */
saloutos 0:083111ae2a11 6920 cI = ((Y & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 6921
saloutos 0:083111ae2a11 6922 /* Care taken for table outside boundary */
saloutos 0:083111ae2a11 6923 /* Returns zero output when values are outside table boundary */
saloutos 0:083111ae2a11 6924 if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
saloutos 0:083111ae2a11 6925 {
saloutos 0:083111ae2a11 6926 return (0);
saloutos 0:083111ae2a11 6927 }
saloutos 0:083111ae2a11 6928
saloutos 0:083111ae2a11 6929 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 6930 /* shift left xfract by 11 to keep 1.31 format */
saloutos 0:083111ae2a11 6931 xfract = (X & 0x000FFFFF) << 11u;
saloutos 0:083111ae2a11 6932
saloutos 0:083111ae2a11 6933 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 6934 x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
saloutos 0:083111ae2a11 6935 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
saloutos 0:083111ae2a11 6936
saloutos 0:083111ae2a11 6937 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 6938 /* shift left yfract by 11 to keep 1.31 format */
saloutos 0:083111ae2a11 6939 yfract = (Y & 0x000FFFFF) << 11u;
saloutos 0:083111ae2a11 6940
saloutos 0:083111ae2a11 6941 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 6942 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
saloutos 0:083111ae2a11 6943 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
saloutos 0:083111ae2a11 6944
saloutos 0:083111ae2a11 6945 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
saloutos 0:083111ae2a11 6946 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
saloutos 0:083111ae2a11 6947 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
saloutos 0:083111ae2a11 6948
saloutos 0:083111ae2a11 6949 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
saloutos 0:083111ae2a11 6950 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
saloutos 0:083111ae2a11 6951 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
saloutos 0:083111ae2a11 6952
saloutos 0:083111ae2a11 6953 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
saloutos 0:083111ae2a11 6954 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
saloutos 0:083111ae2a11 6955 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
saloutos 0:083111ae2a11 6956
saloutos 0:083111ae2a11 6957 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
saloutos 0:083111ae2a11 6958 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
saloutos 0:083111ae2a11 6959 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
saloutos 0:083111ae2a11 6960
saloutos 0:083111ae2a11 6961 /* Convert acc to 1.31(q31) format */
saloutos 0:083111ae2a11 6962 return ((q31_t)(acc << 2));
saloutos 0:083111ae2a11 6963 }
saloutos 0:083111ae2a11 6964
saloutos 0:083111ae2a11 6965
saloutos 0:083111ae2a11 6966 /**
saloutos 0:083111ae2a11 6967 * @brief Q15 bilinear interpolation.
saloutos 0:083111ae2a11 6968 * @param[in,out] S points to an instance of the interpolation structure.
saloutos 0:083111ae2a11 6969 * @param[in] X interpolation coordinate in 12.20 format.
saloutos 0:083111ae2a11 6970 * @param[in] Y interpolation coordinate in 12.20 format.
saloutos 0:083111ae2a11 6971 * @return out interpolated value.
