2.007 PulleyInterface mbed code. Biomimetics robotics lab. Sangbae Kim. Ben Katz. For use with PulleyInterface.mlapp

Dependencies:   mbed

Committer:
abraham1
Date:
Sat Feb 04 21:19:06 2017 +0000
Revision:
4:f8a45966e63b
Parent:
3:df56bf381572
Child:
5:f4c237d0bb32
All the graphs working;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
abraham1 0:dc5c88c2dd20 1 ///setup code for encoder on pins PA0 and PA1 (A0 and A1)///
abraham1 0:dc5c88c2dd20 2
abraham1 0:dc5c88c2dd20 3 #include "mbed.h"
abraham1 0:dc5c88c2dd20 4 #include "time.h"
abraham1 3:df56bf381572 5 #include "stdio.h"
abraham1 3:df56bf381572 6 #include "ctype.h"
abraham1 0:dc5c88c2dd20 7
abraham1 4:f8a45966e63b 8 #define PI 3.14159265358979323846
abraham1 4:f8a45966e63b 9
abraham1 0:dc5c88c2dd20 10 InterruptIn button(USER_BUTTON);
abraham1 0:dc5c88c2dd20 11 PwmOut pwm(D5);//do not use D3
abraham1 0:dc5c88c2dd20 12 DigitalOut a(D2);
abraham1 0:dc5c88c2dd20 13 DigitalOut b(D4);
abraham1 0:dc5c88c2dd20 14
abraham1 3:df56bf381572 15 AnalogIn currentSense(A5); //hook up to Vout on current sensor
abraham1 3:df56bf381572 16 Serial pc(USBTX, USBRX, 115200);
abraham1 3:df56bf381572 17 DigitalOut green(LED2);
abraham1 0:dc5c88c2dd20 18
abraham1 4:f8a45966e63b 19 const int CPR = 900; // Encoder counts per revolution. Change to match your encoder
abraham1 4:f8a45966e63b 20 const double VREF = 3; //Microcontroller reference voltage
abraham1 4:f8a45966e63b 21 const float currentSensorOutputRatio = 0.185; // Volts/Amp. Divide Voltage by cSenseOutput to get current
abraham1 0:dc5c88c2dd20 22
abraham1 0:dc5c88c2dd20 23 void EncoderInitialise(void) {
abraham1 0:dc5c88c2dd20 24 // configure GPIO PA0 & PA1 as inputs for Encoder
abraham1 0:dc5c88c2dd20 25 RCC->AHB1ENR |= 0x00000001; // Enable clock for GPIOA
abraham1 0:dc5c88c2dd20 26
abraham1 0:dc5c88c2dd20 27 GPIOA->MODER |= GPIO_MODER_MODER0_1 | GPIO_MODER_MODER1_1 ; //PA0 & PA1 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */
abraham1 0:dc5c88c2dd20 28 GPIOA->OTYPER |= GPIO_OTYPER_OT_0 | GPIO_OTYPER_OT_1 ; //PA0 & PA1 as Inputs /*!< GPIO port output type register, Address offset: 0x04 */
abraham1 0:dc5c88c2dd20 29 GPIOA->OSPEEDR |= 0x00000011;//|= GPIO_OSPEEDER_OSPEEDR0 | GPIO_OSPEEDER_OSPEEDR1 ; // Low speed /*!< GPIO port output speed register, Address offset: 0x08 */
abraham1 0:dc5c88c2dd20 30 GPIOA->PUPDR |= GPIO_PUPDR_PUPDR0_1 | GPIO_PUPDR_PUPDR1_1 ; // Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
abraham1 0:dc5c88c2dd20 31 GPIOA->AFR[0] |= 0x00000011 ; // AF01 for PA0 & PA1 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
abraham1 0:dc5c88c2dd20 32 GPIOA->AFR[1] |= 0x00000000 ; // /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
abraham1 0:dc5c88c2dd20 33
abraham1 0:dc5c88c2dd20 34 // configure TIM2 as Encoder input
abraham1 0:dc5c88c2dd20 35 RCC->APB1ENR |= 0x00000001; // Enable clock for TIM2
abraham1 0:dc5c88c2dd20 36
