MadgwickFilterコピペ

Dependents:   201903_pf_lower_judgment_sashida 201903_pf_lower_judgment 201903_pf_lower_judgment

Committer:
Yukina
Date:
Tue Dec 11 13:59:10 2018 +0000
Revision:
0:c32a5fb80d4d
Madgwick Filter

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Yukina 0:c32a5fb80d4d 1 //=============================================================================================
Yukina 0:c32a5fb80d4d 2 // MadgwickAHRS.c
Yukina 0:c32a5fb80d4d 3 //=============================================================================================
Yukina 0:c32a5fb80d4d 4 //
Yukina 0:c32a5fb80d4d 5 // Implementation of Madgwick's IMU and AHRS algorithms.
Yukina 0:c32a5fb80d4d 6 // See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
Yukina 0:c32a5fb80d4d 7 //
Yukina 0:c32a5fb80d4d 8 // From the x-io website "Open-source resources available on this website are
Yukina 0:c32a5fb80d4d 9 // provided under the GNU General Public Licence unless an alternative licence
Yukina 0:c32a5fb80d4d 10 // is provided in source."
Yukina 0:c32a5fb80d4d 11 //
Yukina 0:c32a5fb80d4d 12 // Date Author Notes
Yukina 0:c32a5fb80d4d 13 // 29/09/2011 SOH Madgwick Initial release
Yukina 0:c32a5fb80d4d 14 // 02/10/2011 SOH Madgwick Optimised for reduced CPU load
Yukina 0:c32a5fb80d4d 15 // 19/02/2012 SOH Madgwick Magnetometer measurement is normalised
Yukina 0:c32a5fb80d4d 16 //
Yukina 0:c32a5fb80d4d 17 //=============================================================================================
Yukina 0:c32a5fb80d4d 18
Yukina 0:c32a5fb80d4d 19 //-------------------------------------------------------------------------------------------
Yukina 0:c32a5fb80d4d 20 // Header files
Yukina 0:c32a5fb80d4d 21
Yukina 0:c32a5fb80d4d 22 #include "MadgwickAHRS.h"
Yukina 0:c32a5fb80d4d 23 #include <math.h>
Yukina 0:c32a5fb80d4d 24
Yukina 0:c32a5fb80d4d 25 //-------------------------------------------------------------------------------------------
Yukina 0:c32a5fb80d4d 26 // Definitions
Yukina 0:c32a5fb80d4d 27
Yukina 0:c32a5fb80d4d 28 #define sampleFreqDef 512.0f // sample frequency in Hz
Yukina 0:c32a5fb80d4d 29 #define betaDef 0.1f // 2 * proportional gain
Yukina 0:c32a5fb80d4d 30
Yukina 0:c32a5fb80d4d 31
Yukina 0:c32a5fb80d4d 32 //============================================================================================
Yukina 0:c32a5fb80d4d 33 // Functions
Yukina 0:c32a5fb80d4d 34
Yukina 0:c32a5fb80d4d 35 //-------------------------------------------------------------------------------------------
Yukina 0:c32a5fb80d4d 36 // AHRS algorithm update
Yukina 0:c32a5fb80d4d 37
Yukina 0:c32a5fb80d4d 38 Madgwick::Madgwick() {
Yukina 0:c32a5fb80d4d 39 beta = betaDef;
Yukina 0:c32a5fb80d4d 40 q0 = 1.0f;
Yukina 0:c32a5fb80d4d 41 q1 = 0.0f;