saloutos 0:083111ae2a11 6972 */
saloutos 0:083111ae2a11 6973 CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15(
saloutos 0:083111ae2a11 6974 arm_bilinear_interp_instance_q15 * S,
saloutos 0:083111ae2a11 6975 q31_t X,
saloutos 0:083111ae2a11 6976 q31_t Y)
saloutos 0:083111ae2a11 6977 {
saloutos 0:083111ae2a11 6978 q63_t acc = 0; /* output */
saloutos 0:083111ae2a11 6979 q31_t out; /* Temporary output */
saloutos 0:083111ae2a11 6980 q15_t x1, x2, y1, y2; /* Nearest output values */
saloutos 0:083111ae2a11 6981 q31_t xfract, yfract; /* X, Y fractional parts */
saloutos 0:083111ae2a11 6982 int32_t rI, cI; /* Row and column indices */
saloutos 0:083111ae2a11 6983 q15_t *pYData = S->pData; /* pointer to output table values */
saloutos 0:083111ae2a11 6984 uint32_t nCols = S->numCols; /* num of rows */
saloutos 0:083111ae2a11 6985
saloutos 0:083111ae2a11 6986 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 6987 /* 12 bits for the table index */
saloutos 0:083111ae2a11 6988 /* Index value calculation */
saloutos 0:083111ae2a11 6989 rI = ((X & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 6990
saloutos 0:083111ae2a11 6991 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 6992 /* 12 bits for the table index */
saloutos 0:083111ae2a11 6993 /* Index value calculation */
saloutos 0:083111ae2a11 6994 cI = ((Y & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 6995
saloutos 0:083111ae2a11 6996 /* Care taken for table outside boundary */
saloutos 0:083111ae2a11 6997 /* Returns zero output when values are outside table boundary */
saloutos 0:083111ae2a11 6998 if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
saloutos 0:083111ae2a11 6999 {
saloutos 0:083111ae2a11 7000 return (0);
saloutos 0:083111ae2a11 7001 }
saloutos 0:083111ae2a11 7002
saloutos 0:083111ae2a11 7003 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 7004 /* xfract should be in 12.20 format */
saloutos 0:083111ae2a11 7005 xfract = (X & 0x000FFFFF);
saloutos 0:083111ae2a11 7006
saloutos 0:083111ae2a11 7007 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 7008 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
saloutos 0:083111ae2a11 7009 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
saloutos 0:083111ae2a11 7010
saloutos 0:083111ae2a11 7011 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 7012 /* yfract should be in 12.20 format */
saloutos 0:083111ae2a11 7013 yfract = (Y & 0x000FFFFF);
saloutos 0:083111ae2a11 7014
saloutos 0:083111ae2a11 7015 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 7016 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
saloutos 0:083111ae2a11 7017 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
saloutos 0:083111ae2a11 7018
saloutos 0:083111ae2a11 7019 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
saloutos 0:083111ae2a11 7020
saloutos 0:083111ae2a11 7021 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
saloutos 0:083111ae2a11 7022 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
saloutos 0:083111ae2a11 7023 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
saloutos 0:083111ae2a11 7024 acc = ((q63_t) out * (0xFFFFF - yfract));
saloutos 0:083111ae2a11 7025
saloutos 0:083111ae2a11 7026 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
saloutos 0:083111ae2a11 7027 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
saloutos 0:083111ae2a11 7028 acc += ((q63_t) out * (xfract));
saloutos 0:083111ae2a11 7029
saloutos 0:083111ae2a11 7030 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
saloutos 0:083111ae2a11 7031 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
saloutos 0:083111ae2a11 7032 acc += ((q63_t) out * (yfract));
saloutos 0:083111ae2a11 7033
saloutos 0:083111ae2a11 7034 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
saloutos 0:083111ae2a11 7035 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
saloutos 0:083111ae2a11 7036 acc += ((q63_t) out * (yfract));
saloutos 0:083111ae2a11 7037
saloutos 0:083111ae2a11 7038 /* acc is in 13.51 format and down shift acc by 36 times */
saloutos 0:083111ae2a11 7039 /* Convert out to 1.15 format */
saloutos 0:083111ae2a11 7040 return ((q15_t)(acc >> 36));
saloutos 0:083111ae2a11 7041 }
saloutos 0:083111ae2a11 7042
saloutos 0:083111ae2a11 7043
saloutos 0:083111ae2a11 7044 /**
saloutos 0:083111ae2a11 7045 * @brief Q7 bilinear interpolation.
saloutos 0:083111ae2a11 7046 * @param[in,out] S points to an instance of the interpolation structure.
saloutos 0:083111ae2a11 7047 * @param[in] X interpolation coordinate in 12.20 format.
saloutos 0:083111ae2a11 7048 * @param[in] Y interpolation coordinate in 12.20 format.
saloutos 0:083111ae2a11 7049 * @return out interpolated value.
