hobbyking_cheetah source code modified 2020/12/15
Dependencies: mbed-dev-f303 FastPWM3
Diff: Calibration/calibration.cpp
- Revision:
- 23:2adf23ee0305
- Parent:
- 22:60276ba87ac6
- Child:
- 24:58c2d7571207
--- a/Calibration/calibration.cpp Fri Mar 31 18:24:46 2017 +0000 +++ b/Calibration/calibration.cpp Wed Apr 05 20:54:16 2017 +0000 @@ -3,43 +3,51 @@ /// #include "calibration.h" - +#include "foc.h" +#include "PreferenceWriter.h" +#include "user_config.h" -void order_phases(PositionSensor *ps, GPIOStruct *gpio){ +void order_phases(PositionSensor *ps, GPIOStruct *gpio, ControllerStruct *controller, PreferenceWriter *prefs){ ///Checks phase order, to ensure that positive Q current produces ///torque in the positive direction wrt the position sensor. - printf("\n\r Checking phase ordering\n\r"); float theta_ref = 0; float theta_actual = 0; - float v_d = .2; //Put all volts on the D-Axis + float v_d = .2; //Put all volts on the D-Axis float v_q = 0.0; float v_u, v_v, v_w = 0; float dtc_u, dtc_v, dtc_w = .5; int sample_counter = 0; ///Set voltage angle to zero, wait for rotor position to settle - abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages - svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation + abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages + svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation for(int i = 0; i<20000; i++){ - TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles + TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); wait_us(100); } //ps->ZeroPosition(); ps->Sample(); - float theta_start = ps->GetMechPosition(); //get initial rotor position - + wait_us(1000); + float theta_start = ps->GetMechPosition(); //get initial rotor position + controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings + controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); + controller->i_a = -controller->i_b - controller->i_c; + dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents + float current = sqrt(pow(controller->i_d, 2) + pow(controller->i_q, 2)); + printf("\n\rCurrent\n\r"); + printf("%f %f %f\n\r\n\r", controller->i_d, controller->i_q, current); /// Rotate voltage angle - while(theta_ref < 4*PI){ //rotate for 2 electrical cycles - abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages - svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation + while(theta_ref < 4*PI){ //rotate for 2 electrical cycles + abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages + svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation wait_us(100); - TIM1->CCR3 = 0x708*(1.0f-dtc_u); //Set duty cycles + TIM1->CCR3 = 0x708*(1.0f-dtc_u); //Set duty cycles TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); - ps->Sample(); //sample position sensor + ps->Sample(); //sample position sensor theta_actual = ps->GetMechPosition(); if(sample_counter > 200){ sample_counter = 0 ; @@ -52,41 +60,39 @@ int direction = (theta_end - theta_start)>0; printf("Theta Start: %f Theta End: %f\n\r", theta_start, theta_end); printf("Direction: %d\n\r", direction); - if(direction){printf("Phaseing correct\n\r");} + if(direction){printf("Phasing correct\n\r");} else if(!direction){printf("Phasing incorrect. Swapping phases V and W\n\r");} gpio->phasing = direction; - + PHASE_ORDER = direction; } - -void calibrate(PositionSensor *ps, GPIOStruct *gpio){ +void calibrate(PositionSensor *ps, GPIOStruct *gpio, ControllerStruct *controller, PreferenceWriter *prefs){ /// Measures the electrical angle offset of the position sensor /// and (in the future) corrects nonlinearity due to position sensor eccentricity - printf("Starting calibration procedure\n\r"); - const int n = 128*NPP; // number of positions to be sampled per mechanical rotation. Multiple of NPP for filtering reasons (see later) - const int n2 = 10; // increments between saved samples (for smoothing motion) - float delta = 2*PI*NPP/(n*n2); // change in angle between samples - float error_f[n] = {0}; // error vector rotating forwards - float error_b[n] = {0}; // error vector rotating backwards + const int n = 128*NPP; // number of positions to be sampled per mechanical rotation. Multiple of NPP for filtering reasons (see later) + const int n2 = 10; // increments between saved samples (for smoothing motion) + float delta = 2*PI*NPP/(n*n2); // change in angle between samples + float error_f[n] = {0}; // error vector rotating forwards + float error_b[n] = {0}; // error vector rotating backwards int raw_f[n] = {0}; int raw_b[n] = {0}; float theta_ref = 0; float theta_actual = 0; - float v_d = .2; // Put volts on the D-Axis + float v_d = .2; // Put volts on the D-Axis float v_q = 0.0; float v_u, v_v, v_w = 0; float dtc_u, dtc_v, dtc_w = .5; ///Set voltage angle to zero, wait for rotor position to settle - abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages - svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation + abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages + svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation for(int i = 0; i<40000; i++){ - TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles - if(gpio->phasing){ + TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles + if(gpio->phasing){ TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); } @@ -97,12 +103,16 @@ wait_us(100); } ps->Sample(); - - for(int i = 0; i<n; i++){ // rotate forwards + controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings + controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); + controller->i_a = -controller->i_b - controller->i_c; + dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents + float current = sqrt(pow(controller->i_d, 2) + pow(controller->i_q, 2)); + for(int i = 0; i<n; i++){ // rotate forwards for(int j = 0; j<n2; j++){ theta_ref += delta; - abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages - svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation + abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages + svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation TIM1->CCR3 = 0x708*(1.0f-dtc_u); if(gpio->phasing){ TIM1->CCR2 = 0x708*(1.0f-dtc_v); @@ -122,11 +132,12 @@ printf("%.4f %.4f %d\n\r", theta_ref/(NPP), theta_actual, raw_f[i]); //theta_ref += delta; } - for(int i = 0; i<n; i++){ // rotate backwards + printf(" Current Angle : Rotor Angle : Raw Encoder \n\r\n\r"); + for(int i = 0; i<n; i++){ // rotate backwards for(int j = 0; j<n2; j++){ theta_ref -= delta; - abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages - svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation + abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages + svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation TIM1->CCR3 = 0x708*(1.0f-dtc_u); if(gpio->phasing){ TIM1->CCR2 = 0x708*(1.0f-dtc_v); @@ -139,8 +150,8 @@ wait_us(100); ps->Sample(); } - ps->Sample(); // sample position sensor - theta_actual = ps->GetMechPosition(); // get mechanical position + ps->Sample(); // sample position sensor + theta_actual = ps->GetMechPosition(); // get mechanical position error_b[i] = theta_ref/NPP - theta_actual; raw_b[i] = ps->GetRawPosition(); printf("%.4f %.4f %d\n\r", theta_ref/(NPP), theta_actual, raw_b[i]); @@ -149,53 +160,65 @@ float offset = 0; for(int i = 0; i<n; i++){ - offset += (error_f[i] + error_b[n-1-i])/(2.0f*n); // calclate average position sensor offset + offset += (error_f[i] + error_b[n-1-i])/(2.0f*n); // calclate average position sensor offset } - offset = fmod(offset*NPP, 2*PI); // convert mechanical angle to electrical angle - printf("Encoder Electrical Offset (rad) %f\n\r", offset); + offset = fmod(offset*NPP, 2*PI); // convert mechanical angle to electrical angle + - ps->SetElecOffset(offset); // Set position sensor offset + ps->SetElecOffset(offset); // Set position sensor offset + __float_reg[0] = offset; + E_OFFSET = offset; /// Perform filtering to linearize position sensor eccentricity /// FIR n-sample average, where n = number of samples in one electrical cycle /// This filter has zero gain at electrical frequency and all integer multiples - /// So cogging should also be completely filtered out. + /// So cogging should be completely filtered out. float error[n] = {0}; - int window = 128; + const int window = 128; float error_filt[n] = {0}; + float cogging_current[window] = {0}; float mean = 0; - for (int i = 0; i<n; i++){ //Average the forward and back directions + for (int i = 0; i<n; i++){ //Average the forward and back directions error[i] = 0.5f*(error_f[i] + error_b[n-i-1]); } for (int i = 0; i<n; i++){ for(int j = 0; j<window; j++){ - int ind = -window/2 + j + i; // Indexes from -window/2 to + window/2 + int ind = -window/2 + j + i; // Indexes from -window/2 to + window/2 if(ind<0){ - ind += n;} // Moving average wraps around + ind += n;} // Moving average wraps around else if(ind > n-1) { ind -= n;} error_filt[i] += error[ind]/(float)window; } + if(i<window){ + cogging_current[i] = current*sinf((error[i] - error_filt[i])*NPP); + } //printf("%.4f %4f %.4f %.4f\n\r", error[i], error_filt[i], error_f[i], error_b[i]); mean += error_filt[i]/n; } - int raw_offset = (raw_f[0] + raw_b[n-1])/2; //Insensitive to errors in this direction, so 2 points is plenty + int raw_offset = (raw_f[0] + raw_b[n-1])/2; //Insensitive to errors in this direction, so 2 points is plenty const int n_lut = 128; int lut[n_lut]; - for (int i = 0; i<n_lut; i++){ // build lookup table + printf("\n\r Encoder non-linearity compensation table\n\r"); + printf(" Sample Number : Lookup Index : Lookup Value : Cogging Current Lookup\n\r\n\r"); + for (int i = 0; i<n_lut; i++){ // build lookup table int ind = (raw_offset>>7) + i; if(ind > (n_lut-1)){ ind -= n_lut; } lut[ind] = (int) ((error_filt[i*NPP] - mean)*(float)(ps->GetCPR())/(2.0f*PI)); - printf("%d %d %d %d\n\r", raw_offset>>7, i, ind, lut[ind]); + printf("%d %d %d %f\n\r", i, ind, lut[ind], cogging_current[i]); } - ps->WriteLUT(lut); // write lookup table to position sensor object - + + ps->WriteLUT(lut); // write lookup table to position sensor object + //memcpy(controller->cogging, cogging_current, sizeof(controller->cogging)); //compensation doesn't actually work yet.... + memcpy(&ENCODER_LUT, lut, sizeof(lut)); + printf("\n\rEncoder Electrical Offset (rad) %f\n\r", offset); - - - - + if (!prefs->ready()) prefs->open(); + prefs->flush(); + //prefs->close(); + + } \ No newline at end of file