Simplified access to Ramtron (Cypress) FM24Vxx F-RAM devices
FM24Vxx_I2C.cpp
- Committer:
- Yann
- Date:
- 2013-04-03
- Revision:
- 1:6a16bddd7222
- Parent:
- 0:fa858f79d48d
- Child:
- 2:bf7d1264d3ff
File content as of revision 1:6a16bddd7222:
/* mbed simplified access to RAMTRON FV24xx Serial 3V F-RAM Memory (I2C) * Copyright (c) 20103 ygarcia, MIT License * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without restriction, * including without limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include <iostream> #include <sstream> #include "FM24Vxx_I2C.h" namespace _FM24VXX_I2C { unsigned char CFM24VXX_I2C::I2CModuleRefCounter = 0; CFM24VXX_I2C::CFM24VXX_I2C(const PinName p_sda, const PinName p_scl, const unsigned char p_address, const PinName p_wp, const unsigned int p_frequency) : _internalId("") { DEBUG_ENTER("CFM24VXX_I2C") if (CFM24VXX_I2C::I2CModuleRefCounter != 0) { error("CFM24VXX_I2C: Wrong params"); } #ifdef __DEBUG std::ostringstream out(std::ostringstream::out); out << "CFM24VXX_I2C #" << CFM24VXX_I2C::I2CModuleRefCounter; _internalId.assign(out.str()); DEBUG("CFM24VXX_I2C: _internalId='%s'", _internalId.c_str()) #endif // __DEBUG _i2cInstance = new I2C(p_sda, p_scl); CFM24VXX_I2C::I2CModuleRefCounter += 1; DEBUG_ENTER("CFM24VXX_I2C: refCounter=%d", CFM24VXX_I2C::I2CModuleRefCounter) // Memory page select is set to 0 _slaveAddress = (p_address << 2) | 0xa0; // Slave address format is: 1 0 1 0 A2 A1 PS R/W, PS set to 0 DEBUG("CFM24VXX_I2C: I2C slave adress: 0x%02x", _slaveAddress) _i2cInstance->frequency(p_frequency); // Set the frequency of the I2C interface if (p_wp != NC) { DEBUG("CFM24VXX_I2C: WP managed"); _wp = new DigitalOut(p_wp); _wp->write(0); // Disable write protect } else { DEBUG("CFM24VXX_I2C: WP not managed"); _wp = NULL; // Not used } // Retrieve device identifiers _deviceID = NULL; GetDevideIDs(); _sn = NULL; GetSerialNumbers(); DEBUG_LEAVE("CFM24VXX_I2C") } CFM24VXX_I2C::~CFM24VXX_I2C() { DEBUG_ENTER("~CFM24VXX_I2C") // Release I2C instance DEBUG_ENTER("~CFM24VXX_I2C: refCounter=%d", CFM24VXX_I2C::I2CModuleRefCounter) CFM24VXX_I2C::I2CModuleRefCounter -= 1; if (CFM24VXX_I2C::I2CModuleRefCounter == 0) { delete _i2cInstance; _i2cInstance = NULL; if (_deviceID != NULL) { delete _deviceID; _deviceID = NULL; } } // Release _wp if required if (_wp != NULL) { _wp->write(0); delete _wp; } DEBUG_LEAVE("~CFM24VXX_I2C") } bool CFM24VXX_I2C::WriteProtect(const bool p_writeProtect) { if (_wp != NULL) { DEBUG("WP set to: %x", (int)p_writeProtect) _wp->write((int)(p_writeProtect)); return true; } return false; } bool CFM24VXX_I2C::GetDevideIDs() { DEBUG_ENTER("CFM24VXX_I2C::GetDevideIDs") // 1. Memory address char i2cBuffer[1]; i2cBuffer[0] = (unsigned char)(_slaveAddress & 0xfc); //FIXME Change 0xfc into a const SET_PAGE_SELECT_0 DEBUG("CFM24VXX_I2C::GetDevideIDs: pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) // 2. Send I2C start + 0xF8 + I2C ReStart if (_i2cInstance->write(0xf8, i2cBuffer, 1, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::GetDevideIDs: Write F8 done") // 3. read data + I2C stop unsigned char buffer[3]; int result = _i2cInstance->read(0xf9, (char *)buffer, 3); wait(0.02); if (result == 0) { // 4. Setup the device IDs _deviceID = new CFM24VXX_IDs(buffer[0], buffer[1], buffer[2]); DEBUG("CFM24VXX_I2C::GetDevideIDs: %02x - %02x - %02x", buffer[0], buffer[1], buffer[2]) DEBUG_LEAVE("CFM24VXX_I2C::GetDevideIDs: %x", (bool)(result == 0)) return (bool)(result == 0); } } _deviceID = new CFM24VXX_IDs(0xff, 0xff, 0xff); DEBUG_LEAVE("CFM24VXX_I2C::GetDevideIDs (false)") return false; } bool CFM24VXX_I2C::GetSerialNumbers() { DEBUG_ENTER("CFM24VXX_I2C::GetSerialNumber") // 1. Memory address char i2cBuffer[1]; i2cBuffer[0] = (unsigned char)(_slaveAddress & 0xfc); //FIXME Change 0xfc into a const SET_PAGE_SELECT_0 DEBUG("CFM24VXX_I2C::GetSerialNumber: pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) // 2. Send I2C start + 0xF8 + I2C ReStart if (_i2cInstance->write(0xf8, i2cBuffer, 1, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::GetSerialNumber: Write F8 done") // 3. read data + I2C stop unsigned char buffer[8]; // See FM24V10_ds.pdf Page 10/16 Figure 15. 8-Byte Serial Number (read-only) int result = _i2cInstance->read(0xcd, (char *)buffer, 8); wait(0.02); if (result == 0) { // 4. Check if it is supported if (buffer[7] != 0x00) { // SN supported // 5. Compute CRC unsigned char crc = ChecksumSN(buffer); // 6. Check CRCs if (buffer[7] == crc) { _sn = new CFM24VXX_SN(buffer); DEBUG_LEAVE("CFM24VXX_I2C::GetSerialNumber: true") return true; } else { // SN supported DEBUG_LEAVE("CFM24VXX_I2C::GetSerialNumber: Checksum mismatch") return false; } } else { // SN supported DEBUG_LEAVE("CFM24VXX_I2C::GetSerialNumber: Serial number not supported") return true; } } } DEBUG_LEAVE("CFM24VXX_I2C::GetSerialNumber (false)") return false; } bool CFM24VXX_I2C::EraseMemoryArea(const short p_startAddress, const int p_count, const unsigned char p_pattern) { DEBUG_ENTER("CFM24VXX_I2C::EraseMemoryArea: 0x%02x - %d - 0x%02x", p_startAddress, p_count, p_pattern) std::vector<unsigned char> eraseBuffer(p_count, p_pattern); return Write(p_startAddress, eraseBuffer, false); } bool CFM24VXX_I2C::Write(const short p_address, const unsigned char p_byte) { DEBUG_ENTER("CFM24VXX_I2C::Write (byte): Memory address: 0x%02x - 0x%02x", p_address, p_byte) // 1.Prepare buffer char i2cBuffer[3]; // Memory address + one byte of data // 1.1. Memory address short address = p_address + 1; // Index start to 1 i2cBuffer[0] = (unsigned char)(address >> 8); DEBUG("CFM24VXX_I2C::Write (byte): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff); DEBUG("CFM24VXX_I2C::Write (byte): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 1.2. Datas i2cBuffer[2] = p_byte; DEBUG("CFM24VXX_I2C::Write (byte): value=0x%02x", i2cBuffer[2]) // 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 3); wait(0.02); DEBUG_LEAVE("CFM24VXX_I2C::Write (byte) %x", (bool)(result == 0)) return (bool)(result == 0); } bool CFM24VXX_I2C::Write(const short p_address, const short p_short, const CFM24VXX_I2C::Mode p_mode) { DEBUG_ENTER("CFM24VXX_I2C::Write (short): Memory address:0x%02x, Mode:%d", p_address, p_mode) // 1.Prepare buffer char i2cBuffer[4]; // Memory address + one short (2 bytes) // 1.1. Memory address short address = p_address + 1; // Index start to 1 i2cBuffer[0] = (unsigned char)(address >> 8); DEBUG("CFM24VXX_I2C::Write (short): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff); DEBUG("CFM24VXX_I2C::Write (short): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 1.2. Datas if (p_mode == BigEndian) { i2cBuffer[2] = (unsigned char)(p_short >> 8); i2cBuffer[3] = (unsigned char)((unsigned char)p_short & 0xff); } else { i2cBuffer[2] = (unsigned char)((unsigned char)p_short & 0xff); i2cBuffer[3] = (unsigned char)(p_short >> 8); } DEBUG("CFM24VXX_I2C::Write (short): value=0x%02x%02x", i2cBuffer[2], i2cBuffer[3]) // 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 4); wait(0.02); DEBUG_LEAVE("CFM24VXX_I2C::Write (short) %x", (bool)(result == 0)) return (bool)(result == 0); } bool CFM24VXX_I2C::Write(const short p_address, const int p_int, const CFM24VXX_I2C::Mode p_mode) { DEBUG_ENTER("CFM24VXX_I2C::Write (int): Memory address:0x%02x, Mode:%d", p_address, p_mode) // 1.Prepare buffer char i2cBuffer[6]; // Memory address + one integer (4 bytes) // 1.1. Memory address short address = p_address + 1; // Index start to 1 i2cBuffer[0] = (unsigned char)(address >> 8); DEBUG("CFM24VXX_I2C::Write (int): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff); DEBUG("CFM24VXX_I2C::Write (int): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 1.2. Datas if (p_mode == BigEndian) { i2cBuffer[2] = (unsigned char)(p_int >> 24); i2cBuffer[3] = (unsigned char)(p_int >> 16); i2cBuffer[4] = (unsigned char)(p_int >> 8); i2cBuffer[5] = (unsigned char)((unsigned char)p_int & 0xff); } else { i2cBuffer[2] = (unsigned char)((unsigned char)p_int & 0xff); i2cBuffer[3] = (unsigned char)(p_int >> 8); i2cBuffer[4] = (unsigned char)(p_int >> 16); i2cBuffer[5] = (unsigned char)(p_int >> 24); } DEBUG("CFM24VXX_I2C::Write (int): value=0x%02x%02x%02x%02x", i2cBuffer[2], i2cBuffer[3], i2cBuffer[4], i2cBuffer[5]) // 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 6); wait(0.02); DEBUG_LEAVE("CFM24VXX_I2C::Write (int) %x", (bool)(result == 0)) return (bool)(result == 0); } bool CFM24VXX_I2C::Write(const short p_address, const std::string & p_string, const bool p_storeLength, const int p_length2write) { DEBUG_ENTER("CFM24VXX_I2C::Write (std::string)") return Write(p_address, p_string.c_str(), p_storeLength, p_length2write); } bool CFM24VXX_I2C::Write(const short p_address, const std::vector<unsigned char> & p_datas, const bool p_storeLength, const int p_length2write) { DEBUG_ENTER("CFM24VXX_I2C::Write (std::vector)") int length = (p_length2write == -1) ? p_datas.size() : p_length2write; unsigned char array[length]; std::copy(p_datas.begin(), p_datas.end(), array); bool result = Write(p_address, array, p_storeLength, length); wait(0.02); DEBUG_LEAVE("CFM24VXX_I2C::Write (std::vector): %d", result) return result; } bool CFM24VXX_I2C::Write(const short p_address, const char *p_datas, const bool p_storeLength, const int p_length2write) { DEBUG_ENTER("CFM24VXX_I2C::Write (char *): Memory address: 0x%02x - %x - %d", p_address, p_storeLength, p_length2write) DEBUG("CFM24VXX_I2C::Write (char *): Slave address: %02x", _slaveAddress) // 1.Prepare buffer int length = (p_length2write == -1) ? strlen(p_datas) : p_length2write; if (p_storeLength) { length += 4; // Add four bytes for the length as integer } DEBUG("CFM24VXX_I2C::Write (char *): length:%d", length) char i2cBuffer[2 + length]; // 1.1. Memory address short address = p_address + 1; i2cBuffer[0] = (unsigned char)(address >> 8); DEBUG("CFM24VXX_I2C::Write (char *): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff); DEBUG("CFM24VXX_I2C::Write (char *): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 1.2. Datas if (p_storeLength) { // Fill the length i2cBuffer[2] = (unsigned char)(length >> 24); i2cBuffer[3] = (unsigned char)(length >> 16); i2cBuffer[4] = (unsigned char)(length >> 8); i2cBuffer[5] = (unsigned char)((unsigned char)length & 0xff); for (int i = 0; i < length - 4; i++) { i2cBuffer[6 + i] = *(p_datas + i); } } else { // The length was not stored for (int i = 0; i < length; i++) { i2cBuffer[2 + i] = *(p_datas + i); } } // 2. Send I2C start + I2C address + Memory Address + Datas + I2C stop int result = _i2cInstance->write(_slaveAddress, i2cBuffer, 2 + length); wait(0.02); DEBUG_LEAVE("CFM24VXX_I2C::Write (char *) %x", (bool)(result == 0)) return (bool)(result == 0); } bool CFM24VXX_I2C::Write(const short p_address, const unsigned char *p_datas, const bool p_storeLength, const int p_length2write) { DEBUG_ENTER("CFM24VXX_I2C::Write (byte *): Memory address: 0x%02x - %x - %d", p_address, p_storeLength, p_length2write) return Write(p_address, (const char *)p_datas, p_storeLength, p_length2write); } bool CFM24VXX_I2C::Read(const short p_address, unsigned char * p_byte) { DEBUG_ENTER("CFM24VXX_I2C::Read (byte): Memory address:0x%02x", p_address) // 1.Prepare buffer char i2cBuffer[2]; // 1.1. Memory address i2cBuffer[0] = (unsigned char)(p_address >> 8); DEBUG("CFM24VXX_I2C::Read (byte): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)p_address & 0xff); DEBUG("CFM24VXX_I2C::Read (byte): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 2. Send I2C start + memory address if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::Read (byte): Write memory done") // 2. Read data + I2C stop int result = _i2cInstance->read(_slaveAddress, (char *)p_byte, 1); wait(0.02); DEBUG_LEAVE("CFM24VXX_I2C::Read (byte): %x", (bool)(result == 0)) return (bool)(result == 0); } DEBUG_LEAVE("CFM24VXX_I2C::Read (byte) (false)") return false; } bool CFM24VXX_I2C::Read(const short p_address, short *p_short, const CFM24VXX_I2C::Mode p_mode) { DEBUG_ENTER("CFM24VXX_I2C::Read (short): Memory address:0x%02x, Mode:%d", p_address, p_mode) // 1.Prepare buffer char i2cBuffer[2]; // 1.1. Memory address i2cBuffer[0] = (unsigned char)(p_address >> 8); DEBUG("CFM24VXX_I2C::Read (short): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)p_address & 0xff); DEBUG("CFM24VXX_I2C::Read (short): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 2. Send I2C start + memory address if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::Read (short): Write memory done") // 2. Read data + I2C stop int result = _i2cInstance->read(_slaveAddress, i2cBuffer, 2); if (result == 0) { DEBUG("CFM24VXX_I2C::Read (short): value: 0x%02x - 0x%02x", i2cBuffer[0], i2cBuffer[1]) if (p_mode == BigEndian) { *p_short = (short)(i2cBuffer[0] << 8 | i2cBuffer[1]); } else { *p_short = (short)(i2cBuffer[1] << 8 | i2cBuffer[0]); } DEBUG_LEAVE("CFM24VXX_I2C::Read (short): 0x%04x", *p_short) return true; } } DEBUG_LEAVE("CFM24VXX_I2C::Read (short) (false)") return false; } bool CFM24VXX_I2C::Read(const short p_address, int *p_int, const CFM24VXX_I2C::Mode p_mode) { DEBUG_ENTER("CFM24VXX_I2C::Read (int): Memory address:0x%02x, Mode:%d", p_address, p_mode) // 1.Prepare buffer char i2cBuffer[4]; // 1.1. Memory address i2cBuffer[0] = (unsigned char)(p_address >> 8); DEBUG("CFM24VXX_I2C::Read (int): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)p_address & 0xff); DEBUG("CFM24VXX_I2C::Read (int): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 2. Send I2C start + memory address if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::Read (int): Write memory done") // 2. Read data + I2C stop int result = _i2cInstance->read(_slaveAddress, i2cBuffer, 4); if (result == 0) { DEBUG("CFM24VXX_I2C::Read (int): value: 0x%02x - 0x%02x - 0x%02x - 0x%02x", i2cBuffer[0], i2cBuffer[1], i2cBuffer[2], i2cBuffer[3]) wait(0.02); if (p_mode == BigEndian) { *p_int = (int)(i2cBuffer[0] << 24 | i2cBuffer[1] << 16 | i2cBuffer[2] << 8 | i2cBuffer[3]); } else { *p_int = (int)(i2cBuffer[3] << 24 | i2cBuffer[2] << 16 | i2cBuffer[1] << 8 | i2cBuffer[0]); } DEBUG_LEAVE("CFM24VXX_I2C::Read (int): %d", *p_int) return true; } DEBUG_LEAVE("CFM24VXX_I2C::Read (int):false") return false; } DEBUG_LEAVE("CFM24VXX_I2C::Read (int) (false)") return false; } bool CFM24VXX_I2C::Read(const short p_address, std::vector<unsigned char> & p_datas, const bool p_readLengthFirst, const int p_length2write) { DEBUG_ENTER("CFM24VXX_I2C::Read (vector): Memory address:0x%02x, readLength:%01x, Length:%d", p_address, p_readLengthFirst, p_length2write) // 1.Prepare buffer short address = p_address; int length = 0; if (p_readLengthFirst) { if (!Read(address, &length)) { // Read the length in big endian mode DEBUG_LEAVE("CFM24VXX_I2C::Read (vector) Failed to read length") return false; } DEBUG("CFM24VXX_I2C::Read (vector): length= %d", length) if (length == 0) { return true; } address += 4; // Skip the length value length -= 4; // length is the size of (string length + string) } else { if (p_length2write == -1) { length = p_datas.size(); } else { length = p_length2write; } } DEBUG("CFM24VXX_I2C::Read (vector): length= %d", length) // 2. Memory address char i2cBuffer[2]; i2cBuffer[0] = (unsigned char)(address >> 8); DEBUG("CFM24VXX_I2C::Read (vector): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff); DEBUG("CFM24VXX_I2C::Read (vector): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 3. Send I2C start + memory address if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::Read (vector): Write memory done") // 4. read data + I2C stop unsigned char buffer[length]; int result = _i2cInstance->read(_slaveAddress, (char *)buffer, length); wait(0.02); if (result == 0) { p_datas.assign(buffer, buffer + length); DEBUG_LEAVE("CFM24VXX_I2C::Read (vector): %x", (bool)(result == 0)) return (bool)(result == 0); } } DEBUG_LEAVE("CFM24VXX_I2C::Read (vector) (false)") return false; } bool CFM24VXX_I2C::Read(const short p_address, std::string & p_string, const bool p_readLengthFirst, const