bldc driver firmware based on hobbyking cheetah compact
Dependencies: BLDC_V2 mbed-dev-f303 FastPWM3
FOC/foc.cpp
- Committer:
- Wooden
- Date:
- 2021-04-07
- Revision:
- 48:a74e401a6d84
- Parent:
- 47:f4ecf3e0576a
File content as of revision 48:a74e401a6d84:
// He version #include "foc.h" using namespace FastMath; void abc( float theta, float d, float q, float *a, float *b, float *c){ /// Inverse DQ0 Transform /// ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// float cf = FastCos(theta); float sf = FastSin(theta); *a = cf*d - sf*q; // Faster Inverse DQ0 transform *b = (0.86602540378f*sf-.5f*cf)*d - (-0.86602540378f*cf-.5f*sf)*q; *c = (-0.86602540378f*sf-.5f*cf)*d - (0.86602540378f*cf-.5f*sf)*q; } void dq0(float theta, float a, float b, float c, float *d, float *q){ /// DQ0 Transform /// ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// float cf = FastCos(theta); float sf = FastSin(theta); *d = 0.6666667f*(cf*a + (0.86602540378f*sf-.5f*cf)*b + (-0.86602540378f*sf-.5f*cf)*c); ///Faster DQ0 Transform *q = 0.6666667f*(-sf*a - (-0.86602540378f*cf-.5f*sf)*b - (0.86602540378f*cf-.5f*sf)*c); } void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){ /// Space Vector Modulation /// /// u,v,w amplitude = v_bus for full modulation depth /// float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; *dtc_u = fminf(fmaxf(((u -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); *dtc_v = fminf(fmaxf(((v -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); *dtc_w = fminf(fmaxf(((w -v_offset)/v_bus + .5f), DTC_MIN), DTC_MAX); } void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors int adc1_offset = 0; int adc2_offset = 0; int n = 1024; for (int i = 0; i<n; i++){ // Average n samples of the ADC TIM1->CCR3 = (PWM_ARR>>1)*(1.0f); // Write duty cycles TIM1->CCR2 = (PWM_ARR>>1)*(1.0f); TIM1->CCR1 = (PWM_ARR>>1)*(1.0f); ADC1->CR2 |= 0x40000000; // Begin sample and conversion wait(.001); adc2_offset += ADC2->DR; adc1_offset += ADC1->DR; } *offset_1 = adc1_offset/n; *offset_2 = adc2_offset/n; } void reset_foc(ControllerStruct *controller){ TIM1->CCR3 = (PWM_ARR>>1)*(0.5f); TIM1->CCR1 = (PWM_ARR>>1)*(0.5f); TIM1->CCR2 = (PWM_ARR>>1)*(0.5f); controller->i_d_ref = 0; controller->i_q_ref = 0; controller->i_d = 0; controller->i_q = 0; controller->i_q_filt = 0; controller->q_int = 0; controller->d_int = 0; controller->v_q = 0; controller->v_d = 0; } void commutate(ControllerStruct *controller, ObserverStruct *observer, GPIOStruct *gpio, float theta){ /// Observer Prediction /// observer->i_d_est += DT*(observer->i_d_dot); observer->i_q_est += DT*(observer->i_q_dot); /// Commutation Loop /// controller->loop_count ++; if(PHASE_ORDER){ // Check current sensor ordering //controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // Calculate phase currents from ADC readings //controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); controller->i_b = alpha * controller->i_b + (1.0f - alpha) * I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // low pass filter, freq=1-alpha / dt controller->i_c = alpha * controller->i_c + (1.0f - alpha) * I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); } else{ // controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); // controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); controller->i_b = alpha * controller->i_b + (1.0f - alpha) * I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); controller->i_c = alpha * controller->i_c + (1.0f - alpha) * I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); } controller->i_a = -controller->i_b - controller->i_c; float s = FastSin(theta); float c = FastCos(theta); dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents //controller->i_d = 0.6666667f*(c*controller->i_a + (0.86602540378f*s-.5f*c)*controller->i_b + (-0.86602540378f*s-.5f*c)*controller->i_c); ///Faster DQ0 Transform //controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - (0.86602540378f*c-.5f*s)*controller->i_c); // controller->i_q_filt = 0.95f*controller->i_q_filt + 0.05f*controller->i_q; observer->i_d_m = controller->i_d; observer->i_q_m = controller->i_q; observer->e_d = observer->i_d_m - observer->i_d_est; observer->e_q = observer->i_q_m - observer->i_q_est; observer->e_d_int += observer->e_d; observer->e_q_int += observer->e_q; observer->i_d_est += K_O*observer->e_d + .001f*observer->e_d_int; observer->i_q_est += K_O*observer->e_q + .001f*observer->e_q_int; float scog12 = FastSin(12.0f*theta); float scog1 = s; float cogging_current = 0.25f*scog1 - 0.3f*scog12; /// PI Controller /// // float i_d_error = controller->i_d_ref - controller->i_d; float i_d_error = controller->i_d_ref - observer->i_d_est; // float i_q_error = controller->i_q_ref - controller->i_q + cogging_current*0.6; // float i_q_error = controller->i_q_ref - controller->i_q; float i_q_error = controller->i_q_ref - observer->i_q_est;// + cogging_current; // float i_q_error = controller->i_q_ref - observer->i_q_est; float v_d_ff = (controller->i_d_ref*R_PHASE - controller->dtheta_elec*L_Q*controller->i_q_ref); //feed-forward voltages float v_q_ff = (controller->i_q_ref*R_PHASE + controller->dtheta_elec*(L_D*controller->i_d_ref + WB)); controller->d_int += i_d_error; controller->q_int += i_q_error; //v_d_ff = 0; //v_q_ff = 0; // limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_SCALE*I_BW*KI_Q)); // Limit integrators to prevent windup limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_SCALE*I_BW*KI_Q)); controller->v_d = K_SCALE*I_BW*i_d_error + K_SCALE*I_BW*KI_D*controller->d_int + v_d_ff; controller->v_q = K_SCALE*I_BW*i_q_error + K_SCALE*I_BW*KI_Q*controller->q_int + v_q_ff; //controller->v_d = kp_design * i_d_error + ki_design * DT * controller->d_int; //controller->v_q = kp_design * i_q_error + ki_design * DT * controller->q_int; // controller->v_q = 0.0f; // always zero // controller->v_d = 0.0f; //controller->v_d = v_d_ff; //controller->v_q = v_q_ff; limit_norm(&controller->v_d, &controller->v_q, OVERMODULATION*controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages //controller->v_u = c*controller->v_d - s*controller->v_q; // Faster Inverse DQ0 transform //controller->v_v = (0.86602540378f*s-.5f*c)*controller->v_d - (-0.86602540378f*c-.5f*s)*controller->v_q; //controller->v_w = (-0.86602540378f*s-.5f*c)*controller->v_d - (0.86602540378f*c-.5f*s)*controller->v_q; svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation // observer->i_d_dot = 0.5f*(controller->v_d - 2.0f*(observer->i_d_est*R_PHASE - controller->dtheta_elec*L_Q*observer->i_q_est))/L_D; //feed-forward voltage // observer->i_q_dot = 0.5f*(controller->v_q - 2.0f*(observer->i_q_est*R_PHASE + controller->dtheta_elec*(L_D*observer->i_d_est + WB)))/L_Q; observer->i_d_dot = (controller->v_d - (observer->i_d_est*R_PHASE - controller->dtheta_elec*L_Q*observer->i_q_est))/L_D; //feed-forward voltage observer->i_q_dot = (controller->v_q - (observer->i_q_est*R_PHASE + controller->dtheta_elec*(L_D*observer->i_d_est + WB)))/L_Q; if(PHASE_ORDER){ // Check which phase order to use, TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u); // Write duty cycles TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_v); TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_w); } else{ TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u); TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_v); TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_w); } controller->theta_elec = theta; //For some reason putting this at the front breaks thins if(controller->loop_count >400){ //controller->i_q_ref = -controller->i_q_ref; controller->loop_count = 0; //printf("%.2f %.2f %.2f\n\r", controller->i_a, controller->i_b, controller->i_c); //printf("%f\n\r", controller->dtheta_mech*GR); //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); //pc.printf("%f %f\n\r", controller->i_d, controller->i_q); //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); } } void torque_control(ControllerStruct *controller){ // controller->t_ff= 0.5f; // controller->kd = 0.1f; float torque_ref = controller->kp*(controller->p_des - controller->theta_mech) + controller->t_ff + controller->kd*(controller->v_des - controller->dtheta_mech); if(torque_ref>18.0f){ torque_ref = 18.0f; } else{ if(torque_ref <-18.0f){ torque_ref = -18.0f; } } //float torque_ref = -.1*(controller->p_des - controller->theta_mech); controller->i_q_ref = torque_ref/KT_OUT; // controller->i_q_ref = 1.0f; controller->i_d_ref = 0.0f; } /* void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){ } */