bldc driver firmware based on hobbyking cheetah compact

Dependencies:   BLDC_V2 mbed-dev-f303 FastPWM3

Dependents:   BLDC_V2

PositionSensor/PositionSensor.cpp

Committer:
Wooden
Date:
2021-04-07
Revision:
48:a74e401a6d84
Parent:
47:f4ecf3e0576a

File content as of revision 48:a74e401a6d84:


#include "mbed.h"
#include "PositionSensor.h"
#include "math_ops.h"
//#include "offset_lut.h"
//#include <math.h>

PositionSensorAM5147::PositionSensorAM5147(int CPR, float offset, int ppairs){
    //_CPR = CPR;
    _CPR = CPR;
    _ppairs = ppairs;
    ElecOffset = offset;
    rotations = 0;
    spi = new SPI(PA_7, PA_6, PA_5);
    spi->format(16, 1);                                                          // mbed v>127 breaks 16-bit spi, so transaction is broken into 2 8-bit words
    spi->frequency(25000000);
    
    cs = new DigitalOut(PA_4);
    cs->write(1);
    readAngleCmd = 0xffff;   
    MechOffset = offset;
    modPosition = 0;
    oldModPosition = 0;
    oldVel = 0;
    raw = 0;
    flag_first_time = true;
    for(int i=0;i<40;i++){
        velVec[i] = 0;
        // MechPositionVec[i] = 0;
        }
    }
    
void PositionSensorAM5147::Sample(float dt){
    GPIOA->ODR &= ~(1 << 4);
    raw = spi->write(readAngleCmd);
    raw &= 0x3FFF;                                                              //Extract last 14 bits
    GPIOA->ODR |= (1 << 4);
    int off_1 = offset_lut[raw>>7];
    int off_2 = offset_lut[((raw>>7)+1)%128];
    int off_interp = off_1 + ((off_2 - off_1)*(raw - ((raw>>7)<<7))>>7);        // Interpolate between lookup table entries
    int angle = raw + off_interp;                                               // Correct for nonlinearity with lookup table from calibration
//    if(flag_first_time){
//        old_counts = angle;
//        flag_first_time = false;
//        }
    if(angle - old_counts > _CPR/2){
        rotations -= 1;
        }
    else if (angle - old_counts < -_CPR/2){
        rotations += 1;
        }
    
    old_counts = angle;
    oldModPosition = modPosition;
    modPosition = ((2.0f*PI * ((float) angle))/ (float)_CPR);
    position = (2.0f*PI * ((float) angle+(_CPR*rotations)))/ (float)_CPR;
    MechPosition = position - MechOffset;
    float elec = ((2.0f*PI/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) + ElecOffset;
    if(elec < 0) elec += 2.0f*PI;
    else if(elec > 2.0f*PI) elec -= 2.0f*PI ; 
    ElecPosition = elec;
    
    float vel;
    //if(modPosition<.1f && oldModPosition>6.1f){

    if((modPosition-oldModPosition) < -3.0f){
        vel = (modPosition - oldModPosition + 2.0f*PI)/dt;
        }
    //else if(modPosition>6.1f && oldModPosition<0.1f){
    else if((modPosition - oldModPosition) > 3.0f){
        vel = (modPosition - oldModPosition - 2.0f*PI)/dt;
        }
    else{
        vel = (modPosition-oldModPosition)/dt;
    }    
    
    int n = 40;
    float sum = vel;
    //float sum2 = MechPosition;
    for (int i = 1; i < (n); i++){
        velVec[n - i] = velVec[n-i-1];
        sum += velVec[n-i];
        //MechPositionVec[n-i] = MechPositionVec[n-i-1];
        //sum2 += MechPositionVec[n-i];
        }
    velVec[0] = vel;
    //MechPositionVec[0] = MechPosition;
    //MechPosition = sum2 / ((float)n);
    MechVelocity =  sum/((float)n);
    ElecVelocity = MechVelocity*_ppairs;
    // ElecVelocityFilt = 0.99f*ElecVelocityFilt + 0.01f*ElecVelocity;
    ElecVelocityFilt = 0.76094f*ElecVelocityFilt + 0.23906f*ElecVelocity;    // 2khz speed filter
    }

