bldc driver firmware based on hobbyking cheetah compact
Dependencies: BLDC_V2 mbed-dev-f303 FastPWM3
PositionSensor/PositionSensor.cpp
- Committer:
- Wooden
- Date:
- 2021-04-07
- Revision:
- 48:a74e401a6d84
- Parent:
- 47:f4ecf3e0576a
File content as of revision 48:a74e401a6d84:
#include "mbed.h" #include "PositionSensor.h" #include "math_ops.h" //#include "offset_lut.h" //#include <math.h> PositionSensorAM5147::PositionSensorAM5147(int CPR, float offset, int ppairs){ //_CPR = CPR; _CPR = CPR; _ppairs = ppairs; ElecOffset = offset; rotations = 0; spi = new SPI(PA_7, PA_6, PA_5); spi->format(16, 1); // mbed v>127 breaks 16-bit spi, so transaction is broken into 2 8-bit words spi->frequency(25000000); cs = new DigitalOut(PA_4); cs->write(1); readAngleCmd = 0xffff; MechOffset = offset; modPosition = 0; oldModPosition = 0; oldVel = 0; raw = 0; flag_first_time = true; for(int i=0;i<40;i++){ velVec[i] = 0; // MechPositionVec[i] = 0; } } void PositionSensorAM5147::Sample(float dt){ GPIOA->ODR &= ~(1 << 4); raw = spi->write(readAngleCmd); raw &= 0x3FFF; //Extract last 14 bits GPIOA->ODR |= (1 << 4); int off_1 = offset_lut[raw>>7]; int off_2 = offset_lut[((raw>>7)+1)%128]; int off_interp = off_1 + ((off_2 - off_1)*(raw - ((raw>>7)<<7))>>7); // Interpolate between lookup table entries int angle = raw + off_interp; // Correct for nonlinearity with lookup table from calibration // if(flag_first_time){ // old_counts = angle; // flag_first_time = false; // } if(angle - old_counts > _CPR/2){ rotations -= 1; } else if (angle - old_counts < -_CPR/2){ rotations += 1; } old_counts = angle; oldModPosition = modPosition; modPosition = ((2.0f*PI * ((float) angle))/ (float)_CPR); position = (2.0f*PI * ((float) angle+(_CPR*rotations)))/ (float)_CPR; MechPosition = position - MechOffset; float elec = ((2.0f*PI/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) + ElecOffset; if(elec < 0) elec += 2.0f*PI; else if(elec > 2.0f*PI) elec -= 2.0f*PI ; ElecPosition = elec; float vel; //if(modPosition<.1f && oldModPosition>6.1f){ if((modPosition-oldModPosition) < -3.0f){ vel = (modPosition - oldModPosition + 2.0f*PI)/dt; } //else if(modPosition>6.1f && oldModPosition<0.1f){ else if((modPosition - oldModPosition) > 3.0f){ vel = (modPosition - oldModPosition - 2.0f*PI)/dt; } else{ vel = (modPosition-oldModPosition)/dt; } int n = 40; float sum = vel; //float sum2 = MechPosition; for (int i = 1; i < (n); i++){ velVec[n - i] = velVec[n-i-1]; sum += velVec[n-i]; //MechPositionVec[n-i] = MechPositionVec[n-i-1]; //sum2 += MechPositionVec[n-i]; } velVec[0] = vel; //MechPositionVec[0] = MechPosition; //MechPosition = sum2 / ((float)n); MechVelocity = sum/((float)n); ElecVelocity = MechVelocity*_ppairs; // ElecVelocityFilt = 0.99f*ElecVelocityFilt + 0.01f*ElecVelocity; ElecVelocityFilt = 0.76094f*ElecVelocityFilt + 0.23906f*ElecVelocity; // 2khz speed filter } int PositionSensorAM5147::GetRawPosition(){ return raw; } float PositionSensorAM5147::GetMechPositionFixed(){ return MechPosition+MechOffset; } float PositionSensorAM5147::GetMechPosition(){ return MechPosition; } float PositionSensorAM5147::GetElecPosition(){ return ElecPosition; } float PositionSensorAM5147::GetElecVelocity(){ //return ElecVelocity; return ElecVelocityFilt; } float PositionSensorAM5147::GetMechVelocity(){ return MechVelocity; } void PositionSensorAM5147::ZeroPosition(){ rotations = 0; MechOffset = 0; //flag_first_time = true; Sample(.00025f); MechOffset = GetMechPosition(); } void PositionSensorAM5147::SetElecOffset(float offset){ ElecOffset = offset; } void PositionSensorAM5147::SetMechOffset(float offset){ MechOffset = offset; } int PositionSensorAM5147::GetCPR(){ return _CPR; } void PositionSensorAM5147::WriteLUT(int new_lut[128]){ memcpy(offset_lut, new_lut, sizeof(offset_lut)); } // //PositionSensorEncoder::PositionSensorEncoder(int CPR, float offset, int ppairs) { // _ppairs = ppairs; // _CPR = CPR; // _offset = offset; // MechPosition = 0; // out_old = 0; // oldVel = 0; // raw = 0; // // // Enable clock for GPIOA // __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h // // GPIOA->MODER |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ; //PA6 & PA7 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */ // GPIOA->OTYPER |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ; //PA6 & PA7 as Inputs /*!< GPIO port output type register, Address offset: 0x04 */ // GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ; //Low speed /*!