saloutos 0:083111ae2a11 7050 */
saloutos 0:083111ae2a11 7051 CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7(
saloutos 0:083111ae2a11 7052 arm_bilinear_interp_instance_q7 * S,
saloutos 0:083111ae2a11 7053 q31_t X,
saloutos 0:083111ae2a11 7054 q31_t Y)
saloutos 0:083111ae2a11 7055 {
saloutos 0:083111ae2a11 7056 q63_t acc = 0; /* output */
saloutos 0:083111ae2a11 7057 q31_t out; /* Temporary output */
saloutos 0:083111ae2a11 7058 q31_t xfract, yfract; /* X, Y fractional parts */
saloutos 0:083111ae2a11 7059 q7_t x1, x2, y1, y2; /* Nearest output values */
saloutos 0:083111ae2a11 7060 int32_t rI, cI; /* Row and column indices */
saloutos 0:083111ae2a11 7061 q7_t *pYData = S->pData; /* pointer to output table values */
saloutos 0:083111ae2a11 7062 uint32_t nCols = S->numCols; /* num of rows */
saloutos 0:083111ae2a11 7063
saloutos 0:083111ae2a11 7064 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 7065 /* 12 bits for the table index */
saloutos 0:083111ae2a11 7066 /* Index value calculation */
saloutos 0:083111ae2a11 7067 rI = ((X & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 7068
saloutos 0:083111ae2a11 7069 /* Input is in 12.20 format */
saloutos 0:083111ae2a11 7070 /* 12 bits for the table index */
saloutos 0:083111ae2a11 7071 /* Index value calculation */
saloutos 0:083111ae2a11 7072 cI = ((Y & (q31_t)0xFFF00000) >> 20);
saloutos 0:083111ae2a11 7073
saloutos 0:083111ae2a11 7074 /* Care taken for table outside boundary */
saloutos 0:083111ae2a11 7075 /* Returns zero output when values are outside table boundary */
saloutos 0:083111ae2a11 7076 if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
saloutos 0:083111ae2a11 7077 {
saloutos 0:083111ae2a11 7078 return (0);
saloutos 0:083111ae2a11 7079 }
saloutos 0:083111ae2a11 7080
saloutos 0:083111ae2a11 7081 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 7082 /* xfract should be in 12.20 format */
saloutos 0:083111ae2a11 7083 xfract = (X & (q31_t)0x000FFFFF);
saloutos 0:083111ae2a11 7084
saloutos 0:083111ae2a11 7085 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 7086 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
saloutos 0:083111ae2a11 7087 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
saloutos 0:083111ae2a11 7088
saloutos 0:083111ae2a11 7089 /* 20 bits for the fractional part */
saloutos 0:083111ae2a11 7090 /* yfract should be in 12.20 format */
saloutos 0:083111ae2a11 7091 yfract = (Y & (q31_t)0x000FFFFF);
saloutos 0:083111ae2a11 7092
saloutos 0:083111ae2a11 7093 /* Read two nearest output values from the index */
saloutos 0:083111ae2a11 7094 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
saloutos 0:083111ae2a11 7095 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
saloutos 0:083111ae2a11 7096
saloutos 0:083111ae2a11 7097 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
saloutos 0:083111ae2a11 7098 out = ((x1 * (0xFFFFF - xfract)));
saloutos 0:083111ae2a11 7099 acc = (((q63_t) out * (0xFFFFF - yfract)));
saloutos 0:083111ae2a11 7100
saloutos 0:083111ae2a11 7101 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
saloutos 0:083111ae2a11 7102 out = ((x2 * (0xFFFFF - yfract)));
saloutos 0:083111ae2a11 7103 acc += (((q63_t) out * (xfract)));
saloutos 0:083111ae2a11 7104
saloutos 0:083111ae2a11 7105 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
saloutos 0:083111ae2a11 7106 out = ((y1 * (0xFFFFF - xfract)));
saloutos 0:083111ae2a11 7107 acc += (((q63_t) out * (yfract)));
saloutos 0:083111ae2a11 7108
saloutos 0:083111ae2a11 7109 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
saloutos 0:083111ae2a11 7110 out = ((y2 * (yfract)));
saloutos 0:083111ae2a11 7111 acc += (((q63_t) out * (xfract)));
saloutos 0:083111ae2a11 7112
saloutos 0:083111ae2a11 7113 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