Yukina 0:c32a5fb80d4d 42 q2 = 0.0f;
Yukina 0:c32a5fb80d4d 43 q3 = 0.0f;
Yukina 0:c32a5fb80d4d 44 invSampleFreq = 1.0f / sampleFreqDef;
Yukina 0:c32a5fb80d4d 45 anglesComputed = 0;
Yukina 0:c32a5fb80d4d 46 }
Yukina 0:c32a5fb80d4d 47
Yukina 0:c32a5fb80d4d 48 void Madgwick::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
Yukina 0:c32a5fb80d4d 49 float recipNorm;
Yukina 0:c32a5fb80d4d 50 float s0, s1, s2, s3;
Yukina 0:c32a5fb80d4d 51 float qDot1, qDot2, qDot3, qDot4;
Yukina 0:c32a5fb80d4d 52 float hx, hy;
Yukina 0:c32a5fb80d4d 53 float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
Yukina 0:c32a5fb80d4d 54
Yukina 0:c32a5fb80d4d 55 // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
Yukina 0:c32a5fb80d4d 56 if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
Yukina 0:c32a5fb80d4d 57 updateIMU(gx, gy, gz, ax, ay, az);
Yukina 0:c32a5fb80d4d 58 return;
Yukina 0:c32a5fb80d4d 59 }
Yukina 0:c32a5fb80d4d 60
Yukina 0:c32a5fb80d4d 61 // Convert gyroscope degrees/sec to radians/sec
Yukina 0:c32a5fb80d4d 62 gx *= 0.0174533f;
Yukina 0:c32a5fb80d4d 63 gy *= 0.0174533f;
Yukina 0:c32a5fb80d4d 64 gz *= 0.0174533f;
Yukina 0:c32a5fb80d4d 65
Yukina 0:c32a5fb80d4d 66 // Rate of change of quaternion from gyroscope
Yukina 0:c32a5fb80d4d 67 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
Yukina 0:c32a5fb80d4d 68 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
Yukina 0:c32a5fb80d4d 69 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
Yukina 0:c32a5fb80d4d 70 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
Yukina 0:c32a5fb80d4d 71
Yukina 0:c32a5fb80d4d 72 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
Yukina 0:c32a5fb80d4d 73 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
Yukina 0:c32a5fb80d4d 74
Yukina 0:c32a5fb80d4d 75 // Normalise accelerometer measurement
Yukina 0:c32a5fb80d4d 76 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
Yukina 0:c32a5fb80d4d 77 ax *= recipNorm;
Yukina 0:c32a5fb80d4d 78 ay *= recipNorm;
Yukina 0:c32a5fb80d4d 79 az *= recipNorm;
Yukina 0:c32a5fb80d4d 80
Yukina 0:c32a5fb80d4d 81 // Normalise magnetometer measurement
Yukina 0:c32a5fb80d4d 82 recipNorm = invSqrt(mx * mx + my * my + mz * mz);
Yukina 0:c32a5fb80d4d 83 mx *= recipNorm;
Yukina 0:c32a5fb80d4d 84 my *= recipNorm;
Yukina 0:c32a5fb80d4d 85 mz *= recipNorm;
Yukina 0:c32a5fb80d4d 86
Yukina 0:c32a5fb80d4d 87 // Auxiliary variables to avoid repeated arithmetic
Yukina 0:c32a5fb80d4d 88 _2q0mx = 2.0f * q0 * mx;
Yukina 0:c32a5fb80d4d 89 _2q0my = 2.0f * q0 * my;
Yukina 0:c32a5fb80d4d 90 _2q0mz = 2.0f * q0 * mz;
Yukina 0:c32a5fb80d4d 91 _2q1mx = 2.0f * q1 * mx;
Yukina 0:c32a5fb80d4d 92 _2q0 = 2.0f * q0;
Yukina 0:c32a5fb80d4d 93 _2q1 = 2.0f * q1;
Yukina 0:c32a5fb80d4d 94 _2q2 = 2.0f * q2;