int PositionSensorAM5147::GetRawPosition(){
    return raw;
    }

float PositionSensorAM5147::GetMechPositionFixed(){
    return MechPosition+MechOffset;
    }
    
float PositionSensorAM5147::GetMechPosition(){
    return MechPosition;
    }

float PositionSensorAM5147::GetElecPosition(){
    return ElecPosition;
    }

float PositionSensorAM5147::GetElecVelocity(){
    //return ElecVelocity;
    return ElecVelocityFilt;
    }

float PositionSensorAM5147::GetMechVelocity(){
    return MechVelocity;
    }

void PositionSensorAM5147::ZeroPosition(){
    rotations = 0;
    MechOffset = 0;
    //flag_first_time = true;
    Sample(.00025f);
    MechOffset = GetMechPosition();
    }
    
void PositionSensorAM5147::SetElecOffset(float offset){
    ElecOffset = offset;
    }
void PositionSensorAM5147::SetMechOffset(float offset){
    MechOffset = offset;
    }

int PositionSensorAM5147::GetCPR(){
    return _CPR;
    }


void PositionSensorAM5147::WriteLUT(int new_lut[128]){
    memcpy(offset_lut, new_lut, sizeof(offset_lut));
    }
    

//
//PositionSensorEncoder::PositionSensorEncoder(int CPR, float offset, int ppairs) {
//    _ppairs = ppairs;
//    _CPR = CPR;
//    _offset = offset;
//    MechPosition = 0;
//    out_old = 0;
//    oldVel = 0;
//    raw = 0;
//    
//    // Enable clock for GPIOA
//    __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h
// 
//    GPIOA->MODER   |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ;           //PA6 & PA7 as Alternate Function   /*!< GPIO port mode register,               Address offset: 0x00      */
//    GPIOA->OTYPER  |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ;                 //PA6 & PA7 as Inputs               /*!< GPIO port output type register,        Address offset: 0x04      */
//    GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ;     //Low speed                         /*!< GPIO port output speed register,       Address offset: 0x08      */
//    GPIOA->PUPDR   |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ;           //Pull Down                         /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
//    GPIOA->AFR[0]  |= 0x22000000 ;                                          //AF02 for PA6 & PA7                /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
//    GPIOA->AFR[1]  |= 0x00000000 ;                                          //nibbles here refer to gpio8..15   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
//   
//    // configure TIM3 as Encoder input
//    // Enable clock for TIM3
//    __TIM3_CLK_ENABLE();
// 
//    TIM3->CR1   = 0x0001;                                                   // CEN(Counter ENable)='1'     < TIM control register 1
//    TIM3->SMCR  = TIM_ENCODERMODE_TI12;                                     // SMS='011' (Encoder mode 3)  < TIM slave mode control register
//    TIM3->CCMR1 = 0x1111;                                                   // CC1S='01' CC2S='01'         < TIM capture/compare mode register 1, maximum digital filtering
//    TIM3->CCMR2 = 0x0000;                                                   //                             < TIM capture/compare mode register 2
//    TIM3->CCER  = 0x0011;                                                   // CC1P CC2P                   < TIM capture/compare enable register
//    TIM3->PSC   = 0x0000;                                                   // Prescaler = (0+1)           < TIM prescaler
//    TIM3->ARR   = CPR;                                                      // IM auto-reload register
//  
//    TIM3->CNT = 0x000;  //reset the counter before we use it  
//    
//    // Extra Timer for velocity measurement
//    
//    __TIM2_CLK_ENABLE();
//    TIM3->CR2 = 0x030;                                                      //MMS = 101
//    
//    TIM2->PSC = 0x03;
//    //TIM2->CR2 |= TIM_CR2_TI1S;
