Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of LSM9DS0 by
LSM9DS0.cpp
- Committer:
- randrews33
- Date:
- 2014-10-21
- Revision:
- 0:1b975a6ae539
- Child:
- 4:bf8f4e7c9905
File content as of revision 0:1b975a6ae539:
#include "LSM9DS0.h" LSM9DS0::LSM9DS0(PinName sda, PinName scl, uint8_t gAddr, uint8_t xmAddr) { // xmAddress and gAddress will store the 7-bit I2C address, if using I2C. // If we're using SPI, these variables store the chip-select pins. xmAddress = xmAddr; gAddress = gAddr; i2c_ = new I2Cdev(sda, scl); //100KHz, as specified by the datasheet. //i2c_->frequency(100000); } uint16_t LSM9DS0::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, gyro_odr gODR, accel_odr aODR, mag_odr mODR) { // Store the given scales in class variables. These scale variables // are used throughout to calculate the actual g's, DPS,and Gs's. gScale = gScl; aScale = aScl; mScale = mScl; // Once we have the scale values, we can calculate the resolution // of each sensor. That's what these functions are for. One for each sensor calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable calcaRes(); // Calculate g / ADC tick, stored in aRes variable // To verify communication, we can read from the WHO_AM_I register of // each device. Store those in a variable so we can return them. uint8_t gTest = gReadByte(WHO_AM_I_G); // Read the gyro WHO_AM_I uint8_t xmTest = xmReadByte(WHO_AM_I_XM); // Read the accel/mag WHO_AM_I // Gyro initialization stuff: initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. setGyroODR(gODR); // Set the gyro output data rate and bandwidth. setGyroScale(gScale); // Set the gyro range // Accelerometer initialization stuff: initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. // setAccelODR(aODR); // Set the accel data rate. //setAccelScale(aScale); // Set the accel range. // Magnetometer initialization stuff: initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. setMagODR(mODR); // Set the magnetometer output data rate. setMagScale(mScale); // Set the magnetometer's range. // Once everything is initialized, return the WHO_AM_I registers we read: return (xmTest << 8) | gTest; } void LSM9DS0::initGyro() { /* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen DR[1:0] - Output data rate selection 00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz BW[1:0] - Bandwidth selection (sets cutoff frequency) Value depends on ODR. See datasheet table 21. PD - Power down enable (0=power down mode, 1=normal or sleep mode) Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */ gWriteByte(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes /* CTRL_REG2_G sets up the HPF Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0 HPM[1:0] - High pass filter mode selection 00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering, 10=normal, 11=autoreset on interrupt HPCF[3:0] - High pass filter cutoff frequency Value depends on data rate. See datasheet table 26. */ gWriteByte(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency /* CTRL_REG3_G sets up interrupt and DRDY_G pins Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable) I1_BOOT - Boot status available on INT_G (0=disable, 1=enable) H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low) PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain) I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable) I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable) I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable) I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */ // Int1 enabled (pp, active low), data read on DRDY_G: //gWriteByte(CTRL_REG3_G, 0x88); /* CTRL_REG4_G sets the scale, update mode Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM BDU - Block data update (0=continuous, 1=output not updated until read BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add) FS[1:0] - Full-scale selection 00=245dps, 01=500dps, 10=2000dps, 11=2000dps ST[1:0] - Self-test enable 00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+) SIM - SPI serial interface mode select 0=4 wire, 1=3 wire */ gWriteByte(CTRL_REG4_G, 0x00); // Set scale to 245 dps /* CTRL_REG5_G sets up the FIFO, HPF, and INT1 Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0 BOOT - Reboot memory content (0=normal, 1=reboot) FIFO_EN - FIFO enable (0=disable, 1=enable) HPen - HPF enable (0=disable, 