Yukina 0:c32a5fb80d4d 95 _2q3 = 2.0f * q3;
Yukina 0:c32a5fb80d4d 96 _2q0q2 = 2.0f * q0 * q2;
Yukina 0:c32a5fb80d4d 97 _2q2q3 = 2.0f * q2 * q3;
Yukina 0:c32a5fb80d4d 98 q0q0 = q0 * q0;
Yukina 0:c32a5fb80d4d 99 q0q1 = q0 * q1;
Yukina 0:c32a5fb80d4d 100 q0q2 = q0 * q2;
Yukina 0:c32a5fb80d4d 101 q0q3 = q0 * q3;
Yukina 0:c32a5fb80d4d 102 q1q1 = q1 * q1;
Yukina 0:c32a5fb80d4d 103 q1q2 = q1 * q2;
Yukina 0:c32a5fb80d4d 104 q1q3 = q1 * q3;
Yukina 0:c32a5fb80d4d 105 q2q2 = q2 * q2;
Yukina 0:c32a5fb80d4d 106 q2q3 = q2 * q3;
Yukina 0:c32a5fb80d4d 107 q3q3 = q3 * q3;
Yukina 0:c32a5fb80d4d 108
Yukina 0:c32a5fb80d4d 109 // Reference direction of Earth's magnetic field
Yukina 0:c32a5fb80d4d 110 hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
Yukina 0:c32a5fb80d4d 111 hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
Yukina 0:c32a5fb80d4d 112 _2bx = sqrtf(hx * hx + hy * hy);
Yukina 0:c32a5fb80d4d 113 _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
Yukina 0:c32a5fb80d4d 114 _4bx = 2.0f * _2bx;
Yukina 0:c32a5fb80d4d 115 _4bz = 2.0f * _2bz;
Yukina 0:c32a5fb80d4d 116
Yukina 0:c32a5fb80d4d 117 // Gradient decent algorithm corrective step
Yukina 0:c32a5fb80d4d 118 s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
Yukina 0:c32a5fb80d4d 119 s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
Yukina 0:c32a5fb80d4d 120 s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
Yukina 0:c32a5fb80d4d 121 s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
Yukina 0:c32a5fb80d4d 122 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
Yukina 0:c32a5fb80d4d 123 s0 *= recipNorm;
Yukina 0:c32a5fb80d4d 124 s1 *= recipNorm;
Yukina 0:c32a5fb80d4d 125 s2 *= recipNorm;
Yukina 0:c32a5fb80d4d 126 s3 *= recipNorm;
Yukina 0:c32a5fb80d4d 127
Yukina 0:c32a5fb80d4d 128 // Apply feedback step
Yukina 0:c32a5fb80d4d 129 qDot1 -= beta * s0;
Yukina 0:c32a5fb80d4d 130 qDot2 -= beta * s1;
Yukina 0:c32a5fb80d4d 131 qDot3 -= beta * s2;
Yukina 0:c32a5fb80d4d 132 qDot4 -= beta * s3;
Yukina 0:c32a5fb80d4d 133 }
Yukina 0:c32a5fb80d4d 134
Yukina 0:c32a5fb80d4d 135 // Integrate rate of change of quaternion to yield quaternion
Yukina 0:c32a5fb80d4d 136 q0 += qDot1 * invSampleFreq;
Yukina 0:c32a5fb80d4d 137 q1 += qDot2 * invSampleFreq;
Yukina 0:c32a5fb80d4d 138 q2 += qDot3 * invSampleFreq;
Yukina 0:c32a5fb80d4d 139 q3 += qDot4 * invSampleFreq;
Yukina 0:c32a5fb80d4d 140
Yukina 0:c32a5fb80d4d 141 // Normalise quaternion
Yukina 0:c32a5fb80d4d 142 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
Yukina 0:c32a5fb80d4d 143 q0 *= recipNorm;
Yukina 0:c32a5fb80d4d 144 q1 *= recipNorm;
Yukina 0:c32a5fb80d4d 145 q2 *= recipNorm;
Yukina 0:c32a5fb80d4d 146 q3 *= recipNorm;
Yukina 0:c32a5fb80d4d 147 anglesComputed = 0;