abraham1 0:dc5c88c2dd20 37 TIM2->CR1 = 0x0001; // CEN(Counter Enable)='1' < TIM control register 1
abraham1 0:dc5c88c2dd20 38 TIM2->SMCR = 0x0003; // SMS='011' (Encoder mode 3) < TIM slave mode control register
abraham1 0:dc5c88c2dd20 39 TIM2->CCMR1 = 0x0101; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1
abraham1 0:dc5c88c2dd20 40 TIM2->CCMR2 = 0x0000; // < TIM capture/compare mode register 2
abraham1 0:dc5c88c2dd20 41 TIM2->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register
abraham1 0:dc5c88c2dd20 42 TIM2->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler
abraham1 4:f8a45966e63b 43 TIM2->ARR = CPR; // reload at CPR < TIM auto-reload register
abraham1 0:dc5c88c2dd20 44 TIM2->CNT = 0x0000; //reset the counter before we use it
abraham1 0:dc5c88c2dd20 45 }
abraham1 0:dc5c88c2dd20 46
abraham1 0:dc5c88c2dd20 47
abraham1 0:dc5c88c2dd20 48 //Zero encoder count//
abraham1 0:dc5c88c2dd20 49 void ZeroEncoder() {
abraham1 0:dc5c88c2dd20 50 TIM2->CNT=0 ; //reset timer count to zero
abraham1 0:dc5c88c2dd20 51 }
abraham1 0:dc5c88c2dd20 52
abraham1 0:dc5c88c2dd20 53 int GetCounts(void) {
abraham1 0:dc5c88c2dd20 54 int count = TIM2->CNT; //Read the timer count register
abraham1 0:dc5c88c2dd20 55 return count;
abraham1 0:dc5c88c2dd20 56 }
abraham1 0:dc5c88c2dd20 57
abraham1 0:dc5c88c2dd20 58 void pressed() {
abraham1 0:dc5c88c2dd20 59 float pwm_float = pwm.read();
abraham1 0:dc5c88c2dd20 60 int pwmV = (int)(100*pwm_float);
abraham1 0:dc5c88c2dd20 61 if(pwmV == 0){
abraham1 3:df56bf381572 62 pwm.write(0.05);
abraham1 3:df56bf381572 63 } else if (pwmV == 5){
abraham1 0:dc5c88c2dd20 64 pwm.write(0.2);
abraham1 0:dc5c88c2dd20 65 } else if (pwmV == 20){
abraham1 3:df56bf381572 66 pwm.write(0.75);
abraham1 3:df56bf381572 67 } else if (pwmV == 75){
abraham1 0:dc5c88c2dd20 68 pwm.write(0.0);
abraham1 3:df56bf381572 69 } else {
abraham1 3:df56bf381572 70 pwm.write(0.0);
abraham1 3:df56bf381572 71 }
abraham1 0:dc5c88c2dd20 72 }
abraham1 0:dc5c88c2dd20 73
abraham1 0:dc5c88c2dd20 74
abraham1 0:dc5c88c2dd20 75
abraham1 0:dc5c88c2dd20 76 int main() {
abraham1 0:dc5c88c2dd20 77
abraham1 3:df56bf381572 78 int endcount, startcount;
abraham1 3:df56bf381572 79 double time_between_readings;
abraham1 3:df56bf381572 80 double velocity;
abraham1 3:df56bf381572 81 double currentSensed = 0;
abraham1 0:dc5c88c2dd20 82 clock_t start;
abraham1 0:dc5c88c2dd20 83 clock_t end = clock();
abraham1 0:dc5c88c2dd20 84 int ticks;
abraham1 0:dc5c88c2dd20 85 a=1; b=0; pwm.write(0);
abraham1 0:dc5c88c2dd20 86 button.fall(&pressed);
abraham1 0:dc5c88c2dd20 87 double updatePeriod = 0.01; /* must select carefully */
abraham1 4:f8a45966e63b 88 double publishFrequency = 0.05; /* seconds. rate to publish to matlab */
abraham1 1:f97adef77f4b 89 double samplesPerPublish = (int)(publishFrequency/updatePeriod); /*this improves time response of filter and maintains smoothness*/
