Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- davolfman
- Date:
- 2017-12-01
- Revision:
- 6:9f8c8c3c111d
- Parent:
- 5:ac5c4bd3ef4b
- Child:
- 7:b0cd74923bc6
File content as of revision 6:9f8c8c3c111d:
#include "mbed.h" #include "sintable.h" AnalogOut DAC0(PA_4);//Not labeled in the docs for the f401, but seems to be for all AnalogOut DAC1(PA_5); AnalogIn ADC0(PA_0); AnalogIn ADC1(PA_1); //AnalogIn ADC2(PA_2);//these are the uart pins!! //AnalogIn ADC3(PA_3);//these are the uart pins!! //AnalogIn ADC4(PA_4);//we're using these for output //AnalogIn ADC5(PA_5);//we're using these for output AnalogIn ADC6(PA_6); AnalogIn ADC7(PA_7); //AnalogIn ADC8(PB_0);//lets leave the 2 we aren't using in a single port //AnalogIn ADC9(PB_1);//that way we know there's not ADCs on one of them AnalogIn ADC10(PC_0); AnalogIn ADC11(PC_1); AnalogIn ADC12(PC_2); AnalogIn ADC13(PC_3); AnalogIn ADC14(PC_4); AnalogIn ADC15(PC_5); BusIn keyBank(PC_10, PC_11, PC_12, PC_13, PC_14, PC_15); BusOut keySelect(PB_0, PB_1, PB_2, PB_3, PB_4, PB_5, PB_6, PB_7, PB_8); BusIn numerator(PA_8, PA_9, PA_10, PA_11); BusIn denominator(PA_12, PA_13, PA_14, PA_15); //Renaming ports #define inVol ADC0 #define inModAmt ADC1 #define inCarA ADC6 #define inCarD ADC7 #define inCarS ADC10 #define inCarR ADC11 #define inModA ADC12 #define inModD ADC13 #define inModS ADC14 #define inModR ADC15 #define outMono DAC0 #define numKeys 49 #define PI M_PI //constants const int carrierIncrements[] = {107, 113, 120, 127, 135, 143, 151, 160, 170, 180, 190, 202, 214, 227, 240, 254, 270, 286, 303, 321, 340, 360, 381, 404, 428, 454, 481, 509, 540, 572, 606, 642, 680, 720, 763, 809, 857, 908, 962, 1019, 1080, 1144, 1212, 1284, 1360, 1441, 1527, 1618, 1714}; const int attackLimit = (0x1 << 16) - 1; const int fixed2Pi = (int) ((2.0 * PI) * (0x1 << 16)); //non-constants //Most of these will be recalculated or reset on every input cycle of the main // loop, as appropriate int FMmult; int Volume; int modVol; int modAmpI; int carAmpS; //bool keysPressed[numKeys]; int64_t keyboard; int carrierPhases[numKeys]; int modulatorPhases[numKeys]; short envelopeStatesC[numKeys]; short envelopeStatesM[numKeys]; int envelopeAmpsC[numKeys]; int envelopeAmpsM[numKeys]; int modA; int modD; int modS; int modR; int carA; int carD; int carS; int carR; int fastSin(const int phase){ int index = (phase & 0x3ffc) >> 2; int subindex = phase & 0x3; int quadrant = (phase & 0xc000) >> 14; int sum = 0; switch (quadrant) { case 0: sum += (4 - subindex) * sintable[index]; sum += subindex * sintable[index+1]; break; case 1: sum += (4 - subindex) * sintable[1+4095-index]; sum += subindex * sintable[4095-index]; break; case 2: sum -= (4 - subindex) * sintable[index]; sum -= subindex * sintable[index+1]; break; case 3: sum -= (4 - subindex) * sintable[1+4095-index]; sum -= subindex * sintable[4095-index]; break; } sum = sum >> 2; return sum; } void synthesize(){ carAmpS = 0; for(int i = 0; i < numKeys; ++i){ if(keyboard & (0x1 << i)){ if(envelopeStatesC[i] < 2) envelopeStatesC[i] = 4; if(envelopeStatesM[i] < 2) envelopeStatesM[i] = 4; if(envelopeStatesC[i] == 4){ envelopeAmpsC[i] += carA; if(envelopeAmpsC[i] >= attackLimit){ envelopeAmpsC[i] = attackLimit; envelopeStatesC[i] = 3; } } if(envelopeStatesM[i] == 4){ envelopeAmpsM[i] += modA; if(envelopeAmpsM[i] >= attackLimit){ envelopeAmpsM[i] = attackLimit; envelopeStatesM[i] = 3; } } if(envelopeStatesC[i] == 3){ envelopeAmpsC[i] += carD; if(envelopeAmpsC[i] <= carS){ envelopeAmpsC[i] = carS; envelopeStatesC[i] = 2; } } if(envelopeStatesM[i] == 3){ envelopeAmpsM[i] += modD; if(envelopeAmpsM[i] <= modS){ envelopeAmpsM[i] = modS; envelopeStatesM[i] = 2; } } }else{ if(envelopeStatesC[i] > 1) envelopeStatesC[i] = 1; if(envelopeStatesM[i] > 1) envelopeStatesM[i] = 1; if(envelopeStatesC[i] == 1){ if(envelopeAmpsC[i] <= 0){ envelopeStatesC[i] = 0; envelopeAmpsC[i] = 0; }else{ envelopeAmpsC[i] -= carR; } } if(envelopeStatesM[i] == 1){ if(envelopeAmpsM[i] <= 0){ envelopeStatesM[i] = 0; envelopeAmpsM[i] = 0; }else{ envelopeAmpsM[i] -= modR; } } } if(envelopeAmpsC[i] > 0){ modulatorPhases[i] += (Fmult * carrierIncrements[i]) >> 16; modAmpI = fastSin((((modulatorPhases[i] * envelopeAmpsM[i]) >> 16) * modVol) >> 16); carrierPhases[i] += ((carrierIncrements[i] + modAmpI) * fixed2pi) >> 16; carAmps += (fastSin(carrierPhases[i]) * envelopeAmpsC[i]) >> 16; } } outMono.write_u16(((carAmps / numKeys) * Volume) >> 16); } int main() { int ratNumer; int ratDenom; while(true){ ratNumer = 0xf & ~ numerator; ratDenom = 0xf & ~ denom; FMult = (ratNumer << 16) / ratDenom; Volume = (int)inVol.read_u16(); modVol = (int)inModAmt.read_u16(); carA = 0xffff / ((int)inCarA.read_u16()); carD = 0xffff / ((int)inCarD.read_u16()); carS = (int)inCarS.read_u16(); carR = 0xffff / ((int)inCarR.read_u16()); modA = 0xffff / ((int)inModA.read_u16()); modD = 0xffff / ((int)inModD.read_u16()); modS = (int)inModS.read_u16(); modR = 0xffff / ((int)inModR.read_u16()); } }