Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: src/admw_1001.c
- Revision:
- 5:0728bde67bdb
- Parent:
- 4:2ca06eee5735
- Child:
- 6:9d393a9677f4
diff -r 2ca06eee5735 -r 0728bde67bdb src/admw_1001.c
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/admw_1001.c Wed Jun 05 05:39:15 2019 +0000
@@ -0,0 +1,3342 @@
+/*
+Copyright 2018 (c) Analog Devices, Inc.
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+ - Neither the name of Analog Devices, Inc. nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+ - The use of this software may or may not infringe the patent rights
+ of one or more patent holders. This license does not release you
+ from the requirement that you obtain separate licenses from these
+ patent holders to use this software.
+ - Use of the software either in source or binary form, must be run
+ on or directly connected to an Analog Devices Inc. component.
+
+THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
+IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/******************************************************************************
+Copyright 2017 (c) Analog Devices, Inc.
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+ - Neither the name of Analog Devices, Inc. nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+ - The use of this software may or may not infringe the patent rights
+ of one or more patent holders. This license does not release you
+ from the requirement that you obtain separate licenses from these
+ patent holders to use this software.
+ - Use of the software either in source or binary form, must be run
+ on or directly connected to an Analog Devices Inc. component.
+
+THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
+IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *****************************************************************************/
+
+/*!
+ ******************************************************************************
+ * @file:
+ * @brief: ADMW API implementation for ADSNS1000
+ *-----------------------------------------------------------------------------
+ */
+
+#include <float.h>
+#include <math.h>
+#include <string.h>
+
+#include "admw_platform.h"
+#include "admw_api.h"
+#include "admw1001/admw1001_api.h"
+
+#include "admw1001/ADMW1001_REGISTERS_typedefs.h"
+#include "admw1001/ADMW1001_REGISTERS.h"
+#include "admw1001/admw1001_lut_data.h"
+#include "admw1001/admw1001_host_comms.h"
+
+#include "crc16.h"
+
+
+uint32_t getDataCnt = 0;
+
+/*
+ * The following macros are used to encapsulate the register access code
+ * to improve readability in the functions further below in this file
+ */
+#define STRINGIFY(name) #name
+
+/* Expand the full name of the reset value macro for the specified register */
+#define REG_RESET_VAL(_name) REG_##_name##_RESET
+
+/* Checks if a value is outside the bounds of the specified register field */
+#define CHECK_REG_FIELD_VAL(_field, _val) \
+ do { \
+ uint32_t _mask = BITM_##_field; \
+ uint32_t _shift = BITP_##_field; \
+ if ((((_val) << _shift) & ~(_mask)) != 0) { \
+ ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s", \
+ (uint32_t)(_val), \
+ STRINGIFY(ADMW_##_field)); \
+ return ADMW_INVALID_PARAM; \
+ } \
+ } while(false)
+
+/*
+ * Encapsulates the write to a specified register
+ * NOTE - this will cause the calling function to return on error
+ */
+#define WRITE_REG(_hdev, _val, _name, _type) \
+ do { \
+ ADMW_RESULT _res; \
+ _type _regval = _val; \
+ _res = admw1001_WriteRegister((_hdev), \
+ REG_##_name, \
+ &_regval, sizeof(_regval)); \
+ if (_res != ADMW_SUCCESS) \
+ return _res; \
+ } while(false)
+
+/* Wrapper macro to write a value to a uint32_t register */
+#define WRITE_REG_U32(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, uint32_t)
+/* Wrapper macro to write a value to a uint16_t register */
+#define WRITE_REG_U16(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, uint16_t)
+/* Wrapper macro to write a value to a uint8_t register */
+#define WRITE_REG_U8(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, uint8_t)
+/* Wrapper macro to write a value to a float32_t register */
+#define WRITE_REG_FLOAT(_hdev, _val, _name) \
+ WRITE_REG(_hdev, _val, _name, float32_t)
+
+/*
+ * Encapsulates the read from a specified register
+ * NOTE - this will cause the calling function to return on error
+ */
+#define READ_REG(_hdev, _val, _name, _type) \
+ do { \
+ ADMW_RESULT _res; \
+ _type _regval; \
+ _res = admw1001_ReadRegister((_hdev), \
+ REG_##_name, \
+ &_regval, sizeof(_regval)); \
+ if (_res != ADMW_SUCCESS) \
+ return _res; \
+ _val = _regval; \
+ } while(false)
+
+/* Wrapper macro to read a value from a uint32_t register */
+#define READ_REG_U32(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, uint32_t)
+/* Wrapper macro to read a value from a uint16_t register */
+#define READ_REG_U16(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, uint16_t)
+/* Wrapper macro to read a value from a uint8_t register */
+#define READ_REG_U8(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, uint8_t)
+/* Wrapper macro to read a value from a float32_t register */
+#define READ_REG_FLOAT(_hdev, _val, _name) \
+ READ_REG(_hdev, _val, _name, float32_t)
+
+/*
+ * Wrapper macro to write an array of values to a uint8_t register
+ * NOTE - this is intended only for writing to a keyhole data register
+ */
+#define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
+ do { \
+ ADMW_RESULT _res; \
+ _res = admw1001_WriteRegister(_hdev, \
+ REG_##_name, \
+ _arr, _len); \
+ if (_res != ADMW_SUCCESS) \
+ return _res; \
+ } while(false)
+
+/*
+ * Wrapper macro to read an array of values from a uint8_t register
+ * NOTE - this is intended only for reading from a keyhole data register
+ */
+#define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
+ do { \
+ ADMW_RESULT _res; \
+ _res = admw1001_ReadRegister((_hdev), \
+ REG_##_name, \
+ _arr, _len); \
+ if (_res != ADMW_SUCCESS) \
+ return _res; \
+ } while(false)
+
+#define ADMW1001_CHANNEL_IS_ADC(c) \
+ ((c) >= ADMW1001_CHANNEL_ID_CJC_0 && (c) <= ADMW1001_CHANNEL_ID_CURRENT_0)
+
+#define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
+ ((c) >= ADMW1001_CHANNEL_ID_CJC_0 && (c) <= ADMW1001_CHANNEL_ID_CJC_1)
+
+#define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
+ ((c) >= ADMW1001_CHANNEL_ID_SENSOR_0 && (c) <= ADMW1001_CHANNEL_ID_SENSOR_3)
+
+#define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
+ ((c) == ADMW1001_CHANNEL_ID_VOLTAGE_0)
+
+#define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
+ ((c) == ADMW1001_CHANNEL_ID_CURRENT_0)
+
+#define ADMW1001_CHANNEL_IS_VIRTUAL(c) \
+ ((c) == ADMW1001_CHANNEL_ID_SPI_1 || (c) == ADMW1001_CHANNEL_ID_SPI_2)
+
+typedef struct
+{
+ unsigned nDeviceIndex;
+ ADMW_SPI_HANDLE hSpi;
+ ADMW_GPIO_HANDLE hGpio;
+} ADMW_DEVICE_CONTEXT;
+
+static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
+
+/*
+ * Open an ADMW device instance.
+ */
+ADMW_RESULT admw_Open(
+ unsigned const nDeviceIndex,
+ ADMW_CONNECTION * const pConnectionInfo,
+ ADMW_DEVICE_HANDLE * const phDevice)
+{
+ ADMW_DEVICE_CONTEXT *pCtx;
+ ADMW_RESULT eRet;
+
+ if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
+ return ADMW_INVALID_DEVICE_NUM;
+
+ pCtx = &gDeviceCtx[nDeviceIndex];
+ pCtx->nDeviceIndex = nDeviceIndex;
+
+ eRet = admw_LogOpen(&pConnectionInfo->log);
+ if (eRet != ADMW_SUCCESS)
+ return eRet;
+
+ eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
+ if (eRet != ADMW_SUCCESS)
+ return eRet;
+
+ eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
+ if (eRet != ADMW_SUCCESS)
+ return eRet;
+
+ *phDevice = pCtx;
+ return ADMW_SUCCESS;
+}
+
+/*
+ * Get the current state of the specified GPIO input signal.