1=enable) INT1_Sel[1:0] - Int 1 selection configuration Out_Sel[1:0] - Out selection configuration */ gWriteByte(CTRL_REG5_G, 0x00); // Temporary !!! For testing !!! Remove !!! Or make useful !!! //configGyroInt(0x2A, 0, 0, 0, 0); // Trigger interrupt when above 0 DPS... } void LSM9DS0::initAccel() { /* CTRL_REG0_XM (0x1F) (Default value: 0x00) Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2 BOOT - Reboot memory content (0: normal, 1: reboot) FIFO_EN - Fifo enable (0: disable, 1: enable) WTM_EN - FIFO watermark enable (0: disable, 1: enable) HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled) HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled) HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */ xmWriteByte(CTRL_REG0_XM, 0x00); /* CTRL_REG1_XM (0x20) (Default value: 0x07) Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN AODR[3:0] - select the acceleration data rate: 0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz, 0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz, 1001=800Hz, 1010=1600Hz, (remaining combinations undefined). BDU - block data update for accel AND mag 0: Continuous update 1: Output registers aren't updated until MSB and LSB have been read. AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled. 0: Axis disabled, 1: Axis enabled */ xmWriteByte(CTRL_REG1_XM, 0x57); // 50Hz data rate, x/y/z all enabled //Serial.println(xmReadByte(CTRL_REG1_XM)); /* CTRL_REG2_XM (0x21) (Default value: 0x00) Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM ABW[1:0] - Accelerometer anti-alias filter bandwidth 00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz AFS[2:0] - Accel full-scale selection 000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g AST[1:0] - Accel self-test enable 00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed SIM - SPI mode selection 0=4-wire, 1=3-wire */ xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g /* CTRL_REG3_XM is used to set interrupt generators on INT1_XM Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY */ // Accelerometer data ready on INT1_XM (0x04) // xmWriteByte(CTRL_REG3_XM, 0x04); } void LSM9DS0::initMag() { /* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1 TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled) M_RES[1:0] - Magnetometer resolution select (0=low, 3=high) M_ODR[2:0] - Magnetometer data rate select 000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC) 0=interrupt request not latched, 1=interrupt request latched LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC) 0=irq not latched, 1=irq latched */ xmWriteByte(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz /* CTRL_REG6_XM sets the magnetometer full-scale Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0 MFS[1:0] - Magnetic full-scale selection 00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */ xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS /* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0 AHPM[1:0] - HPF mode selection 00=normal (resets reference registers), 01=reference signal for filtering, 10=normal, 11=autoreset on interrupt event AFDS - Filtered acceleration data selection 0=internal filter bypassed, 1=data from internal filter sent to FIFO MLP - Magnetic data low-power mode 0=data rate is set by M_ODR bits in CTRL_REG5 1=data rate is set to 3.125Hz MD[1:0] - Magnetic sensor mode selection (default 10) 00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */ xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode /* CTRL_REG4_XM is used to set interrupt generators on INT2_XM Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM */ xmWriteByte(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08) /* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od) IEA - Interrupt polarity for accel and magneto 0=active-low, 1=active-high IEL - Latch interrupt request for accel and magneto 0=irq not latched, 1=irq latched 4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set MIEN - Enable interrupt generation for magnetic data 0=disable, 1=enable) */ xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull } void LSM9DS0::readAccel() { /*uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp //xmReadByte(OUT_X_L_A, temp, 6); // Read 6 bytes, beginning at OUT_X_L_A ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay az = (temp[5] << 8) | temp[4]; // Store z-axis values