saloutos 0:083111ae2a11 7114 return ((q7_t)(acc >> 40));
saloutos 0:083111ae2a11 7115 }
saloutos 0:083111ae2a11 7116
saloutos 0:083111ae2a11 7117 /**
saloutos 0:083111ae2a11 7118 * @} end of BilinearInterpolate group
saloutos 0:083111ae2a11 7119 */
saloutos 0:083111ae2a11 7120
saloutos 0:083111ae2a11 7121
saloutos 0:083111ae2a11 7122 /* SMMLAR */
saloutos 0:083111ae2a11 7123 #define multAcc_32x32_keep32_R(a, x, y) \
saloutos 0:083111ae2a11 7124 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
saloutos 0:083111ae2a11 7125
saloutos 0:083111ae2a11 7126 /* SMMLSR */
saloutos 0:083111ae2a11 7127 #define multSub_32x32_keep32_R(a, x, y) \
saloutos 0:083111ae2a11 7128 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
saloutos 0:083111ae2a11 7129
saloutos 0:083111ae2a11 7130 /* SMMULR */
saloutos 0:083111ae2a11 7131 #define mult_32x32_keep32_R(a, x, y) \
saloutos 0:083111ae2a11 7132 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
saloutos 0:083111ae2a11 7133
saloutos 0:083111ae2a11 7134 /* SMMLA */
saloutos 0:083111ae2a11 7135 #define multAcc_32x32_keep32(a, x, y) \
saloutos 0:083111ae2a11 7136 a += (q31_t) (((q63_t) x * y) >> 32)
saloutos 0:083111ae2a11 7137
saloutos 0:083111ae2a11 7138 /* SMMLS */
saloutos 0:083111ae2a11 7139 #define multSub_32x32_keep32(a, x, y) \
saloutos 0:083111ae2a11 7140 a -= (q31_t) (((q63_t) x * y) >> 32)
saloutos 0:083111ae2a11 7141
saloutos 0:083111ae2a11 7142 /* SMMUL */
saloutos 0:083111ae2a11 7143 #define mult_32x32_keep32(a, x, y) \
saloutos 0:083111ae2a11 7144 a = (q31_t) (((q63_t) x * y ) >> 32)
saloutos 0:083111ae2a11 7145
saloutos 0:083111ae2a11 7146
saloutos 0:083111ae2a11 7147 #if defined ( __CC_ARM )
saloutos 0:083111ae2a11 7148 /* Enter low optimization region - place directly above function definition */
saloutos 0:083111ae2a11 7149 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
saloutos 0:083111ae2a11 7150 #define LOW_OPTIMIZATION_ENTER \
saloutos 0:083111ae2a11 7151 _Pragma ("push") \
saloutos 0:083111ae2a11 7152 _Pragma ("O1")
saloutos 0:083111ae2a11 7153 #else
saloutos 0:083111ae2a11 7154 #define LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7155 #endif
saloutos 0:083111ae2a11 7156
saloutos 0:083111ae2a11 7157 /* Exit low optimization region - place directly after end of function definition */
saloutos 0:083111ae2a11 7158 #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
saloutos 0:083111ae2a11 7159 #define LOW_OPTIMIZATION_EXIT \
saloutos 0:083111ae2a11 7160 _Pragma ("pop")
saloutos 0:083111ae2a11 7161 #else
saloutos 0:083111ae2a11 7162 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7163 #endif
saloutos 0:083111ae2a11 7164
saloutos 0:083111ae2a11 7165 /* Enter low optimization region - place directly above function definition */
saloutos 0:083111ae2a11 7166 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7167
saloutos 0:083111ae2a11 7168 /* Exit low optimization region - place directly after end of function definition */
saloutos 0:083111ae2a11 7169 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7170
saloutos 0:083111ae2a11 7171 #elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
saloutos 0:083111ae2a11 7172 #define LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7173 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7174 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7175 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7176
saloutos 0:083111ae2a11 7177 #elif defined ( __GNUC__ )
saloutos 0:083111ae2a11 7178 #define LOW_OPTIMIZATION_ENTER \
saloutos 0:083111ae2a11 7179 __attribute__(( optimize("-O1") ))
saloutos 0:083111ae2a11 7180 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7181 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7182 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7183
saloutos 0:083111ae2a11 7184 #elif defined ( __ICCARM__ )