Yukina 0:c32a5fb80d4d 148 }
Yukina 0:c32a5fb80d4d 149
Yukina 0:c32a5fb80d4d 150 //-------------------------------------------------------------------------------------------
Yukina 0:c32a5fb80d4d 151 // IMU algorithm update
Yukina 0:c32a5fb80d4d 152
Yukina 0:c32a5fb80d4d 153 void Madgwick::updateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
Yukina 0:c32a5fb80d4d 154 float recipNorm;
Yukina 0:c32a5fb80d4d 155 float s0, s1, s2, s3;
Yukina 0:c32a5fb80d4d 156 float qDot1, qDot2, qDot3, qDot4;
Yukina 0:c32a5fb80d4d 157 float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
Yukina 0:c32a5fb80d4d 158
Yukina 0:c32a5fb80d4d 159 // Convert gyroscope degrees/sec to radians/sec
Yukina 0:c32a5fb80d4d 160 gx *= 0.0174533f;
Yukina 0:c32a5fb80d4d 161 gy *= 0.0174533f;
Yukina 0:c32a5fb80d4d 162 gz *= 0.0174533f;
Yukina 0:c32a5fb80d4d 163
Yukina 0:c32a5fb80d4d 164 // Rate of change of quaternion from gyroscope
Yukina 0:c32a5fb80d4d 165 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
Yukina 0:c32a5fb80d4d 166 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
Yukina 0:c32a5fb80d4d 167 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
Yukina 0:c32a5fb80d4d 168 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
Yukina 0:c32a5fb80d4d 169
Yukina 0:c32a5fb80d4d 170 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
Yukina 0:c32a5fb80d4d 171 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
Yukina 0:c32a5fb80d4d 172
Yukina 0:c32a5fb80d4d 173 // Normalise accelerometer measurement
Yukina 0:c32a5fb80d4d 174 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
Yukina 0:c32a5fb80d4d 175 ax *= recipNorm;
Yukina 0:c32a5fb80d4d 176 ay *= recipNorm;
Yukina 0:c32a5fb80d4d 177 az *= recipNorm;
Yukina 0:c32a5fb80d4d 178
Yukina 0:c32a5fb80d4d 179 // Auxiliary variables to avoid repeated arithmetic
Yukina 0:c32a5fb80d4d 180 _2q0 = 2.0f * q0;
Yukina 0:c32a5fb80d4d 181 _2q1 = 2.0f * q1;
Yukina 0:c32a5fb80d4d 182 _2q2 = 2.0f * q2;
Yukina 0:c32a5fb80d4d 183 _2q3 = 2.0f * q3;
Yukina 0:c32a5fb80d4d 184 _4q0 = 4.0f * q0;
Yukina 0:c32a5fb80d4d 185 _4q1 = 4.0f * q1;
Yukina 0:c32a5fb80d4d 186 _4q2 = 4.0f * q2;
Yukina 0:c32a5fb80d4d 187 _8q1 = 8.0f * q1;
Yukina 0:c32a5fb80d4d 188 _8q2 = 8.0f * q2;
Yukina 0:c32a5fb80d4d 189 q0q0 = q0 * q0;
Yukina 0:c32a5fb80d4d 190 q1q1 = q1 * q1;
Yukina 0:c32a5fb80d4d 191 q2q2 = q2 * q2;
Yukina 0:c32a5fb80d4d 192 q3q3 = q3 * q3;
Yukina 0:c32a5fb80d4d 193
Yukina 0:c32a5fb80d4d 194 // Gradient decent algorithm corrective step
Yukina 0:c32a5fb80d4d 195 s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
Yukina 0:c32a5fb80d4d 196 s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
Yukina 0:c32a5fb80d4d 197 s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