int p_length2write) { DEBUG_ENTER("CFM24VXX_I2C::Read (string): Memory address:0x%02x, readLength:%01x, Length:%d", p_address, p_readLengthFirst, p_length2write) /* std::vector<unsigned char> datas; if (Read(p_address, datas, p_readLengthFirst, p_length2write) == true) { p_string.assign((char *)datas.begin(), datas.size()); return true; } DEBUG_LEAVE("CFM24VXX_I2C::Read (string) (false)") return false; */ // 1.Prepare buffer short address = p_address; int length = -1; if (p_readLengthFirst) { // The string was stored with its length if (!Read(address, &length)) { // Read the length as integer in big endian mode DEBUG_ERROR("CFM24VXX_I2C::Read (string): Failed to read length") return false; } wait(0.02); DEBUG("CFM24VXX_I2C::Read (string): length=%d", length) if (length == 0) { DEBUG_ERROR("CFM24VXX_I2C::Read (string): empty") return true; } address += 4; // Skip the length value size length -= 4; // length is the size of (string length + string) } else { // The string length is provided by p_length2write parameter if (p_length2write == -1) { length = p_string.size(); } else { length = p_length2write; p_string.resize(p_length2write); } } DEBUG("CFM24VXX_I2C::Read (string): Address=0x%02x - Length=%d", address, length) // 2. Memory address char i2cBuffer[2]; i2cBuffer[0] = (unsigned char)(address >> 8); DEBUG("CFM24VXX_I2C::Read (string): pI2CBuffer[0]: 0x%02x", i2cBuffer[0]) i2cBuffer[1] = (unsigned char)((unsigned char)address & 0xff); DEBUG("CFM24VXX_I2C::Read (string): pI2CBuffer[1]: 0x%02x", i2cBuffer[1]) // 3. Send I2C start + memory address with repeat start if (_i2cInstance->write(_slaveAddress, i2cBuffer, 2, true) == 0) { wait(0.02); DEBUG("CFM24VXX_I2C::Read (string): Write memory done") // 4. Read data + I2C stop char buffer[length]; int result = _i2cInstance->read(_slaveAddress, (char *)buffer, length); if (result == 0) { p_string.assign(buffer, length); return true; } } DEBUG_LEAVE("CFM24VXX_I2C::Read (string) (false)") return false; } unsigned char CFM24VXX_I2C::ChecksumSN(const unsigned char *pdatas, const unsigned int length) { DEBUG_ENTER("CFM24VXX_I2C::ChecksumSN") unsigned char crctable[256] = { 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 }; unsigned char crc = 0x00; unsigned int length_ = length; unsigned char *pdata = (unsigned char *)pdatas; while (length_-- != 0) { crc = crctable[crc ^ *pdata++]; DEBUG("CFM24VXX_I2C::ChecksumSN: current checksum= 0x%02x - pdata:%08x", crc, pdata) } DEBUG_LEAVE("CFM24VXX_I2C::ChecksumSN: 0x%02x", crc) return crc; } #if defined(__DEBUG) void CFM24VXX_I2C::DumpMemoryArea(const int p_address, const int p_count) { DEBUG_ENTER("CFM24VXX_I2C::DumpMemoryArea: %d - %d", p_address, p_count) DEBUG("CFM24VXX_I2C::DumpMemoryArea: Reading datas..."); std::vector<unsigned char> datas(p_count); if (!Read(p_address, datas, false)) { // Read bytes, including the lenght indication, buffer size is not set before the call std::cout << "CFM24VXX_I2C::DumpMemoryArea: read failed\r" << std::endl; } else { std::cout << "CFM24VXX_I2C::DumpMemoryArea: Read bytes:\r" << std::endl; HEXADUMP(&datas[0], p_count); std::cout << "\r" << std::endl; } } #endif // _DEBUG } // End of namespace _FM24VXX_I2C