into az*/ uint16_t Temp = 0; uint8_t INTStatus = 0; while(INTStatus == 0) { INTStatus = xmReadByte(STATUS_REG_A) & 0x08; } //Get x Temp = xmReadByte(OUT_X_H_A); Temp = Temp<<8; Temp |= xmReadByte(OUT_X_L_A); ax = Temp; //Get y Temp=0; Temp = xmReadByte(OUT_Y_H_A); Temp = Temp<<8; Temp |= xmReadByte(OUT_Y_L_A); ay = Temp; //Get z Temp=0; Temp = xmReadByte(OUT_Z_H_A); Temp = Temp<<8; Temp |= xmReadByte(OUT_Z_L_A); az = Temp; } void LSM9DS0::readMag() { /*uint8_t temp[6]; // We'll read six bytes from the mag into temp xmReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx my = (temp[3] << 8) | temp[2]; // Store y-axis values into my mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz*/ uint16_t Temp = 0; uint8_t INTStatus = 0; while(INTStatus == 0) { INTStatus = xmReadByte(STATUS_REG_M) & 0x08; } //Get x Temp = xmReadByte(OUT_X_H_M); Temp = Temp<<8; Temp |= xmReadByte(OUT_X_L_M); mx = Temp; //Get y Temp=0; Temp = xmReadByte(OUT_Y_H_M); Temp = Temp<<8; Temp |= xmReadByte(OUT_Y_L_M); my = Temp; //Get z Temp=0; Temp = xmReadByte(OUT_Z_H_M); Temp = Temp<<8; Temp |= xmReadByte(OUT_Z_L_M); mz = Temp; } void LSM9DS0::readGyro() { /*uint8_t temp[6]; // We'll read six bytes from the gyro into temp gReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz*/ uint16_t Temp = 0; uint8_t INTStatus = 0; while(INTStatus == 0) { INTStatus = (xmReadByte(STATUS_REG_G)&0x08); } //Get x Temp = xmReadByte(OUT_X_H_G); Temp = Temp<<8; Temp |= xmReadByte(OUT_X_L_G); gx = Temp; //Get y Temp=0; Temp = xmReadByte(OUT_Y_H_G); Temp = Temp<<8; Temp |= xmReadByte(OUT_Y_L_G); gy = Temp; //Get z Temp=0; Temp = xmReadByte(OUT_Z_H_G); Temp = Temp<<8; Temp |= xmReadByte(OUT_Z_L_G); gz = Temp; } float LSM9DS0::calcGyro(int16_t gyro) { // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): return gRes * gyro; } float LSM9DS0::calcAccel(int16_t accel) { // Return the accel raw reading times our pre-calculated g's / (ADC tick): return aRes * accel; //return accel * (2/32768) - 2; } float LSM9DS0::calcMag(int16_t mag) { // Return the mag raw reading times our pre-calculated Gs / (ADC tick): return mRes * mag; } void LSM9DS0::setGyroScale(gyro_scale gScl) { // We need to preserve the other bytes in CTRL_REG4_G. So, first read it: uint8_t temp = gReadByte(CTRL_REG4_G); // Then mask out the gyro scale bits: temp &= 0xFF^(0x3 << 4); // Then shift in our new scale bits: temp |= gScl << 4; // And write the new register value back into CTRL_REG4_G: gWriteByte(CTRL_REG4_G, temp); // We've updated the sensor, but we also need to update our class variables // First update gScale: gScale = gScl; // Then calculate a new gRes, which relies on gScale being set correctly: calcgRes(); } void LSM9DS0::setAccelScale(accel_scale aScl) { // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG2_XM); // Then mask out the accel scale bits: temp &= 0xFF^(0x3 << 3); // Then shift in our new scale bits: temp |= aScl << 3; // And write the new register value back into CTRL_REG2_XM: xmWriteByte(CTRL_REG2_XM, temp); // We've updated the sensor, but we also need to update our class variables // First update aScale: aScale = aScl; // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(); } void LSM9DS0::setMagScale(mag_scale mScl) { // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG6_XM); // Then mask out the mag scale bits: temp &= 0xFF^(0x3 << 5); // Then shift in our new scale bits: temp |= mScl << 5; // And write the new register value back into CTRL_REG6_XM: xmWriteByte(CTRL_REG6_XM, temp); // We've updated the sensor, but we also need to update our class variables // First update mScale: mScale = mScl; // Then calculate a new mRes, which relies on mScale being set correctly: calcmRes(); } void LSM9DS0::setGyroODR(gyro_odr gRate) { // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: uint8_t temp = gReadByte(CTRL_REG1_G); // Then mask out the gyro ODR bits: temp &= 0xFF^(0xF << 4); // Then shift in our new ODR bits: temp |= (gRate << 4); // And write the new register value back into CTRL_REG1_G: gWriteByte(CTRL_REG1_G, temp); } void LSM9DS0::setAccelODR(accel_odr aRate) { // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG1_XM); // Then mask out the accel ODR bits: temp &= 0xFF^(0xF << 4); // Then shift in our new ODR bits: temp |= (aRate << 4); // And write the new register value back into CTRL_REG1_XM: xmWriteByte(CTRL_REG1_XM, temp); } void