Yukina 0:c32a5fb80d4d 198 s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
Yukina 0:c32a5fb80d4d 199 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
Yukina 0:c32a5fb80d4d 200 s0 *= recipNorm;
Yukina 0:c32a5fb80d4d 201 s1 *= recipNorm;
Yukina 0:c32a5fb80d4d 202 s2 *= recipNorm;
Yukina 0:c32a5fb80d4d 203 s3 *= recipNorm;
Yukina 0:c32a5fb80d4d 204
Yukina 0:c32a5fb80d4d 205 // Apply feedback step
Yukina 0:c32a5fb80d4d 206 qDot1 -= beta * s0;
Yukina 0:c32a5fb80d4d 207 qDot2 -= beta * s1;
Yukina 0:c32a5fb80d4d 208 qDot3 -= beta * s2;
Yukina 0:c32a5fb80d4d 209 qDot4 -= beta * s3;
Yukina 0:c32a5fb80d4d 210 }
Yukina 0:c32a5fb80d4d 211
Yukina 0:c32a5fb80d4d 212 // Integrate rate of change of quaternion to yield quaternion
Yukina 0:c32a5fb80d4d 213 q0 += qDot1 * invSampleFreq;
Yukina 0:c32a5fb80d4d 214 q1 += qDot2 * invSampleFreq;
Yukina 0:c32a5fb80d4d 215 q2 += qDot3 * invSampleFreq;
Yukina 0:c32a5fb80d4d 216 q3 += qDot4 * invSampleFreq;
Yukina 0:c32a5fb80d4d 217
Yukina 0:c32a5fb80d4d 218 // Normalise quaternion
Yukina 0:c32a5fb80d4d 219 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
Yukina 0:c32a5fb80d4d 220 q0 *= recipNorm;
Yukina 0:c32a5fb80d4d 221 q1 *= recipNorm;
Yukina 0:c32a5fb80d4d 222 q2 *= recipNorm;
Yukina 0:c32a5fb80d4d 223 q3 *= recipNorm;
Yukina 0:c32a5fb80d4d 224 anglesComputed = 0;
Yukina 0:c32a5fb80d4d 225 }
Yukina 0:c32a5fb80d4d 226
Yukina 0:c32a5fb80d4d 227 //-------------------------------------------------------------------------------------------
Yukina 0:c32a5fb80d4d 228 // Fast inverse square-root
Yukina 0:c32a5fb80d4d 229 // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
Yukina 0:c32a5fb80d4d 230
Yukina 0:c32a5fb80d4d 231 float Madgwick::invSqrt(float x) {
Yukina 0:c32a5fb80d4d 232 float halfx = 0.5f * x;
Yukina 0:c32a5fb80d4d 233 float y = x;
Yukina 0:c32a5fb80d4d 234 long i = *(long*)&y;
Yukina 0:c32a5fb80d4d 235 i = 0x5f3759df - (i>>1);
Yukina 0:c32a5fb80d4d 236 y = *(float*)&i;
Yukina 0:c32a5fb80d4d 237 y = y * (1.5f - (halfx * y * y));
Yukina 0:c32a5fb80d4d 238 y = y * (1.5f - (halfx * y * y));
Yukina 0:c32a5fb80d4d 239 return y;
Yukina 0:c32a5fb80d4d 240 }
Yukina 0:c32a5fb80d4d 241
Yukina 0:c32a5fb80d4d 242 //-------------------------------------------------------------------------------------------
Yukina 0:c32a5fb80d4d 243
Yukina 0:c32a5fb80d4d 244 void Madgwick::computeAngles()
Yukina 0:c32a5fb80d4d 245 {
Yukina 0:c32a5fb80d4d 246 roll = atan2f(q0*q1 + q2*q3, 0.5f - q1*q1 - q2*q2);
Yukina 0:c32a5fb80d4d 247 pitch = asinf(-2.0f * (q1*q3 - q0*q2));
Yukina 0:c32a5fb80d4d 248 yaw = atan2f(q1*q2 + q0*q3, 0.5f - q2*q2 - q3*q3);
Yukina 0:c32a5fb80d4d 249 anglesComputed = 1;
Yukina 0:c32a5fb80d4d 250 }
Yukina 0:c32a5fb80d4d 251