+ */
+ADMW_RESULT admw_GetGpioState(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_GPIO_PIN const ePinId,
+ bool * const pbAsserted)
+{
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+
+ return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
+}
+
+/*
+ * Register an application-defined callback function for GPIO interrupts.
+ */
+ADMW_RESULT admw_RegisterGpioCallback(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_GPIO_PIN const ePinId,
+ ADMW_GPIO_CALLBACK const callbackFunction,
+ void * const pCallbackParam)
+{
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+
+ if (callbackFunction)
+ {
+ return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
+ pCallbackParam);
+ }
+ else
+ {
+ return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
+ }
+}
+
+/*
+ * Reset the specified ADMW device.
+ */
+ADMW_RESULT admw_Reset(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+ ADMW_RESULT eRet;
+
+ /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
+ eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
+ if (eRet != ADMW_SUCCESS)
+ return eRet;
+
+ admw_TimeDelayUsec(4);
+
+ eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
+ if (eRet != ADMW_SUCCESS)
+ return eRet;
+
+ return ADMW_SUCCESS;
+}
+
+
+/*!
+ * @brief Get general status of ADISense module.
+ *
+ * @param[in]
+ * @param[out] pStatus : Pointer to CORE Status struct.
+ *
+ * @return Status
+ * - #ADMW_SUCCESS Call completed successfully.
+ * - #ADMW_FAILURE If status register read fails.
+ *
+ * @details Read the general status register for the ADISense
+ * module. Indicates Error, Alert conditions, data ready
+ * and command running.
+ *
+ */
+ADMW_RESULT admw_GetStatus(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_STATUS * const pStatus)
+{
+ CORE_Status_t statusReg;
+ READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
+
+ CORE_Alert_Status_2_t alert2Reg;
+ READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2);
+
+ memset(pStatus, 0, sizeof(*pStatus));
+
+ if (!statusReg.Cmd_Running) /* Active-low, so invert it */
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
+ if (statusReg.Drdy)
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
+ if (statusReg.FIFO_Error)
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
+ if (alert2Reg.Ext_Flash_Error)
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_EXT_FLASH_ERROR;
+ if (statusReg.Alert_Active)
+ {
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
+
+ CORE_Alert_Code_t alertCodeReg;
+ READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE);
+ pStatus->alertCode = alertCodeReg.Alert_Code;
+
+ CORE_Channel_Alert_Status_t channelAlertStatusReg;
+ READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
+ CORE_CHANNEL_ALERT_STATUS);
+
+ for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++)
+ {
+ if (channelAlertStatusReg.VALUE16 & (1 << i))
+ {
+ CORE_Alert_Code_Ch_t channelAlertCodeReg;
+ READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i));
+ pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch;
+
+ CORE_Alert_Detail_Ch_t alertDetailReg;
+ READ_REG_U16(hDevice, alertDetailReg.VALUE16,
+ CORE_ALERT_DETAIL_CHn(i));
+
+ if (alertDetailReg.Time_Out)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_TIMEOUT;
+ if (alertDetailReg.Under_Range)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_UNDER_RANGE;
+ if (alertDetailReg.Over_Range)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_OVER_RANGE;
+ if (alertDetailReg.Low_Limit)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LOW_LIMIT;
+ if (alertDetailReg.High_Limit)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_HIGH_LIMIT;
+ if (alertDetailReg.Sensor_Open)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_OPEN;
+ if (alertDetailReg.Ref_Detect)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_REF_DETECT;
+ if (alertDetailReg.Config_Err)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_CONFIG_ERR;
+ if (alertDetailReg.LUT_Error_Ch)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_ERR;
+ if (alertDetailReg.Sensor_Not_Ready)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_NOT_READY;
+ if (alertDetailReg.Comp_Not_Ready)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_COMP_NOT_READY;
+ if (alertDetailReg.Correction_UnderRange)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_UNDER_RANGE;
+ if (alertDetailReg.Correction_OverRange)
+ pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_OVER_RANGE;
+ }
+ }
+
+ if (alert2Reg.Configuration_Error)
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
+ if (alert2Reg.LUT_Error)
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
+ }
+
+ if (statusReg.Error)
+ {
+ pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
+
+ CORE_Error_Code_t errorCodeReg;
+ READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
+ pStatus->errorCode = errorCodeReg.Error_Code;
+
+ CORE_Diagnostics_Status_t diagStatusReg;
+ READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS);
+
+ if (diagStatusReg.Diag_Checksum_Error)
+ pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CHECKSUM_ERROR;
+ if (diagStatusReg.Diag_Comms_Error)
+ pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_COMMS_ERROR;
+ if (diagStatusReg.Diag_Supply_Monitor_Error)
+ pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_SUPPLY_MONITOR_ERROR;
+ if (diagStatusReg.Diag_Supply_Cap_Error)
+ pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_SUPPLY_CAP_ERROR;
+ if (diagStatusReg.Diag_Conversion_Error)
+ pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CONVERSION_ERROR;
+ if (diagStatusReg.Diag_Calibration_Error)
+ pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CALIBRATION_ERROR;
+ }
+
+ if (statusReg.Alert_Active || statusReg.Error)
+ {
+ CORE_Debug_Code_t debugCodeReg;
+ READ_REG_U32(hDevice, debugCodeReg.VALUE32, CORE_DEBUG_CODE);
+ pStatus->debugCode = debugCodeReg.Debug_Code;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_GetCommandRunningState(
+ ADMW_DEVICE_HANDLE hDevice,
+ bool *pbCommandRunning)
+{
+ CORE_Status_t statusReg;
+
+ READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
+
+ /* We should never normally see 0xFF here if the module is operational */
+ if (statusReg.VALUE8 == 0xFF)
+ return ADMW_ERR_NOT_INITIALIZED;
+
+ *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT executeCommand(
+ ADMW_DEVICE_HANDLE const hDevice,
+ CORE_Command_Special_Command const command,
+ bool const bWaitForCompletion)
+{
+ CORE_Command_t commandReg;
+ bool bCommandRunning;
+ ADMW_RESULT eRet;
+
+ /*
+ * Don't allow another command to be issued if one is already running, but
+ * make an exception for CORE_COMMAND_NOP which can be used to
+ * request a running command to be stopped (e.g. continuous measurement)
+ */
+ if (command != CORE_COMMAND_NOP)
+ {
+ eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
+ if (eRet)
+ return eRet;
+
+ if (bCommandRunning)
+ return ADMW_IN_USE;
+ }
+
+ commandReg.Special_Command = command;
+ WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
+
+ if (bWaitForCompletion)
+ {
+ do {
+ /* Allow a minimum 50usec delay for status update before checking */
+ admw_TimeDelayUsec(50);
+
+ eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
+ if (eRet)
+ return eRet;
+ } while (bCommandRunning);
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_Shutdown(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_POWER_DOWN, false);
+}
+
+
+ADMW_RESULT admw_ApplyConfigUpdates(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
+}
+
+/*!
+ * @brief Start a measurement cycle.
+ *
+ * @param[out]
+ *
+ * @return Status
+ * - #ADMW_SUCCESS Call completed successfully.
+ * - #ADMW_FAILURE
+ *
+ * @details Sends the latch config command. Configuration for channels in
+ * conversion cycle should be completed before this function.
+ * Channel enabled bit should be set before this function.
+ * Starts a conversion and configures the format of the sample.
+ *
+ */
+ADMW_RESULT admw_StartMeasurement(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_MEASUREMENT_MODE const eMeasurementMode)
+{
+ switch (eMeasurementMode)
+ {
+ case ADMW_MEASUREMENT_MODE_HEALTHCHECK:
+ return executeCommand(hDevice, CORE_COMMAND_SYSTEM_CHECK, false);
+ case ADMW_MEASUREMENT_MODE_NORMAL:
+ return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
+ case ADMW_MEASUREMENT_MODE_OMIT_RAW:
+ return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
+ case ADMW_MEASUREMENT_MODE_FFT:
+ return executeCommand(hDevice, CORE_COMMAND_CONVERT_FFT, false);
+ default:
+ ADMW_LOG_ERROR("Invalid measurement mode %d specified",
+ eMeasurementMode);
+ return ADMW_INVALID_PARAM;
+ }
+}
+
+/*
+ * Store the configuration settings to persistent memory on the device.