saloutos 0:083111ae2a11 7185 /* Enter low optimization region - place directly above function definition */
saloutos 0:083111ae2a11 7186 #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
saloutos 0:083111ae2a11 7187 #define LOW_OPTIMIZATION_ENTER \
saloutos 0:083111ae2a11 7188 _Pragma ("optimize=low")
saloutos 0:083111ae2a11 7189 #else
saloutos 0:083111ae2a11 7190 #define LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7191 #endif
saloutos 0:083111ae2a11 7192
saloutos 0:083111ae2a11 7193 /* Exit low optimization region - place directly after end of function definition */
saloutos 0:083111ae2a11 7194 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7195
saloutos 0:083111ae2a11 7196 /* Enter low optimization region - place directly above function definition */
saloutos 0:083111ae2a11 7197 #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
saloutos 0:083111ae2a11 7198 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
saloutos 0:083111ae2a11 7199 _Pragma ("optimize=low")
saloutos 0:083111ae2a11 7200 #else
saloutos 0:083111ae2a11 7201 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7202 #endif
saloutos 0:083111ae2a11 7203
saloutos 0:083111ae2a11 7204 /* Exit low optimization region - place directly after end of function definition */
saloutos 0:083111ae2a11 7205 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7206
saloutos 0:083111ae2a11 7207 #elif defined ( __TI_ARM__ )
saloutos 0:083111ae2a11 7208 #define LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7209 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7210 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7211 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7212
saloutos 0:083111ae2a11 7213 #elif defined ( __CSMC__ )
saloutos 0:083111ae2a11 7214 #define LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7215 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7216 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7217 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7218
saloutos 0:083111ae2a11 7219 #elif defined ( __TASKING__ )
saloutos 0:083111ae2a11 7220 #define LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7221 #define LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7222 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
saloutos 0:083111ae2a11 7223 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
saloutos 0:083111ae2a11 7224
saloutos 0:083111ae2a11 7225 #endif
saloutos 0:083111ae2a11 7226
saloutos 0:083111ae2a11 7227
saloutos 0:083111ae2a11 7228 #ifdef __cplusplus
saloutos 0:083111ae2a11 7229 }
saloutos 0:083111ae2a11 7230 #endif
saloutos 0:083111ae2a11 7231
saloutos 0:083111ae2a11 7232 /* Compiler specific diagnostic adjustment */
saloutos 0:083111ae2a11 7233 #if defined ( __CC_ARM )
saloutos 0:083111ae2a11 7234
saloutos 0:083111ae2a11 7235 #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
saloutos 0:083111ae2a11 7236
saloutos 0:083111ae2a11 7237 #elif defined ( __GNUC__ )
saloutos 0:083111ae2a11 7238 #pragma GCC diagnostic pop
saloutos 0:083111ae2a11 7239
saloutos 0:083111ae2a11 7240 #elif defined ( __ICCARM__ )
saloutos 0:083111ae2a11 7241
saloutos 0:083111ae2a11 7242 #elif defined ( __TI_ARM__ )
saloutos 0:083111ae2a11 7243
saloutos 0:083111ae2a11 7244 #elif defined ( __CSMC__ )
saloutos 0:083111ae2a11 7245
saloutos 0:083111ae2a11 7246 #elif defined ( __TASKING__ )
saloutos 0:083111ae2a11 7247
saloutos 0:083111ae2a11 7248 #else
saloutos 0:083111ae2a11 7249 #error Unknown compiler
saloutos 0:083111ae2a11 7250 #endif
saloutos 0:083111ae2a11 7251
saloutos 0:083111ae2a11 7252 #endif /* _ARM_MATH_H */
saloutos 0:083111ae2a11 7253
saloutos 0:083111ae2a11 7254 /**
saloutos 0:083111ae2a11 7255 *
saloutos 0:083111ae2a11 7256 * End of file.
saloutos 0:083111ae2a11 7257 */