abraham1 0:dc5c88c2dd20 90 int publishCounter = 1;
abraham1 4:f8a45966e63b 91 double filterRatio = 0.045;
abraham1 3:df56bf381572 92 double currentFilterRatio = 0.02;
abraham1 1:f97adef77f4b 93 float currentSensorOffset = 0; int i;
abraham1 4:f8a45966e63b 94 for(i=1;i<301;i++){ currentSensorOffset += currentSense.read(); }
abraham1 4:f8a45966e63b 95 currentSensorOffset = currentSensorOffset*VREF/300;
abraham1 1:f97adef77f4b 96
abraham1 1:f97adef77f4b 97 EncoderInitialise();
abraham1 1:f97adef77f4b 98 fflush(pc);
abraham1 1:f97adef77f4b 99
abraham1 4:f8a45966e63b 100 /*** wait here for matlab information like voltage before starting? ***/
abraham1 1:f97adef77f4b 101
abraham1 0:dc5c88c2dd20 102 while(1) {
abraham1 0:dc5c88c2dd20 103
abraham1 0:dc5c88c2dd20 104 wait(updatePeriod);
abraham1 0:dc5c88c2dd20 105 start = end;
abraham1 0:dc5c88c2dd20 106 end = clock();
abraham1 0:dc5c88c2dd20 107 time_between_readings = ((double)(end - start)) / CLOCKS_PER_SEC;
abraham1 0:dc5c88c2dd20 108 startcount = endcount;
abraham1 0:dc5c88c2dd20 109 endcount = GetCounts();
abraham1 0:dc5c88c2dd20 110 ticks = endcount-startcount;
abraham1 4:f8a45966e63b 111 if(abs(ticks)>CPR/2) /***** for rollover case: *****/
abraham1 4:f8a45966e63b 112 { ticks = ((ticks<0)-(ticks>0))*(CPR-abs(ticks)); }
abraham1 4:f8a45966e63b 113 velocity = filterRatio*((double)ticks)/CPR*2*PI/time_between_readings + (1-filterRatio)*velocity; /* with filtering*/
abraham1 3:df56bf381572 114
abraham1 4:f8a45966e63b 115 currentSensed = currentFilterRatio*((double)currentSense.read()*VREF-currentSensorOffset) + (1-currentFilterRatio)*currentSensed;
abraham1 3:df56bf381572 116
abraham1 0:dc5c88c2dd20 117 if(pc.readable())
abraham1 3:df56bf381572 118 {
abraham1 3:df56bf381572 119 char charIn = pc.getc();
abraham1 4:f8a45966e63b 120 if(charIn == 'r'){
abraham1 4:f8a45966e63b 121 fflush(pc);
abraham1 4:f8a45966e63b 122 green = !green;
abraham1 4:f8a45966e63b 123 } else if(isdigit(charIn)) {
abraham1 3:df56bf381572 124 double abrahamsCommand = (double)(charIn - '0');
abraham1 3:df56bf381572 125 pwm.write(abrahamsCommand/10.0);
abraham1 3:df56bf381572 126 }
abraham1 3:df56bf381572 127 }
abraham1 3:df56bf381572 128
abraham1 3:df56bf381572 129 if(publishCounter == samplesPerPublish)
abraham1 0:dc5c88c2dd20 130 {
abraham1 4:f8a45966e63b 131 printf("%f,%f,%f\n", currentSensed/currentSensorOutputRatio, pwm.read(), velocity);
abraham1 3:df56bf381572 132 publishCounter = 1;
abraham1 0:dc5c88c2dd20 133 }
abraham1 1:f97adef77f4b 134 publishCounter++;
abraham1 0:dc5c88c2dd20 135
abraham1 0:dc5c88c2dd20 136 }
abraham1 0:dc5c88c2dd20 137
abraham1 0:dc5c88c2dd20 138
abraham1 0:dc5c88c2dd20 139 }
abraham1 0:dc5c88c2dd20 140
abraham1 0:dc5c88c2dd20 141
abraham1 0:dc5c88c2dd20 142
abraham1 0:dc5c88c2dd20 143
abraham1 0:dc5c88c2dd20 144
abraham1 0:dc5c88c2dd20 145
abraham1 0:dc5c88c2dd20 146
abraham1 0:dc5c88c2dd20 147