+ * The settings can be saved to 4 different flash memory areas (slots).
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADMW_RESULT admw_SaveConfig(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_USER_CONFIG_SLOT const eSlotId)
+{
+ switch (eSlotId)
+ {
+ case ADMW_FLASH_CONFIG_1:
+ return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
+ case ADMW_FLASH_CONFIG_2:
+ return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_2, true);
+ case ADMW_FLASH_CONFIG_3:
+ return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_3, true);
+ case ADMW_FLASH_CONFIG_4:
+ return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_4, true);
+ default:
+ ADMW_LOG_ERROR("Invalid user config target slot %d specified",
+ eSlotId);
+ return ADMW_INVALID_PARAM;
+ }
+}
+
+/*
+ * Restore the configuration settings from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_RestoreConfig(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_USER_CONFIG_SLOT const eSlotId)
+{
+ switch (eSlotId)
+ {
+ case ADMW_FLASH_CONFIG_1:
+ return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
+ case ADMW_FLASH_CONFIG_2:
+ return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_2, true);
+ case ADMW_FLASH_CONFIG_3:
+ return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_3, true);
+ case ADMW_FLASH_CONFIG_4:
+ return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_4, true);
+ default:
+ ADMW_LOG_ERROR("Invalid user config source slot %d specified",
+ eSlotId);
+ return ADMW_INVALID_PARAM;
+ }
+}
+
+/*
+ * Erase the entire external flash memory.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_EraseExternalFlash(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_ERASE_EXTERNAL_FLASH, true);
+}
+
+/*
+ * Read the number of samples stored in external flash memory.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_GetExternalFlashSampleCount(
+ ADMW_DEVICE_HANDLE const hDevice,
+ uint32_t * nSampleCount)
+{
+ CORE_Ext_Flash_Sample_Count_t nCount;
+
+ READ_REG_U32(hDevice, nCount.VALUE32, CORE_EXT_FLASH_SAMPLE_COUNT);
+
+ *nSampleCount = nCount.VALUE32;
+
+ return ADMW_SUCCESS;
+}
+
+// DEBUG - TO BE DELETED
+ADMW_RESULT admw_SetExternalFlashIndex(
+ ADMW_DEVICE_HANDLE const hDevice,
+ uint32_t nStartIndex)
+{
+ WRITE_REG_U32(hDevice, nStartIndex, CORE_EXT_FLASH_INDEX);
+
+ return ADMW_SUCCESS;
+}
+
+/*
+ * Read a set of data samples stored in the device external flash memory.
+ * This may be called at any time.
+ */
+ADMW_RESULT admw_GetExternalFlashData(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_DATA_SAMPLE * const pSamples,
+ uint32_t const nStartIndex,
+ uint32_t const nRequested,
+ uint32_t * const pnReturned)
+{
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
+ (REG_CORE_EXT_FLASH_DATA & ADMW1001_HOST_COMMS_ADR_MASK);
+ uint8_t commandData[2] = {
+ command >> 8,
+ command & 0xFF
+ };
+ uint8_t commandResponse[2];
+ unsigned nValidSamples = 0;
+ ADMW_RESULT eRet = ADMW_SUCCESS;
+
+ /* Setup initial sample */
+ WRITE_REG_U32(hDevice, nStartIndex, CORE_EXT_FLASH_INDEX);
+
+ /* Send flash read command */
+ do {
+ eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+ sizeof(command), false);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to send read command for external flash");
+ return eRet;
+ }
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+ } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
+ (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
+
+ /* Read samples from external flash memory */
+ for (unsigned i = 0; i < nRequested; i++)
+ {
+ ADMW1001_Sensor_Result_t sensorResult;
+ bool bHoldCs = true;
+
+ /* Keep the CS signal asserted for all but the last sample */
+ if ((i + 1) == nRequested)
+ bHoldCs = false;
+
+ eRet = admw_SpiTransfer(pCtx->hSpi, NULL, (uint8_t *) (&sensorResult),
+ 8, bHoldCs);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to read data from external flash");
+ return eRet;
+ }
+
+ ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
+
+ pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
+ if (sensorResult.Ch_Error)
+ pSample->status |= ADMW_DEVICE_STATUS_ERROR;
+ if (sensorResult.Ch_Alert)
+ pSample->status |= ADMW_DEVICE_STATUS_ALERT;
+
+ if (sensorResult.Ch_Raw)
+ pSample->rawValue = sensorResult.Raw_Sample;
+ else
+ pSample->rawValue = 0;
+
+ pSample->channelId = sensorResult.Channel_ID;
+ pSample->processedValue = sensorResult.Sensor_Result;
+
+ nValidSamples++;
+ }
+ *pnReturned = nValidSamples;
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+
+ return eRet;
+}
+
+
+/*
+ * Store the LUT data to persistent memory on the device.
+ * No other command must be running when this is called.
+ * Do not power down the device while this command is running.
+ */
+ADMW_RESULT admw_SaveLutData(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
+}
+
+/*
+ * Restore the LUT data from persistent memory on the device.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_RestoreLutData(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
+}
+
+/*
+ * Stop the measurement cycles on the device.
+ * To be used only if a measurement command is currently running.
+ */
+ADMW_RESULT admw_StopMeasurement(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_NOP, true);
+}
+
+/*
+ * Run built-in diagnostic checks on the device.
+ * Diagnostics are executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_RunDiagnostics(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_RUN_DIAGNOSTICS, true);
+}
+
+/*
+ * Run self-calibration routines on the device.
+ * Calibration is executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_RunCalibration(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_SELF_CALIBRATION, true);
+}
+
+/*
+ * Run digital calibration routines on the device.
+ * Calibration is executed according to the current applied settings.
+ * No other command must be running when this is called.
+ */
+ADMW_RESULT admw_RunDigitalCalibration(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ return executeCommand(hDevice, CORE_COMMAND_CALIBRATE_DIGITAL, true);
+}
+
+/*
+ * Read a set of data samples from the device.
+ * This may be called at any time.
+ */
+ADMW_RESULT admw_GetData(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_MEASUREMENT_MODE const eMeasurementMode,
+ ADMW_DATA_SAMPLE * const pSamples,
+ uint8_t const nBytesPerSample,
+ uint32_t const nRequested,
+ uint32_t * const pnReturned)
+{
+ ADMW1001_Sensor_Result_t sensorResult;
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
+ (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
+ uint8_t commandData[2] = {
+ command >> 8,
+ command & 0xFF
+ };
+ uint8_t commandResponse[2];
+ unsigned nValidSamples = 0;
+ ADMW_RESULT eRet = ADMW_SUCCESS;
+
+ do {
+ eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+ sizeof(command), false);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to send read command for FIFO register");
+ return eRet;
+ }
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+ } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
+ (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
+
+ for (unsigned i = 0; i < nRequested; i++)
+ {
+ bool bHoldCs = true;
+
+ /* Keep the CS signal asserted for all but the last sample */
+ if ((i + 1) == nRequested)
+ bHoldCs = false;
+
+ getDataCnt++;
+
+ eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
+ nBytesPerSample, bHoldCs);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to read data from FIFO register");
+ return eRet;
+ }
+
+ if (! sensorResult.Ch_Valid)
+ {
+ /*
+ * Reading an invalid sample indicates that there are no
+ * more samples available or we've lost sync with the device.
+ * In the latter case, it might be recoverable, but return here
+ * to let the application check the device status and decide itself.