//    TIM2->SMCR = 0x24;                                                      //TS = 010 for ITR2, SMS = 100 (reset counter at edge)
//    TIM2->CCMR1 = 0x3;                                                      // CC1S = 11, IC1 mapped on TRC
//    
//    //TIM2->CR2 |= TIM_CR2_TI1S;
//    TIM2->CCER |= TIM_CCER_CC1P;
//    //TIM2->CCER |= TIM_CCER_CC1NP;
//    TIM2->CCER |= TIM_CCER_CC1E;
//    
//    
//    TIM2->CR1 = 0x01;                                                       //CEN,  enable timer
//    
//    TIM3->CR1   = 0x01;                                                     // CEN
//    ZPulse = new InterruptIn(PC_4);
//    ZSense = new DigitalIn(PC_4);
//    //ZPulse = new InterruptIn(PB_0);
//    //ZSense = new DigitalIn(PB_0);
//    ZPulse->enable_irq();
//    ZPulse->rise(this, &PositionSensorEncoder::ZeroEncoderCount);
//    //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown);
//    ZPulse->mode(PullDown);
//    flag = 0;
//
//    
//    //ZTest = new DigitalOut(PC_2);
//    //ZTest->write(1);
//    }
//    
//void PositionSensorEncoder::Sample(float dt){
//    
//    }
//
// 
//float PositionSensorEncoder::GetMechPosition() {                            //returns rotor angle in radians.
//    int raw = TIM3->CNT;
//    float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR);
//    return (float) unsigned_mech;// + 6.28318530718f* (float) rotations;
//}
//
//float PositionSensorEncoder::GetElecPosition() {                            //returns rotor electrical angle in radians.
//    int raw = TIM3->CNT;
//    float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset;
//    if(elec < 0) elec += 6.28318530718f;
//    return elec;
//}
//
//
//    
//float PositionSensorEncoder::GetMechVelocity(){
//
//    float out = 0;
//    float rawPeriod = TIM2->CCR1; //Clock Ticks
//    int currentTime = TIM2->CNT;
//    if(currentTime > 2000000){rawPeriod = currentTime;}
//    float  dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f;    // +/- 1
//    float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; 
//    if(isinf(meas)){ meas = 1;}
//    out = meas;
//    //if(meas == oldVel){
//     //   out = .9f*out_old;
//     //   }
//    
// 
//    oldVel = meas;
//    out_old = out;
//    int n = 16;
//    float sum = out;
//    for (int i = 1; i < (n); i++){
//        velVec[n - i] = velVec[n-i-1];
//        sum += velVec[n-i];
//        }
//    velVec[0] = out;
//    return sum/(float)n;
//    }
//    
//float PositionSensorEncoder::GetElecVelocity(){
//    return _ppairs*GetMechVelocity();
//    }
//    
//void PositionSensorEncoder::ZeroEncoderCount(void){
//    if (ZSense->read() == 1 & flag == 0){
//        if (ZSense->read() == 1){
//            GPIOC->ODR ^= (1 << 4);   
//            TIM3->CNT = 0x000;
//            //state = !state;
//            //ZTest->write(state);
//            GPIOC->ODR ^= (1 << 4);
//            //flag = 1;
//        }
//        }
//    }
//
//void PositionSensorEncoder::ZeroPosition(void){
//    
//    }
//    
//void PositionSensorEncoder::ZeroEncoderCountDown(void){
//    if (ZSense->read() == 0){
//        if (ZSense->read() == 0){
//            GPIOC->ODR ^= (1 << 4);
//            flag = 0;
//            float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f;
//            if(dir != dir){
//                dir = dir;
//                rotations +=  dir;
//                }
//
//            GPIOC->ODR ^= (1 << 4);
//
//        }
//        }
//    }
//void PositionSensorEncoder::SetElecOffset(float offset){
//    
//    }
//    
//int PositionSensorEncoder::GetRawPosition(void){
//    return 0;
//    }
//    
//int PositionSensorEncoder::GetCPR(){
//    return _CPR;
//    }
//    
//
//void PositionSensorEncoder::WriteLUT(int new_lut[128]){
//    memcpy(offset_lut, new_lut, sizeof(offset_lut));
//    }