Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of LSM9DS0 by
Diff: LSM9DS0.cpp
- Revision:
- 4:bf8f4e7c9905
- Parent:
- 0:1b975a6ae539
- Child:
- 7:8d8f4c6c511d
--- a/LSM9DS0.cpp Sun Nov 23 17:46:45 2014 +0000 +++ b/LSM9DS0.cpp Wed Dec 03 23:08:09 2014 +0000 @@ -2,15 +2,11 @@ LSM9DS0::LSM9DS0(PinName sda, PinName scl, uint8_t gAddr, uint8_t xmAddr) { - // xmAddress and gAddress will store the 7-bit I2C address, if using I2C. - // If we're using SPI, these variables store the chip-select pins. xmAddress = xmAddr; gAddress = gAddr; i2c_ = new I2Cdev(sda, scl); - //100KHz, as specified by the datasheet. - //i2c_->frequency(100000); } uint16_t LSM9DS0::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, @@ -41,8 +37,8 @@ // Accelerometer initialization stuff: initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. - // setAccelODR(aODR); // Set the accel data rate. - //setAccelScale(aScale); // Set the accel range. + setAccelODR(aODR); // Set the accel data rate. + setAccelScale(aScale); // Set the accel range. // Magnetometer initialization stuff: initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. @@ -55,178 +51,115 @@ void LSM9DS0::initGyro() { - /* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables - Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen - DR[1:0] - Output data rate selection - 00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz - BW[1:0] - Bandwidth selection (sets cutoff frequency) - Value depends on ODR. See datasheet table 21. - PD - Power down enable (0=power down mode, 1=normal or sleep mode) - Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */ + gWriteByte(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes - - /* CTRL_REG2_G sets up the HPF - Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0 - HPM[1:0] - High pass filter mode selection - 00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering, - 10=normal, 11=autoreset on interrupt - HPCF[3:0] - High pass filter cutoff frequency - Value depends on data rate. See datasheet table 26. - */ gWriteByte(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency + gWriteByte(CTRL_REG3_G, 0x88); //Interrupt enabled on both INT_G and I2_DRDY + gWriteByte(CTRL_REG4_G, 0x00); // Set scale to 245 dps + gWriteByte(CTRL_REG5_G, 0x00); //Init default values - /* CTRL_REG3_G sets up interrupt and DRDY_G pins - Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY - I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable) - I1_BOOT - Boot status available on INT_G (0=disable, 1=enable) - H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low) - PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain) - I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable) - I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable) - I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable) - I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */ - // Int1 enabled (pp, active low), data read on DRDY_G: - //gWriteByte(CTRL_REG3_G, 0x88); - - /* CTRL_REG4_G sets the scale, update mode - Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM - BDU - Block data update (0=continuous, 1=output not updated until read - BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add) - FS[1:0] - Full-scale selection - 00=245dps, 01=500dps, 10=2000dps, 11=2000dps - ST[1:0] - Self-test enable - 00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+) - SIM - SPI serial interface mode select - 0=4 wire, 1=3 wire */ - gWriteByte(CTRL_REG4_G, 0x00); // Set scale to 245 dps - - /* CTRL_REG5_G sets up the FIFO, HPF, and INT1 - Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0 - BOOT - Reboot memory content (0=normal, 1=reboot) - FIFO_EN - FIFO enable (0=disable, 1=enable) - HPen - HPF enable (0=disable, 1=enable) - INT1_Sel[1:0] - Int 1 selection configuration - Out_Sel[1:0] - Out selection configuration */ - gWriteByte(CTRL_REG5_G, 0x00); - - // Temporary !!! For testing !!! Remove !!! Or make useful !!! - //configGyroInt(0x2A, 0, 0, 0, 0); // Trigger interrupt when above 0 DPS... } void LSM9DS0::initAccel() { - /* CTRL_REG0_XM (0x1F) (Default value: 0x00) - Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2 - BOOT - Reboot memory content (0: normal, 1: reboot) - FIFO_EN - Fifo enable (0: disable, 1: enable) - WTM_EN - FIFO watermark enable (0: disable, 1: enable) - HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled) - HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled) - HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */ - xmWriteByte(CTRL_REG0_XM, 0x00); - - /* CTRL_REG1_XM (0x20) (Default value: 0x07) - Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN - AODR[3:0] - select the acceleration data rate: - 0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz, - 0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz, - 1001=800Hz, 1010=1600Hz, (remaining combinations undefined). - BDU - block data update for accel AND mag - 0: Continuous update - 1: Output registers aren't updated until MSB and LSB have been read. - AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled. - 0: Axis disabled, 1: Axis enabled */ - xmWriteByte(CTRL_REG1_XM, 0x57); // 50Hz data rate, x/y/z all enabled - - //Serial.println(xmReadByte(CTRL_REG1_XM)); - /* CTRL_REG2_XM (0x21) (Default value: 0x00) - Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM - ABW[1:0] - Accelerometer anti-alias filter bandwidth - 00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz - AFS[2:0] - Accel full-scale selection - 000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g - AST[1:0] - Accel self-test enable - 00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed - SIM - SPI mode selection - 0=4-wire, 1=3-wire */ + xmWriteByte(CTRL_REG0_XM, 0x00); + xmWriteByte(CTRL_REG1_XM, 0x57); // 50Hz data rate, x/y/z all enabled xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g - - /* CTRL_REG3_XM is used to set interrupt generators on INT1_XM - Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY - */ - // Accelerometer data ready on INT1_XM (0x04) - // xmWriteByte(CTRL_REG3_XM, 0x04); + xmWriteByte(CTRL_REG3_XM, 0x04); // Accelerometer data ready on INT1_XM (0x04) + } void LSM9DS0::initMag() { - /* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate - Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1 - TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled) - M_RES[1:0] - Magnetometer resolution select (0=low, 3=high) - M_ODR[2:0] - Magnetometer data rate select - 000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz - LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC) - 0=interrupt request not latched, 1=interrupt request latched - LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC) - 0=irq not latched, 1=irq latched */ - xmWriteByte(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz - - /* CTRL_REG6_XM sets the magnetometer full-scale - Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0 - MFS[1:0] - Magnetic full-scale selection - 00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */ + xmWriteByte(CTRL_REG5_XM, 0x94); // Mag data rate - 100 Hz, enable temperature sensor xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS - - /* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters - AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0 - AHPM[1:0] - HPF mode selection - 00=normal (resets reference registers), 01=reference signal for filtering, - 10=normal, 11=autoreset on interrupt event - AFDS - Filtered acceleration data selection - 0=internal filter bypassed, 1=data from internal filter sent to FIFO - MLP - Magnetic data low-power mode - 0=data rate is set by M_ODR bits in CTRL_REG5 - 1=data rate is set to 3.125Hz - MD[1:0] - Magnetic sensor mode selection (default 10) - 00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */ xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode - - /* CTRL_REG4_XM is used to set interrupt generators on INT2_XM - Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM - */ xmWriteByte(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08) - - /* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high - Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN - XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data - PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od) - IEA - Interrupt polarity for accel and magneto - 0=active-low, 1=active-high - IEL - Latch interrupt request for accel and magneto - 0=irq not latched, 1=irq latched - 4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set - MIEN - Enable interrupt generation for magnetic data - 0=disable, 1=enable) */ xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull } +void LSM9DS0::calLSM9DS0(float * gbias, float * abias) +{ + uint8_t data[6] = {0, 0, 0, 0, 0, 0}; + int16_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + int samples, ii; + + // First get gyro bias + uint8_t c = gReadByte(CTRL_REG5_G); + gWriteByte(CTRL_REG5_G, c | 0x40); // Enable gyro FIFO + wait_ms(20); // Wait for change to take effect + gWriteByte(FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples + wait_ms(1000); // delay 1000 milliseconds to collect FIFO samples + + samples = (gReadByte(FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples + + for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO + + data[0] = gReadByte(OUT_X_L_G); + data[1] = gReadByte(OUT_X_H_G); + data[2] = gReadByte(OUT_Y_L_G); + data[3] = gReadByte(OUT_Y_H_G); + data[4] = gReadByte(OUT_Z_L_G); + data[5] = gReadByte(OUT_Z_H_G); + + gyro_bias[0] += (((int16_t)data[1] << 8) | data[0]); + gyro_bias[1] += (((int16_t)data[3] << 8) | data[2]); + gyro_bias[2] += (((int16_t)data[5] << 8) | data[4]); + } + + gyro_bias[0] /= samples; // average the data + gyro_bias[1] /= samples; + gyro_bias[2] /= samples; + + gbias[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s + gbias[1] = (float)gyro_bias[1]*gRes; + gbias[2] = (float)gyro_bias[2]*gRes; + + c = gReadByte(CTRL_REG5_G); + gWriteByte(CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO + wait_ms(20); + gWriteByte(FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode + + // Now get the accelerometer biases + c = xmReadByte(CTRL_REG0_XM); + xmWriteByte(CTRL_REG0_XM, c | 0x40); // Enable accelerometer FIFO + wait_ms(20); // Wait for change to take effect + xmWriteByte(FIFO_CTRL_REG, 0x20 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples + wait_ms(1000); // delay 1000 milliseconds to collect FIFO samples + + samples = (xmReadByte(FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples + + for(ii = 0; ii < samples ; ii++) { // Read the accelerometer data stored in the FIFO + + data[0] = xmReadByte(OUT_X_L_A); + data[1] = xmReadByte(OUT_X_H_A); + data[2] = xmReadByte(OUT_Y_L_A); + data[3] = xmReadByte(OUT_Y_H_A); + data[4] = xmReadByte(OUT_Z_L_A); + data[5] = xmReadByte(OUT_Z_H_A); + accel_bias[0] += (((int16_t)data[1] << 8) | data[0]); + accel_bias[1] += (((int16_t)data[3] << 8) | data[2]); + accel_bias[2] += (((int16_t)data[5] << 8) | data[4]) - (int16_t)(1./aRes); // Assumes sensor facing up! + } + + accel_bias[0] /= samples; // average the data + accel_bias[1] /= samples; + accel_bias[2] /= samples; + + abias[0] = (float)accel_bias[0]*aRes; // Properly scale data to get gs + abias[1] = (float)accel_bias[1]*aRes; + abias[2] = (float)accel_bias[2]*aRes; + + c = xmReadByte(CTRL_REG0_XM); + xmWriteByte(CTRL_REG0_XM, c & ~0x40); // Disable accelerometer FIFO + wait_ms(20); + xmWriteByte(FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode + +} void LSM9DS0::readAccel() { - /*uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp - //xmReadByte(OUT_X_L_A, temp, 6); // Read 6 bytes, beginning at OUT_X_L_A - ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax - ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay - az = (temp[5] << 8) | temp[4]; // Store z-axis values into az*/ - uint16_t Temp = 0; - uint8_t INTStatus = 0; - while(INTStatus == 0) - { - INTStatus = xmReadByte(STATUS_REG_A) & 0x08; - } - //Get x Temp = xmReadByte(OUT_X_H_A); Temp = Temp<<8; @@ -252,19 +185,7 @@ void LSM9DS0::readMag() { - /*uint8_t temp[6]; // We'll read six bytes from the mag into temp - xmReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M - mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx - my = (temp[3] << 8) | temp[2]; // Store y-axis values into my - mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz*/ - - uint16_t Temp = 0; - uint8_t INTStatus = 0; - - while(INTStatus == 0) - { - INTStatus = xmReadByte(STATUS_REG_M) & 0x08; - } + uint16_t Temp = 0; //Get x Temp = xmReadByte(OUT_X_H_M); @@ -288,41 +209,40 @@ mz = Temp; } -void LSM9DS0::readGyro() +void LSM9DS0::readTemp() { - /*uint8_t temp[6]; // We'll read six bytes from the gyro into temp - gReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G - gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx - gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy - gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz*/ + uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp + + temp[0] = xmReadByte(OUT_TEMP_L_XM); + temp[1] = xmReadByte(OUT_TEMP_H_XM); + temperature = (((int16_t) temp[1] << 12) | temp[0] << 4 ) >> 4; // Temperature is a 12-bit signed integer +} + + +void LSM9DS0::readGyro() +{ uint16_t Temp = 0; - uint8_t INTStatus = 0; - - while(INTStatus == 0) - { - INTStatus = (xmReadByte(STATUS_REG_G)&0x08); - } //Get x - Temp = xmReadByte(OUT_X_H_G); + Temp = gReadByte(OUT_X_H_G); Temp = Temp<<8; - Temp |= xmReadByte(OUT_X_L_G); + Temp |= gReadByte(OUT_X_L_G); gx = Temp; //Get y Temp=0; - Temp = xmReadByte(OUT_Y_H_G); + Temp = gReadByte(OUT_Y_H_G); Temp = Temp<<8; - Temp |= xmReadByte(OUT_Y_L_G); + Temp |= gReadByte(OUT_Y_L_G); gy = Temp; //Get z Temp=0; - Temp = xmReadByte(OUT_Z_H_G); + Temp = gReadByte(OUT_Z_H_G); Temp = Temp<<8; - Temp |= xmReadByte(OUT_Z_L_G); + Temp |= gReadByte(OUT_Z_L_G); gz = Temp; } @@ -336,7 +256,6 @@ { // Return the accel raw reading times our pre-calculated g's / (ADC tick): return aRes * accel; - //return accel * (2/32768) - 2; } float LSM9DS0::calcMag(int16_t mag) @@ -507,38 +426,27 @@ void LSM9DS0::gReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) { // Whether we're using I2C or SPI, read multiple bytes using the - // gyro-specific I2C address or SPI CS pin. + // gyro-specific I2C address. I2CreadBytes(gAddress, subAddress, dest, count); } uint8_t LSM9DS0::xmReadByte(uint8_t subAddress) { // Whether we're using I2C or SPI, read a byte using the - // accelerometer-specific I2C address or SPI CS pin. + // accelerometer-specific I2C address. return I2CreadByte(xmAddress, subAddress); } void LSM9DS0::xmReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) { - // Whether we're using I2C or SPI, read multiple bytes using the - // accelerometer-specific I2C address or SPI CS pin. - I2CreadBytes(xmAddress, subAddress, dest, count); + // read multiple bytes using the + // accelerometer-specific I2C address. + I2CreadBytes(xmAddress, subAddress, dest, count); } void LSM9DS0::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) -{ - /* i2c_->start(); - wait_ms(1); - i2c_->write(address); - wait_ms(1); - i2c_->write(subAddress); - wait_ms(1); - - i2c_->write(data); - wait_ms(1); - i2c_->stop();*/ - +{ i2c_->writeByte(address,subAddress,data); } @@ -546,14 +454,6 @@ { char data[1]; // `data` will store the register data - /* data[0] = subAddress; - - i2c_->write(address, data, 1, true); - i2c_->read(address, data, 1, true); - - i2c_->stop(); - return (uint8_t)data[0]; // Return data from register*/ - I2CreadBytes(address, subAddress,(uint8_t*)data, 1); return (uint8_t)data[0]; @@ -561,35 +461,6 @@ void LSM9DS0::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - /*char data[1]; // `data` will store the register data - data[0] = subAddress; - - - i2c_->write(address, data, 1, true); - i2c_->read(address, data, 1, true); - - dest[0] = data[0]; - for (int i=1; i<count ;i++) - { - if(i == (count -1)) - dest[i] = i2c_->read(0); - else - dest[i] = i2c_->read(1); - } - // End I2C Transmission - i2c_->stop();*/ - /*char command[1]; - command[0] = subAddress; - char *redData = (char*)malloc(count); - i2c_->write(address, command, 1, true); - - i2c_->read(address, redData, count); - for(int i =0; i < count; i++) { - dest[i] = redData[i]; - } - - free(redData);*/ - +{ i2c_->readBytes(address, subAddress, count, dest); }