+ */
+ eRet = ADMW_INCOMPLETE;
+ break;
+ }
+
+ ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
+
+ pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
+ if (sensorResult.Ch_Error)
+ pSample->status |= ADMW_DEVICE_STATUS_ERROR;
+ if (sensorResult.Ch_Alert)
+ pSample->status |= ADMW_DEVICE_STATUS_ALERT;
+
+ if (sensorResult.Ch_Raw)
+ pSample->rawValue = sensorResult.Raw_Sample;
+ else
+ pSample->rawValue = 0;
+
+ pSample->channelId = sensorResult.Channel_ID;
+ pSample->processedValue = sensorResult.Sensor_Result;
+
+ nValidSamples++;
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+ }
+ *pnReturned = nValidSamples;
+
+ return eRet;
+}
+
+/*
+ * Close the given ADMW device.
+ */
+ADMW_RESULT admw_Close(
+ ADMW_DEVICE_HANDLE const hDevice)
+{
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+
+ admw_GpioClose(pCtx->hGpio);
+ admw_SpiClose(pCtx->hSpi);
+ admw_LogClose();
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_WriteRegister(
+ ADMW_DEVICE_HANDLE hDevice,
+ uint16_t nAddress,
+ void *pData,
+ unsigned nLength)
+{
+ ADMW_RESULT eRet;
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
+ (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
+ uint8_t commandData[2] = {
+ command >> 8,
+ command & 0xFF
+ };
+ uint8_t commandResponse[2];
+
+ do {
+ eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+ sizeof(command), false);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to send write command for register %u",
+ nAddress);
+ return eRet;
+ }
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+ } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
+ (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
+
+ eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
+ nLength, nAddress);
+ return eRet;
+ }
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_ReadRegister(
+ ADMW_DEVICE_HANDLE hDevice,
+ uint16_t nAddress,
+ void *pData,
+ unsigned nLength)
+{
+ ADMW_RESULT eRet;
+ ADMW_DEVICE_CONTEXT *pCtx = hDevice;
+ uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
+ (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
+ uint8_t commandData[2] = {
+ command >> 8,
+ command & 0xFF
+ };
+ uint8_t commandResponse[2];
+
+ do {
+ eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
+ sizeof(command), false);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to send read command for register %u",
+ nAddress);
+ return eRet;
+ }
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+ } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
+ (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
+
+ eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
+ nLength, nAddress);
+ return eRet;
+ }
+
+ admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_GetDeviceReadyState(
+ ADMW_DEVICE_HANDLE const hDevice,
+ bool * const bReady)
+{
+ ADMW_SPI_Chip_Type_t chipTypeReg;
+
+ READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
+ /* If we read this register successfully, assume the device is ready */
+ *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_GetDataReadyModeInfo(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_MEASUREMENT_MODE const eMeasurementMode,
+ ADMW1001_OPERATING_MODE * const peOperatingMode,
+ ADMW1001_DATAREADY_MODE * const peDataReadyMode,
+ uint32_t * const pnSamplesPerDataready,
+ uint32_t * const pnSamplesPerCycle,
+ uint8_t * const pnBytesPerSample)
+{
+ unsigned nChannelsEnabled = 0;
+ unsigned nSamplesPerCycle = 0;
+
+ CORE_Mode_t modeReg;
+ READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+ if ((eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) ||
+ (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE))
+ *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
+ else if (modeReg.Conversion_Mode == CORE_MODE_MULTICYCLE)
+ *peOperatingMode = ADMW1001_OPERATING_MODE_MULTICYCLE;
+ else
+ *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
+
+
+ /* FFT mode is quite different to the other modes:
+ * - Each FFT result produces a batch of samples
+ * - The size of the batch depends on selected FFT size and output config options
+ * - DATAREADY will fire for each FFT result (once per channel)
+ * - The size of the cycle depends on the number of channels enabled for FFT
+ */
+ if (eMeasurementMode == ADMW_MEASUREMENT_MODE_FFT)
+ {
+ CORE_FFT_Config_t fftConfigReg;
+
+ unsigned nFftChannels;
+ unsigned nSamplesPerChannel;
+
+ READ_REG_U32(hDevice, fftConfigReg.VALUE32, CORE_FFT_CONFIG);
+
+ nFftChannels = fftConfigReg.FFT_Num_Channels + 1;
+
+ if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_MAX16)
+ {
+ nSamplesPerChannel = 16;
+ *pnBytesPerSample = 8;
+ }
+ else if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_FULL)
+ {
+ nSamplesPerChannel = (256 << fftConfigReg.FFT_Num_Bins) >> 1;
+ *pnBytesPerSample = 5;
+ }
+ else if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_FULL_WITH_RAW)
+ {
+ nSamplesPerChannel = (256 << fftConfigReg.FFT_Num_Bins);
+ *pnBytesPerSample = 8;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid FFT output format option %d configured",
+ fftConfigReg.FFT_Output);
+ return ADMW_INVALID_PARAM;
+ }
+
+ *pnSamplesPerDataready = nSamplesPerChannel;
+ *pnSamplesPerCycle = nSamplesPerChannel * nFftChannels;
+
+ *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
+
+ if (modeReg.FFT_Mode == CORE_MODE_FFT_MODE_CONTINUOUS)
+ {
+ *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
+ }
+ else
+ {
+ *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
+ }
+ }
+ else
+ {
+ if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW)
+ {
+ *pnBytesPerSample = 5;
+ }
+ else
+ {
+ *pnBytesPerSample = 8;
+ }
+
+ for (ADMW1001_CHANNEL_ID chId = ADMW1001_CHANNEL_ID_CJC_0;
+ chId < ADMW1001_MAX_CHANNELS;
+ chId++)
+ {
+ CORE_Sensor_Details_t sensorDetailsReg;
+ CORE_Channel_Count_t channelCountReg;
+
+ if (ADMW1001_CHANNEL_IS_VIRTUAL(chId))
+ continue;
+
+ READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
+ READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
+
+ if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish)
+ {
+ CORE_Sensor_Type_t sensorTypeReg;
+ unsigned nActualChannels = 1;
+
+ READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
+
+ if (chId == ADMW1001_CHANNEL_ID_SPI_0)
+ {
+ /* Some sensors automatically generate samples on additional "virtual" channels
+ * so these channels must be counted as active when those sensors are selected
+ * and we use the count from the corresponding "physical" channel */
+ if ((sensorTypeReg.Sensor_Type >=
+ CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_A_DEF_L1) &&
+ (sensorTypeReg.Sensor_Type <=
+ CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_B_ADV_L2))
+ nActualChannels += 2;
+ }
+
+ nChannelsEnabled += nActualChannels;
+ if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK)
+ /* Assume a single sample per channel in test mode */
+ nSamplesPerCycle += nActualChannels;
+ else
+ nSamplesPerCycle += nActualChannels *
+ (channelCountReg.Channel_Count + 1);
+ }
+ }
+
+ if (nChannelsEnabled == 0)
+ {
+ *pnSamplesPerDataready = 0;
+ *pnSamplesPerCycle = 0;
+ return ADMW_SUCCESS;
+ }
+
+ *pnSamplesPerCycle = nSamplesPerCycle;
+
+ if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION)
+ {
+ *pnSamplesPerDataready = 1;
+ }
+ else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE)
+ {
+ *pnSamplesPerDataready = nSamplesPerCycle;
+ }
+ else
+ {
+ /* Assume DRDY will be asserted after max. 1 cycle in test mode */
+ if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK)
+ {
+ *pnSamplesPerDataready = nSamplesPerCycle;
+ }
+ else
+ {
+ CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
+ READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
+
+ *pnSamplesPerDataready =
+ nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
+ }
+ }
+
+ if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION)
+ *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
+ else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE)
+ *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
+ else
+ {
+ /* Assume DRDY will be asserted after max. 1 cycle in test mode */
+ if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK)
+ *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
+ else
+ *peDataReadyMode = ADMW1001_DATAREADY_PER_MULTICYCLE_BURST;
+ }
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_GetProductID(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW_PRODUCT_ID *pProductId)
+{
+ ADMW_SPI_Product_ID_L_t productIdLoReg;
+ ADMW_SPI_Product_ID_H_t productIdHiReg;
+
+ READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
+ READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
+
+ *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8)
+ | productIdLoReg.VALUE8);
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetPowerMode(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_POWER_MODE powerMode)
+{
+ CORE_Power_Config_t powerConfigReg;
+
+ if (powerMode == ADMW1001_POWER_MODE_LOW)
+ {
+ powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_LOW_POWER;
+ }
+ else if (powerMode == ADMW1001_POWER_MODE_MID)
+ {
+ powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_MID_POWER;
+ }
+ else if (powerMode == ADMW1001_POWER_MODE_FULL)
+ {
+ powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_FULL_POWER;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetPowerConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_POWER_CONFIG *pPowerConfig)
+{
+ ADMW_RESULT eRet;
+
+ eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set power mode");
+ return eRet;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetMode(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_OPERATING_MODE eOperatingMode,
+ ADMW1001_DATAREADY_MODE eDataReadyMode,
+ ADMW1001_CALIBRATION_MODE eCalibrationMode,
+ bool bEnableExtFlash)
+{
+ CORE_Mode_t modeReg;
+
+ modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
+
+ if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE)
