Alex Leung
/
HealthTracker
Test version
Diff: algorithm.cpp
- Revision:
- 0:4be500de690c
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithm.cpp Tue Mar 20 02:09:21 2018 +0000 @@ -0,0 +1,304 @@ +#include "algorithm.h" +#include "mbed.h" + +void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, + int32_t *pn_heart_rate, int8_t *pch_hr_valid) +/** +* \brief Calculate the heart rate and SpO2 level +* \par Details +* By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed. +* Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow. +* Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio. +* +* \param[in] *pun_ir_buffer - IR sensor data buffer +* \param[in] n_ir_buffer_length - IR sensor data buffer length +* \param[in] *pun_red_buffer - Red sensor data buffer +* \param[out] *pn_spo2 - Calculated SpO2 value +* \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid +* \param[out] *pn_heart_rate - Calculated heart rate value +* \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid +* +* \retval None +*/ +{ + uint32_t un_ir_mean ,un_only_once ; + int32_t k ,n_i_ratio_count; + int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx; + int32_t n_th1, n_npks,n_c_min; + int32_t an_ir_valley_locs[15] ; + int32_t an_exact_ir_valley_locs[15] ; + int32_t an_dx_peak_locs[15] ; + int32_t n_peak_interval_sum; + + int32_t n_y_ac, n_x_ac; + int32_t n_spo2_calc; + int32_t n_y_dc_max, n_x_dc_max; + int32_t n_y_dc_max_idx, n_x_dc_max_idx; + int32_t an_ratio[5],n_ratio_average; + int32_t n_nume, n_denom ; + // remove DC of ir signal + un_ir_mean =0; + for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ; + un_ir_mean =un_ir_mean/n_ir_buffer_length ; + for (k=0 ; k<n_ir_buffer_length ; k++ ) an_x[k] = pun_ir_buffer[k] - un_ir_mean ; + + // 4 pt Moving Average + for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ + n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]); + an_x[k]= n_denom/(int32_t)4; + } + + // get difference of smoothed IR signal + + for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++) + an_dx[k]= (an_x[k+1]- an_x[k]); + + // 2-pt Moving Average to an_dx + for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){ + an_dx[k] = ( an_dx[k]+an_dx[k+1])/2 ; + } + + // hamming window + // flip wave form so that we can detect valley with peak detector + for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){ + s= 0; + for( k=i; k<i+ HAMMING_SIZE ;k++){ + s -= an_dx[k] *auw_hamm[k-i] ; + } + an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm + } + + + n_th1=0; // threshold calculation + for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){ + n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ; + } + n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE); + // peak location is acutally index for sharpest location of raw signal since we flipped the signal + maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks + + n_peak_interval_sum =0; + if (n_npks>=2){ + for (k=1; k<n_npks; k++) + n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]); + n_peak_interval_sum=n_peak_interval_sum/(n_npks-1); + *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes + *pch_hr_valid = 1; + } + else { + *pn_heart_rate = -999; + *pch_hr_valid = 0; + } + + for ( k=0 ; k<n_npks ;k++) + an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2; + + + // raw value : RED(=y) and IR(=X) + // we need to assess DC and AC value of ir and red PPG. + for (k=0 ; k<n_ir_buffer_length ; k++ ) { + an_x[k] = pun_ir_buffer[k] ; + an_y[k] = pun_red_buffer[k] ; + } + + // find precise min near an_ir_valley_locs + n_exact_ir_valley_locs_count =0; + for(k=0 ; k<n_npks ;k++){ + un_only_once =1; + m=an_ir_valley_locs[k]; + n_c_min= 16777216;//2^24; + if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){ + for(i= m-5;i<m+5; i++) + if (an_x[i]<n_c_min){ + if (un_only_once >0){ + un_only_once =0; + } + n_c_min= an_x[i] ; + an_exact_ir_valley_locs[k]=i; + } + if (un_only_once ==0) + n_exact_ir_valley_locs_count ++ ; + } + } + if (n_exact_ir_valley_locs_count <2 ){ + *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range + *pch_spo2_valid = 0; + return; + } + // 4 pt MA + for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ + an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4; + an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4; + } + + //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio + //finding AC/DC maximum of raw ir * red between two valley locations + n_ratio_average =0; + n_i_ratio_count =0; + + for(k=0; k< 5; k++) an_ratio[k]=0; + for (k=0; k< n_exact_ir_valley_locs_count; k++){ + if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){ + *pn_spo2 = -999 ; // do not use SPO2 since valley loc is out of range + *pch_spo2_valid = 0; + return; + } + } + // find max between two valley locations + // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 + + for (k=0; k< n_exact_ir_valley_locs_count-1; k++){ + n_y_dc_max= -16777216 ; + n_x_dc_max= - 16777216; + if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){ + for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){ + if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; } + if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;} + } + n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red + n_y_ac= an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]) ; + + + n_y_ac= an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw + n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir + n_x_ac= an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]); + n_x_ac= an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw + n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value + n_denom= ( n_x_ac *n_y_dc_max)>>7; + if (n_denom>0 && n_i_ratio_count <5 && n_nume != 0) + { + an_ratio[n_i_ratio_count]= (n_nume*100)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ; + n_i_ratio_count++; + } + } + } + + maxim_sort_ascend(an_ratio, n_i_ratio_count); + n_middle_idx= n_i_ratio_count/2; + + if (n_middle_idx >1) + n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median + else + n_ratio_average = an_ratio[n_middle_idx ]; + + if( n_ratio_average>2 && n_ratio_average <184){ + n_spo2_calc= uch_spo2_table[n_ratio_average] ; + *pn_spo2 = n_spo2_calc ; + *pch_spo2_valid = 1;// float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table + } + else{ + *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range + *pch_spo2_valid = 0; + } +} + + +void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num) +/** +* \brief Find peaks +* \par Details +* Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE +* +* \retval None +*/ +{ + maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height ); + maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance ); + *pn_npks = min( *pn_npks, n_max_num ); +} + +void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height) +/** +* \brief Find peaks above n_min_height +* \par Details +* Find all peaks above MIN_HEIGHT +* +* \retval None +*/ +{ + int32_t i = 1, n_width; + *pn_npks = 0; + + while (i < n_size-1){ + if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){ // find left edge of potential peaks + n_width = 1; + while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width]) // find flat peaks + n_width++; + if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){ // find right edge of peaks + pn_locs[(*pn_npks)++] = i; + // for flat peaks, peak location is left edge + i += n_width+1; + } + else + i += n_width; + } + else + i++; + } +} + + +void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance) +/** +* \brief Remove peaks +* \par Details +* Remove peaks separated by less than MIN_DISTANCE +* +* \retval None +*/ +{ + + int32_t i, j, n_old_npks, n_dist; + + /* Order peaks from large to small */ + maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks ); + + for ( i = -1; i < *pn_npks; i++ ){ + n_old_npks = *pn_npks; + *pn_npks = i+1; + for ( j = i+1; j < n_old_npks; j++ ){ + n_dist = pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1 + if ( n_dist > n_min_distance || n_dist < -n_min_distance ) + pn_locs[(*pn_npks)++] = pn_locs[j]; + } + } + + // Resort indices longo ascending order + maxim_sort_ascend( pn_locs, *pn_npks ); +} + +void maxim_sort_ascend(int32_t *pn_x,int32_t n_size) +/** +* \brief Sort array +* \par Details +* Sort array in ascending order (insertion sort algorithm) +* +* \retval None +*/ +{ + int32_t i, j, n_temp; + for (i = 1; i < n_size; i++) { + n_temp = pn_x[i]; + for (j = i; j > 0 && n_temp < pn_x[j-1]; j--) + pn_x[j] = pn_x[j-1]; + pn_x[j] = n_temp; + } +} + +void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size) +/** +* \brief Sort indices +* \par Details +* Sort indices according to descending order (insertion sort algorithm) +* +* \retval None +*/ +{ + int32_t i, j, n_temp; + for (i = 1; i < n_size; i++) { + n_temp = pn_indx[i]; + for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--) + pn_indx[j] = pn_indx[j-1]; + pn_indx[j] = n_temp; + } +}