LSM9DS0::setMagODR(mag_odr mRate) { // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: uint8_t temp = xmReadByte(CTRL_REG5_XM); // Then mask out the mag ODR bits: temp &= 0xFF^(0x7 << 2); // Then shift in our new ODR bits: temp |= (mRate << 2); // And write the new register value back into CTRL_REG5_XM: xmWriteByte(CTRL_REG5_XM, temp); } void LSM9DS0::configGyroInt(uint8_t int1Cfg, uint16_t int1ThsX, uint16_t int1ThsY, uint16_t int1ThsZ, uint8_t duration) { gWriteByte(INT1_CFG_G, int1Cfg); gWriteByte(INT1_THS_XH_G, (int1ThsX & 0xFF00) >> 8); gWriteByte(INT1_THS_XL_G, (int1ThsX & 0xFF)); gWriteByte(INT1_THS_YH_G, (int1ThsY & 0xFF00) >> 8); gWriteByte(INT1_THS_YL_G, (int1ThsY & 0xFF)); gWriteByte(INT1_THS_ZH_G, (int1ThsZ & 0xFF00) >> 8); gWriteByte(INT1_THS_ZL_G, (int1ThsZ & 0xFF)); if (duration) gWriteByte(INT1_DURATION_G, 0x80 | duration); else gWriteByte(INT1_DURATION_G, 0x00); } void LSM9DS0::calcgRes() { // Possible gyro scales (and their register bit settings) are: // 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm // to calculate DPS/(ADC tick) based on that 2-bit value: switch (gScale) { case G_SCALE_245DPS: gRes = 245.0 / 32768.0; break; case G_SCALE_500DPS: gRes = 500.0 / 32768.0; break; case G_SCALE_2000DPS: gRes = 2000.0 / 32768.0; break; } } void LSM9DS0::calcaRes() { // Possible accelerometer scales (and their register bit settings) are: // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an // algorithm to calculate g/(ADC tick) based on that 3-bit value: aRes = aScale == A_SCALE_16G ? 16.0 / 32768.0 : (((float) aScale + 1.0) * 2.0) / 32768.0; } void LSM9DS0::calcmRes() { // Possible magnetometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm // to calculate Gs/(ADC tick) based on that 2-bit value: mRes = mScale == M_SCALE_2GS ? 2.0 / 32768.0 : (float) (mScale << 2) / 32768.0; } void LSM9DS0::gWriteByte(uint8_t subAddress, uint8_t data) { // Whether we're using I2C or SPI, write a byte using the // gyro-specific I2C address or SPI CS pin. I2CwriteByte(gAddress, subAddress, data); } void LSM9DS0::xmWriteByte(uint8_t subAddress, uint8_t data) { // Whether we're using I2C or SPI, write a byte using the // accelerometer-specific I2C address or SPI CS pin. return I2CwriteByte(xmAddress, subAddress, data); } uint8_t LSM9DS0::gReadByte(uint8_t subAddress) { return I2CreadByte(gAddress, subAddress); } void LSM9DS0::gReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) { // Whether we're using I2C or SPI, read multiple bytes using the // gyro-specific I2C address or SPI CS pin. I2CreadBytes(gAddress, subAddress, dest, count); } uint8_t LSM9DS0::xmReadByte(uint8_t subAddress) { // Whether we're using I2C or SPI, read a byte using the // accelerometer-specific I2C address or SPI CS pin. return I2CreadByte(xmAddress, subAddress); } void LSM9DS0::xmReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) { // Whether we're using I2C or SPI, read multiple bytes using the // accelerometer-specific I2C address or SPI CS pin. I2CreadBytes(xmAddress, subAddress, dest, count); } void LSM9DS0::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) { /* i2c_->start(); wait_ms(1); i2c_->write(address); wait_ms(1); i2c_->write(subAddress); wait_ms(1); i2c_->write(data); wait_ms(1); i2c_->stop();*/ i2c_->writeByte(address,subAddress,data); } uint8_t LSM9DS0::I2CreadByte(uint8_t address, uint8_t subAddress) { char data[1]; // `data` will store the register data /* data[0] = subAddress; i2c_->write(address, data, 1, true); i2c_->read(address, data, 1, true); i2c_->stop(); return (uint8_t)data[0]; // Return data from register*/ I2CreadBytes(address, subAddress,(uint8_t*)data, 1); return (uint8_t)data[0]; } void LSM9DS0::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) { /*char data[1]; // `data` will store the register data data[0] = subAddress; i2c_->write(address, data, 1, true); i2c_->read(address, data, 1, true); dest[0] = data[0]; for (int i=1; i<count ;i++) { if(i == (count -1)) dest[i] = i2c_->read(0); else dest[i] = i2c_->read(1); } // End I2C Transmission i2c_->stop();*/ /*char command[1]; command[0] = subAddress; char *redData = (char*)malloc(count); i2c_->write(address, command, 1, true); i2c_->read(address, redData, count); for(int i =0; i < count; i++) { dest[i] = redData[i]; } free(redData);*/ i2c_->readBytes(address, subAddress, count, dest); }