+ {
+ modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
+ }
+ else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS)
+ {
+ modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
+ }
+ else if (eOperatingMode == ADMW1001_OPERATING_MODE_MULTICYCLE)
+ {
+ modeReg.Conversion_Mode = CORE_MODE_MULTICYCLE;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid operating mode %d specified",
+ eOperatingMode);
+ return ADMW_INVALID_PARAM;
+ }
+
+ if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION)
+ {
+ modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
+ }
+ else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE)
+ {
+ modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
+ }
+ else if (eDataReadyMode == ADMW1001_DATAREADY_PER_MULTICYCLE_BURST)
+ {
+ if (eOperatingMode != ADMW1001_OPERATING_MODE_MULTICYCLE)
+ {
+ ADMW_LOG_ERROR(
+ "Data-ready mode %d cannot be used with operating mode %d",
+ eDataReadyMode, eOperatingMode);
+ return ADMW_INVALID_PARAM;
+ }
+ else
+ {
+ modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL;
+ }
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
+ return ADMW_INVALID_PARAM;
+ }
+
+ if (eCalibrationMode == ADMW1001_NO_CALIBRATION)
+ {
+ modeReg.Calibration_Method = CORE_MODE_NO_CAL;
+ }
+ else if (eCalibrationMode == ADMW1001_DO_CALIBRATION)
+ {
+ modeReg.Calibration_Method = CORE_MODE_DO_CAL;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid calibration mode %d specified",
+ eCalibrationMode);
+ return ADMW_INVALID_PARAM;
+ }
+
+ modeReg.Ext_Flash_Store = (bEnableExtFlash ?
+ CORE_MODE_EXT_FLASH_USED :
+ CORE_MODE_EXT_FLASH_NOT_USED);
+
+ WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_SetCycleControl(
+ ADMW_DEVICE_HANDLE hDevice,
+ uint32_t nCycleInterval,
+
+#ifdef __V2_3_CFG_FMT__
+ ADMW1001_CYCLE_TYPE eCycleType,
+ ADMW1001_FILTER_SETTLING eFilterSettling)
+#else
+ ADMW1001_CYCLE_TYPE eCycleType)
+#endif
+{
+ CORE_Cycle_Control_t cycleControlReg;
+
+ cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
+
+ if (nCycleInterval < (1 << 12))
+ {
+ cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MICROSECONDS;
+ }
+ else if (nCycleInterval < (1000 * (1 << 12)))
+ {
+ cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MILLISECONDS;
+ nCycleInterval /= 1000;
+ }
+ else
+ {
+ cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
+ nCycleInterval /= 1000000;
+ }
+
+ CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
+ cycleControlReg.Cycle_Time = nCycleInterval;
+
+ if (eCycleType == ADMW1001_CYCLE_TYPE_SWITCH)
+ {
+ cycleControlReg.Cycle_Type = CORE_CYCLE_CONTROL_CYCLE_TYPE_SWITCH;
+ }
+ else if (eCycleType == ADMW1001_CYCLE_TYPE_FULL)
+ {
+ cycleControlReg.Cycle_Type = CORE_CYCLE_CONTROL_CYCLE_TYPE_FULL;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid cycle type %d specified", eCycleType);
+ return ADMW_INVALID_PARAM;
+ }
+
+#ifdef __V2_3_CFG_FMT__
+ if (eFilterSettling == ADMW1001_FILTER_SETTLING_ALWAYS)
+ {
+ cycleControlReg.Filter_Settling = CORE_CYCLE_CONTROL_FILTER_SETTLING_SETTLED;
+ }
+ else if (eFilterSettling == ADMW1001_FILTER_SETTLING_FAST)
+ {
+ cycleControlReg.Filter_Settling = CORE_CYCLE_CONTROL_FILTER_SETTLING_FAST;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid filter settling option %d specified", eFilterSettling);
+ return ADMW_INVALID_PARAM;
+ }
+#endif
+
+ WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetMultiCycleConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_MULTICYCLE_CONFIG *pMultiCycleConfig)
+{
+ CHECK_REG_FIELD_VAL(CORE_FIFO_NUM_CYCLES_FIFO_NUM_CYCLES,
+ pMultiCycleConfig->cyclesPerBurst);
+
+ WRITE_REG_U8(hDevice, pMultiCycleConfig->cyclesPerBurst,
+ CORE_FIFO_NUM_CYCLES);
+
+ WRITE_REG_U32(hDevice, pMultiCycleConfig->burstInterval,
+ CORE_MULTI_CYCLE_REPEAT_INTERVAL);
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetExternalReferenceValues(
+ ADMW_DEVICE_HANDLE hDevice,
+ float32_t externalRef1Value,
+ float32_t externalRef2Value)
+{
+ WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE1);
+ WRITE_REG_FLOAT(hDevice, externalRef2Value, CORE_EXTERNAL_REFERENCE2);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetMeasurementConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
+{
+ ADMW_RESULT eRet;
+
+ eRet = admw_SetMode(hDevice,
+ pMeasConfig->operatingMode,
+ pMeasConfig->dataReadyMode,
+ pMeasConfig->calibrationMode,
+ pMeasConfig->enableExternalFlash);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set operating mode");
+ return eRet;
+ }
+
+ eRet = admw_SetCycleControl(hDevice,
+ pMeasConfig->cycleInterval,
+ pMeasConfig->cycleType);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set cycle control");
+ return eRet;
+ }
+
+ if (pMeasConfig->operatingMode == ADMW1001_OPERATING_MODE_MULTICYCLE)
+ {
+ eRet = admw_SetMultiCycleConfig(hDevice,
+ &pMeasConfig->multiCycleConfig);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set multi-cycle configuration");
+ return eRet;
+ }
+ }
+
+ eRet = admw_SetExternalReferenceValues(hDevice,
+ pMeasConfig->externalRef1Value,
+ pMeasConfig->externalRef2Value);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set external reference values");
+ return eRet;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetDiagnosticsConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
+{
+ CORE_Diagnostics_Control_t diagnosticsControlReg;
+
+ diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
+
+ if (pDiagnosticsConfig->disableGlobalDiag)
+ diagnosticsControlReg.Diag_Global_En = 0;
+ else
+ diagnosticsControlReg.Diag_Global_En = 1;
+
+ if (pDiagnosticsConfig->disableMeasurementDiag)
+ diagnosticsControlReg.Diag_Meas_En = 0;
+ else
+ diagnosticsControlReg.Diag_Meas_En = 1;
+
+ switch (pDiagnosticsConfig->osdFrequency)
+ {
+ case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_DISABLED:
+ diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_OFF;
+ break;
+ case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE:
+ diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE;
+ break;
+ case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES:
+ diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES;
+ break;
+ case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES:
+ diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
+ pDiagnosticsConfig->osdFrequency);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetFftConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_FFT_CONFIG *pFftConfig,
+ ADMW1001_CHANNEL_CONFIG *pChannels)
+{
+ CORE_FFT_Config_t fftConfigReg;
+ CORE_Mode_t modeReg;
+ uint32_t numFftChannels = 0;
+
+ fftConfigReg.VALUE32 = REG_RESET_VAL(CORE_FFT_CONFIG);
+
+ for (ADMW1001_CHANNEL_ID id = ADMW1001_CHANNEL_ID_CJC_0;
+ id < ADMW1001_MAX_CHANNELS;
+ id++)
+ {
+ if (pChannels[id].enableFFT)
+ {
+ if (numFftChannels >= 4) /* TODO - temporary limit */
+ {
+ ADMW_LOG_ERROR("Maximum limit of 4 FFT channels exceeded");
+ return ADMW_INVALID_PARAM;
+ }
+
+ numFftChannels++;
+ }
+ }
+
+ if (numFftChannels > 0)
+ {
+ fftConfigReg.FFT_Num_Channels = numFftChannels - 1;
+
+ switch (pFftConfig->size)
+ {
+ case ADMW1001_FFT_SIZE_256:
+ fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_256;
+ break;
+ case ADMW1001_FFT_SIZE_512:
+ fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_512;
+ break;
+ case ADMW1001_FFT_SIZE_1024:
+ fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_1024;
+ break;
+ case ADMW1001_FFT_SIZE_2048:
+ fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_2048;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid FFT size option %d specified",
+ pFftConfig->size);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch (pFftConfig->window)
+ {
+ case ADMW1001_FFT_WINDOW_NONE:
+ fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_NONE;
+ break;
+ case ADMW1001_FFT_WINDOW_HANN:
+ fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_HANN;
+ break;
+ case ADMW1001_FFT_WINDOW_BLACKMAN_HARRIS:
+ fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_BLACKMANN_HARRIS;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid FFT window option %d specified",
+ pFftConfig->window);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch (pFftConfig->output)
+ {
+ case ADMW1001_FFT_OUTPUT_FULL:
+ fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_FULL;
+ break;
+ case ADMW1001_FFT_OUTPUT_MAX16:
+ fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_MAX16;
+ break;
+ case ADMW1001_FFT_OUTPUT_FULL_WITH_RAW:
+ fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_FULL_WITH_RAW;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid FFT output format option %d specified",
+ pFftConfig->output);
+ return ADMW_INVALID_PARAM;
+ }
+ }
+ WRITE_REG_U32(hDevice, fftConfigReg.VALUE32, CORE_FFT_CONFIG);
+
+ if (numFftChannels > 0)
+ {
+ READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+
+ if (pFftConfig->mode == ADMW1001_FFT_MODE_SINGLE)
+ {
+ modeReg.FFT_Mode = CORE_MODE_FFT_MODE_SINGLE;
+ }
+ else if (pFftConfig->mode == ADMW1001_FFT_MODE_CONTINUOUS)
+ {
+ modeReg.FFT_Mode = CORE_MODE_FFT_MODE_CONTINUOUS;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid FFT mode %d specified",
+ pFftConfig->mode);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetChannelCount(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ uint32_t nMeasurementsPerCycle)
+{
+ CORE_Channel_Count_t channelCountReg;
+
+ channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
+
+ if (nMeasurementsPerCycle > 0)
+ {
+ nMeasurementsPerCycle -= 1;
+
+ CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
+ nMeasurementsPerCycle);
+
+ channelCountReg.Channel_Enable = 1;
+ channelCountReg.Channel_Count = nMeasurementsPerCycle;
+ }
+ else
+ {
+ channelCountReg.Channel_Enable = 0;
+ }
+
+ WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetChannelOptions(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_PRIORITY ePriority,
+ bool bEnableFft)
+{
+ CORE_Channel_Options_t channelOptionsReg;
+
+ channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
+
+ CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
+ channelOptionsReg.Channel_Priority = ePriority;
+ channelOptionsReg.FFT_Enable_Ch = bEnableFft ? 1 : 0;
+
+ WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetChannelSkipCount(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ uint32_t nCycleSkipCount)
+{
+ CORE_Channel_Skip_t channelSkipReg;
+
+ channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
+
+ CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
+
+ channelSkipReg.Channel_Skip = nCycleSkipCount;
+
+ WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelAdcSensorType(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_ADC_SENSOR_TYPE sensorType)
+{
+ CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J_DEF_L1:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K_DEF_L1:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T_DEF_L1:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J_ADV_L1:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K_ADV_L1:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T_ADV_L1:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4_ADV_L2:
+ if (! ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId))
+ {
+ ADMW_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100_DEF_L1:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_DEF_L1:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100_ADV_L1:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_ADV_L1:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_2WIRE_4_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100_DEF_L1:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_DEF_L1:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100_ADV_L1:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_ADV_L1:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_3WIRE_4_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100_DEF_L1:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_DEF_L1:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100_ADV_L1:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_ADV_L1:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_RTD_4WIRE_4_ADV_L2:
+ if (!ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId))
+ {
+ ADMW_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA_DEF_L1:
+ case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA_DEF_L1:
+ case ADMW1001_ADC_SENSOR_DIODE_2C_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_DIODE_3C_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA_ADV_L1:
+ case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA_ADV_L1:
+ case ADMW1001_ADC_SENSOR_DIODE_2C_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_DIODE_3C_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K_DEF_L1:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K_DEF_L1:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_3_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_4_DEF_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K_ADV_L1:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K_ADV_L1:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_2_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_3_ADV_L2:
+ case ADMW1001_ADC_SENSOR_THERMISTOR_4_ADV_L2:
+ if (! (ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId) ||
+ ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId)))
+ {
+ ADMW_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ case ADMW1001_ADC_SENSOR_VOLTAGE:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A_DEF_L1:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B_DEF_L1:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A_ADV_L1:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B_ADV_L1:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2_ADV_L2:
+ if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId))
+ {
+ ADMW_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ case ADMW1001_ADC_SENSOR_CURRENT:
+ case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A_DEF_L1:
+ case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1_DEF_L2:
+ case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2_DEF_L2:
+ case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A_ADV_L1:
+ case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1_ADV_L2:
+ case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2_ADV_L2:
+ if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId))
+ {
+ ADMW_LOG_ERROR(
+ "Invalid ADC sensor type %d specified for channel %d",
+ sensorType, eChannelId);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
+ sensorType);
+ return ADMW_INVALID_PARAM;
+ }
+
+ sensorTypeReg.Sensor_Type = sensorType;
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelAdcSensorDetails(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+/*
+ * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
+ * General details:
+ * - Measurement_Units
+ * - Compensation_Channel
+ * - CJC_Publish (if "CJC" was removed from the name)
+ * ADC-specific details:
+ * - PGA_Gain
+ * - Reference_Select
+ * - Reference_Buffer_Disable
+ * - Vbias
+ */
+{
+ ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
+ ADMW1001_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference;
+ CORE_Sensor_Details_t sensorDetailsReg;
+
+ sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
+
+ switch(pChannelConfig->measurementUnit)
+ {
+ case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
+ sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
+ break;
+ case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
+ sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
+ break;
+ case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
+ sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid measurement unit %d specified",
+ pChannelConfig->measurementUnit);
+ return ADMW_INVALID_PARAM;
+ }
+
+ if (pChannelConfig->compensationChannel == ADMW1001_CHANNEL_ID_NONE)
+ {
+ sensorDetailsReg.Compensation_Disable = 1;
+ sensorDetailsReg.Compensation_Channel = 0;
+ }
+ else
+ {
+ sensorDetailsReg.Compensation_Disable = 0;
+ sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
+ }
+
+ switch(pRefConfig->type)
+ {
+ case ADMW1001_ADC_REFERENCE_RESISTOR_INTERNAL_1:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT1;
+ break;
+ case ADMW1001_ADC_REFERENCE_RESISTOR_INTERNAL_2:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT2;
+ break;
+ case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_INT;
+ break;
+ case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
+ break;
+ case ADMW1001_ADC_REFERENCE_RESISTOR_EXTERNAL_1:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_REXT1;
+ break;
+ case ADMW1001_ADC_REFERENCE_RESISTOR_EXTERNAL_2:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_REXT2;
+ break;
+ case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
+ break;
+ case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_2:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT2;
+ break;
+ case ADMW1001_ADC_REFERENCE_BRIDGE_EXCITATION:
+ sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_EXC;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid ADC reference type %d specified",
+ pRefConfig->type);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch(pAdcChannelConfig->gain)
+ {
+ case ADMW1001_ADC_GAIN_1X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
+ break;
+ case ADMW1001_ADC_GAIN_2X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
+ break;
+ case ADMW1001_ADC_GAIN_4X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
+ break;
+ case ADMW1001_ADC_GAIN_8X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
+ break;
+ case ADMW1001_ADC_GAIN_16X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
+ break;
+ case ADMW1001_ADC_GAIN_32X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
+ break;
+ case ADMW1001_ADC_GAIN_64X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
+ break;
+ case ADMW1001_ADC_GAIN_128X:
+ sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid ADC gain %d specified",
+ pAdcChannelConfig->gain);
+ return ADMW_INVALID_PARAM;
+ }
+
+ if (pAdcChannelConfig->enableVbias)
+ sensorDetailsReg.Vbias = 1;
+ else
+ sensorDetailsReg.Vbias = 0;
+
+ if (pAdcChannelConfig->reference.disableBuffer)
+ sensorDetailsReg.Reference_Buffer_Disable = 1;
+ else
+ sensorDetailsReg.Reference_Buffer_Disable = 0;
+
+ if (pChannelConfig->disablePublishing)
+ sensorDetailsReg.Do_Not_Publish = 1;
+ else
+ sensorDetailsReg.Do_Not_Publish = 0;
+
+ if (pChannelConfig->enableUnityLut)
+ sensorDetailsReg.Unity_LUT_Select = 1;
+ else
+ sensorDetailsReg.Unity_LUT_Select = 0;
+
+ WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelAdcFilter(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_ADC_FILTER_CONFIG *pFilterConfig)
+{
+ CORE_Filter_Select_t filterSelectReg;
+
+ filterSelectReg.VALUE32 = REG_RESET_VAL(CORE_FILTER_SELECTn);
+
+ if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4)
+ {
+ filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_SINC4;
+ filterSelectReg.ADC_FS = pFilterConfig->fs;
+ }
+ else if (pFilterConfig->type == ADMW1001_ADC_FILTER_FIR_20SPS)
+ {
+ filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_FIR_20SPS;
+ }
+ else if (pFilterConfig->type == ADMW1001_ADC_FILTER_FIR_25SPS)
+ {
+ filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_FIR_25SPS;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
+ pFilterConfig->type);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U32(hDevice, filterSelectReg.VALUE32, CORE_FILTER_SELECTn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
+{
+ CORE_Channel_Excitation_t channelExcitationReg;
+
+ channelExcitationReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
+
+ if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_NONE)
+ {
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_OFF;
+ }
+ else
+ {
+ if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