< GPIO port output speed register, Address offset: 0x08 */ // GPIOA->PUPDR |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ; //Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */ // GPIOA->AFR[0] |= 0x22000000 ; //AF02 for PA6 & PA7 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ // GPIOA->AFR[1] |= 0x00000000 ; //nibbles here refer to gpio8..15 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ // // // configure TIM3 as Encoder input // // Enable clock for TIM3 // __TIM3_CLK_ENABLE(); // // TIM3->CR1 = 0x0001; // CEN(Counter ENable)='1' < TIM control register 1 // TIM3->SMCR = TIM_ENCODERMODE_TI12; // SMS='011' (Encoder mode 3) < TIM slave mode control register // TIM3->CCMR1 = 0x1111; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1, maximum digital filtering // TIM3->CCMR2 = 0x0000; // < TIM capture/compare mode register 2 // TIM3->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register // TIM3->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler // TIM3->ARR = CPR; // IM auto-reload register // // TIM3->CNT = 0x000; //reset the counter before we use it // // // Extra Timer for velocity measurement // // __TIM2_CLK_ENABLE(); // TIM3->CR2 = 0x030; //MMS = 101 // // TIM2->PSC = 0x03; // //TIM2->CR2 |= TIM_CR2_TI1S; // TIM2->SMCR = 0x24; //TS = 010 for ITR2, SMS = 100 (reset counter at edge) // TIM2->CCMR1 = 0x3; // CC1S = 11, IC1 mapped on TRC // // //TIM2->CR2 |= TIM_CR2_TI1S; // TIM2->CCER |= TIM_CCER_CC1P; // //TIM2->CCER |= TIM_CCER_CC1NP; // TIM2->CCER |= TIM_CCER_CC1E; // // // TIM2->CR1 = 0x01; //CEN, enable timer // // TIM3->CR1 = 0x01; // CEN // ZPulse = new InterruptIn(PC_4); // ZSense = new DigitalIn(PC_4); // //ZPulse = new InterruptIn(PB_0); // //ZSense = new DigitalIn(PB_0); // ZPulse->enable_irq(); // ZPulse->rise(this, &PositionSensorEncoder::ZeroEncoderCount); // //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown); // ZPulse->mode(PullDown); // flag = 0; // // // //ZTest = new DigitalOut(PC_2); // //ZTest->write(1); // } // //void PositionSensorEncoder::Sample(float dt){ // // } // // //float PositionSensorEncoder::GetMechPosition() { //returns rotor angle in radians. // int raw = TIM3->CNT; // float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR); // return (float) unsigned_mech;// + 6.28318530718f* (float) rotations; //} // //float PositionSensorEncoder::GetElecPosition() { //returns rotor electrical angle in radians. // int raw = TIM3->CNT; // float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset; // if(elec < 0) elec += 6.28318530718f; // return elec; //} // // // //float PositionSensorEncoder::GetMechVelocity(){ // // float out = 0; // float rawPeriod = TIM2->CCR1; //Clock Ticks // int currentTime = TIM2->CNT; // if(currentTime > 2000000){rawPeriod = currentTime;} // float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; // +/- 1 // float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; // if(isinf(meas)){ meas = 1;} // out = meas; // //if(meas == oldVel){ // // out = .9f*out_old; // // } // // // oldVel = meas; // out_old = out; // int n = 16; // float sum = out; // for (int i = 1; i < (n); i++){ // velVec[n - i] = velVec[n-i-1]; // sum += velVec[n-i]; // } // velVec[0] = out; // return sum/(float)n; // } // //float PositionSensorEncoder::GetElecVelocity(){ // return _ppairs*GetMechVelocity(); // } // //void PositionSensorEncoder::ZeroEncoderCount(void){ // if (ZSense->read() == 1 & flag == 0){ // if (ZSense->read() == 1){ // GPIOC->ODR ^= (1 << 4); // TIM3->CNT = 0x000; // //state = !state; // //ZTest->write(state); // GPIOC->ODR ^= (1 << 4); // //flag = 1; // } // } // } // //void PositionSensorEncoder::ZeroPosition(void){ // // } // //void PositionSensorEncoder::ZeroEncoderCountDown(void){ // if (ZSense->read() == 0){ // if (ZSense->read() == 0){ // GPIOC->ODR ^= (1 << 4); // flag = 0; // float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; // if(dir != dir){ // dir = dir; // rotations += dir; // } // // GPIOC->ODR ^= (1 << 4); // // } // } // } //void PositionSensorEncoder::SetElecOffset(float offset){ // // } // //int PositionSensorEncoder::GetRawPosition(void){ // return 0; // } // //int PositionSensorEncoder::GetCPR(){ // return _CPR; // } // // //void PositionSensorEncoder::WriteLUT(int new_lut[128]){ // memcpy(offset_lut, new_lut, sizeof(offset_lut)); // }