+ else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
+ else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
+ else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
+ else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_750uA)
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_750UA;
+ else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
+ channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
+ else
+ {
+ ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
+ pCurrentConfig->outputLevel);
+ return ADMW_INVALID_PARAM;
+ }
+ }
+
+ if (pCurrentConfig->diodeRatio == ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_DEFAULT)
+ {
+ channelExcitationReg.IOUT_Diode_Ratio = 0;
+ }
+ else
+ {
+ channelExcitationReg.IOUT_Diode_Ratio = 1;
+ }
+
+ WRITE_REG_U8(hDevice, channelExcitationReg.VALUE8, CORE_CHANNEL_EXCITATIONn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_SetAdcChannelConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADMW_RESULT eRet;
+ ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
+ &pChannelConfig->adcChannelConfig;
+
+ eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
+ pAdcChannelConfig->sensor);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
+ pChannelConfig);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelAdcFilter(hDevice, eChannelId,
+ &pAdcChannelConfig->filter);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
+ &pAdcChannelConfig->current);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+{
+ CORE_Sensor_Details_t sensorDetailsReg;
+
+ sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
+
+ if (pChannelConfig->compensationChannel == ADMW1001_CHANNEL_ID_NONE)
+ {
+ sensorDetailsReg.Compensation_Disable = 1;
+ sensorDetailsReg.Compensation_Channel = 0;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
+ return ADMW_INVALID_PARAM;
+ }
+
+ if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED)
+ {
+ sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
+ return ADMW_INVALID_PARAM;
+ }
+
+ if (pChannelConfig->disablePublishing)
+ sensorDetailsReg.Do_Not_Publish = 1;
+ else
+ sensorDetailsReg.Do_Not_Publish = 0;
+
+ if (pChannelConfig->enableUnityLut)
+ sensorDetailsReg.Unity_LUT_Select = 1;
+ else
+ sensorDetailsReg.Unity_LUT_Select = 0;
+
+ sensorDetailsReg.Vbias = 0;
+ sensorDetailsReg.Reference_Buffer_Disable = 1;
+
+ WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetDigitalSensorCommands(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_DIGITAL_SENSOR_COMMAND *pConfigCommand,
+ ADMW1001_DIGITAL_SENSOR_COMMAND *pDataRequestCommand)
+{
+ CORE_Digital_Sensor_Num_Cmds_t numCmdsReg;
+
+ numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn);
+
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS,
+ pConfigCommand->commandLength);
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS,
+ pDataRequestCommand->commandLength);
+
+ numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength;
+ numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength;
+
+ WRITE_REG_U8(hDevice, numCmdsReg.VALUE8,
+ CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId));
+
+ /*
+ * NOTE - the fall-through cases in the switch statement below are
+ * intentional, so temporarily disable related compiler warnings which may
+ * be produced here by GCC
+ */
+#ifndef __CC_ARM
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
+#endif
+
+ switch (pConfigCommand->commandLength)
+ {
+ case 7:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[6],
+ CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId));
+ case 6:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[5],
+ CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId));
+ case 5:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[4],
+ CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId));
+ case 4:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[3],
+ CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId));
+ case 3:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[2],
+ CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId));
+ case 2:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[1],
+ CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId));
+ case 1:
+ WRITE_REG_U8(hDevice, pConfigCommand->command[0],
+ CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId));
+ case 0:
+ default:
+ break;
+ };
+
+ switch (pDataRequestCommand->commandLength)
+ {
+ case 7:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[6],
+ CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId));
+ case 6:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[5],
+ CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId));
+ case 5:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[4],
+ CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId));
+ case 4:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[3],
+ CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId));
+ case 3:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[2],
+ CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId));
+ case 2:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[1],
+ CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId));
+ case 1:
+ WRITE_REG_U8(hDevice, pDataRequestCommand->command[0],
+ CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId));
+ case 0:
+ default:
+ break;
+ };
+
+ /* Re-enable the implicit-fallthrough warning */
+#ifndef __CC_ARM
+#pragma GCC diagnostic pop
+#endif
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetDigitalSensorFormat(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
+{
+ CORE_Digital_Sensor_Config_t sensorConfigReg;
+
+ sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
+
+ if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE)
+ {
+ if (pDataFormat->frameLength == 0)
+ {
+ ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
+ return ADMW_INVALID_PARAM;
+ }
+ if (pDataFormat->numDataBits == 0)
+ {
+ ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
+ return ADMW_INVALID_PARAM;
+ }
+
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
+ pDataFormat->frameLength - 1);
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
+ pDataFormat->numDataBits - 1);
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
+ pDataFormat->bitOffset);
+
+ sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
+ sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
+ sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
+ sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
+ sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
+
+ switch (pDataFormat->coding)
+ {
+ case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
+ sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
+ sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
+ sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
+ return ADMW_INVALID_PARAM;
+ }
+ }
+ else
+ {
+ sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
+ }
+
+ WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
+ CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
+
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetDigitalCalibrationParam(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam)
+{
+ CORE_Calibration_Parameter_t calibrationParamReg;
+
+ calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn);
+
+ if (pCalibrationParam->enableCalibrationParam == false)
+ calibrationParamReg.Calibration_Parameter_Enable = 0;
+ else
+ calibrationParamReg.Calibration_Parameter_Enable = 1;
+
+ CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER,
+ pCalibrationParam->calibrationParam);
+
+ calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam;
+
+ WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32,
+ CORE_CALIBRATION_PARAMETERn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelI2cSensorType(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_I2C_SENSOR_TYPE sensorType)
+{
+ CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADMW1001_I2C_SENSOR_HUMIDITY_A_DEF_L1:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_B_DEF_L1:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_A_DEF_L2:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_B_DEF_L2:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_A_ADV_L1:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_B_ADV_L1:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_A_ADV_L2:
+ case ADMW1001_I2C_SENSOR_HUMIDITY_B_ADV_L2:
+ case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_DEF_L1:
+ case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_DEF_L2:
+ case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_ADV_L1:
+ case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_ADV_L2:
+ sensorTypeReg.Sensor_Type = sensorType;
+ break;
+ default:
+ ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelI2cSensorAddress(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ uint32_t deviceAddress)
+{
+ CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
+ WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetDigitalChannelComms(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
+{
+ CORE_Digital_Sensor_Comms_t digitalSensorComms;
+
+ digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
+
+ if(pDigitalComms->useCustomCommsConfig)
+ {
+ digitalSensorComms.Digital_Sensor_Comms_En = 1;
+
+ if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K)
+ {
+ digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
+ }
+ else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K)
+ {
+ digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
+ pDigitalComms->i2cClockSpeed);
+ return ADMW_INVALID_PARAM;
+ }
+
+ if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0)
+ {
+ digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0;
+ }
+ else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1)
+ {
+ digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1;
+ }
+ else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2)
+ {
+ digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2;
+ }
+ else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3)
+ {
+ digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3;
+ }
+ else
+ {
+ ADMW_LOG_ERROR("Invalid SPI mode %d specified",
+ pDigitalComms->spiMode);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch (pDigitalComms->spiClock)
+ {
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_13MHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_13MHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_6_5MHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_6_5MHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3_25MHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3_25MHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1_625MHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1_625MHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_812KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_812KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_406KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_406KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_203KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_203KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_101KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_101KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_50KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_50KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_25KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_25KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_12KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_12KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_6KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_6KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1_5KHZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1_5KHZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_793HZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_793HZ;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_396HZ:
+ digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_396HZ;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid SPI clock %d specified",
+ pDigitalComms->spiClock);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch (pDigitalComms->uartLineConfig)
+ {
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N1:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N1;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N2:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N2;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N3:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N3;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E1:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E1;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E2:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E2;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E3:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E3;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O1:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O1;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O2:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O2;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O3:
+ digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O3;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid UART mode %d specified",
+ pDigitalComms->uartLineConfig);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch (pDigitalComms->uartBaudRate)
+ {
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_115200:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_115200;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_57600:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_57600;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_38400:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_38400;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_19200:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_19200;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_9600:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_9600;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_4800:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_4800;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_2400:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_2400;
+ break;
+ case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_1200:
+ digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_1200;
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid UART baud rate %d specified",
+ pDigitalComms->uartBaudRate);
+ return ADMW_INVALID_PARAM;
+ }
+ }
+ else
+ {
+ digitalSensorComms.Digital_Sensor_Comms_En = 0;
+ }
+
+ WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_SetI2cChannelConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADMW_RESULT eRet;
+ ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
+ &pChannelConfig->i2cChannelConfig;
+
+ eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
+ pI2cChannelConfig->sensor);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
+ pI2cChannelConfig->deviceAddress);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
+ pChannelConfig);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId,
+ &pI2cChannelConfig->configurationCommand,
+ &pI2cChannelConfig->dataRequestCommand);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C sensor commands for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
+ &pI2cChannelConfig->dataFormat);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
+ &pI2cChannelConfig->digitalCalibrationParam);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
+ &pI2cChannelConfig->configureComms);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelSpiSensorType(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_SPI_SENSOR_TYPE sensorType)
+{
+ CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADMW1001_SPI_SENSOR_PRESSURE_A_DEF_L1:
+ case ADMW1001_SPI_SENSOR_PRESSURE_A_DEF_L2:
+ case ADMW1001_SPI_SENSOR_PRESSURE_A_ADV_L1:
+ case ADMW1001_SPI_SENSOR_PRESSURE_A_ADV_L2:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_DEF_L1:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_DEF_L1:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_DEF_L2:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_DEF_L2:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_ADV_L1:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_ADV_L1:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_ADV_L2:
+ case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_ADV_L2:
+ sensorTypeReg.Sensor_Type = sensorType;
+ break;
+ default:
+ ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_SetSpiChannelConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADMW_RESULT eRet;
+ ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig =
+ &pChannelConfig->spiChannelConfig;
+
+ eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId,
+ pSpiChannelConfig->sensor);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
+ pChannelConfig);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId,
+ &pSpiChannelConfig->configurationCommand,
+ &pSpiChannelConfig->dataRequestCommand);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set SPI sensor commands for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
+ &pSpiChannelConfig->dataFormat);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
+ &pSpiChannelConfig->digitalCalibrationParam);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
+ &pSpiChannelConfig->configureComms);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set SPI comms for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+static ADMW_RESULT admw_SetChannelUartSensorType(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_UART_SENSOR_TYPE sensorType)
+{
+ CORE_Sensor_Type_t sensorTypeReg;
+
+ sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
+
+ /* Ensure that the sensor type is valid for this channel */
+ switch(sensorType)
+ {
+ case ADMW1001_UART_SENSOR_UART_CO2_A_DEF_L1:
+ case ADMW1001_UART_SENSOR_UART_CO2_B_DEF_L1:
+ case ADMW1001_UART_SENSOR_UART_CO2_A_DEF_L2:
+ case ADMW1001_UART_SENSOR_UART_CO2_B_DEF_L2:
+ case ADMW1001_UART_SENSOR_UART_CO2_A_ADV_L1:
+ case ADMW1001_UART_SENSOR_UART_CO2_B_ADV_L1:
+ case ADMW1001_UART_SENSOR_UART_CO2_A_ADV_L2:
+ case ADMW1001_UART_SENSOR_UART_CO2_B_ADV_L2:
+ sensorTypeReg.Sensor_Type = sensorType;
+ break;
+ default:
+ ADMW_LOG_ERROR("Unsupported UART sensor type %d specified", sensorType);
+ return ADMW_INVALID_PARAM;
+ }
+
+ WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_SetUartChannelConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADMW_RESULT eRet;
+ ADMW1001_UART_CHANNEL_CONFIG *pUartChannelConfig =
+ &pChannelConfig->uartChannelConfig;
+
+ eRet = admw_SetChannelUartSensorType(hDevice, eChannelId,
+ pUartChannelConfig->sensor);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set UART sensor type for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
+ pChannelConfig);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set UART sensor details for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
+ &pUartChannelConfig->digitalCalibrationParam);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set UART digital calibration param for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
+ &pUartChannelConfig->configureComms);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set UART comms for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetChannelThresholdLimits(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ float32_t fHighThresholdLimit,
+ float32_t fLowThresholdLimit)
+{
+ /*
+ * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
+ * that they are unset, or not required, and use infinity defaults instead
+ */
+ if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f)
+ {
+ fHighThresholdLimit = INFINITY;
+ fLowThresholdLimit = -INFINITY;
+ }
+ else
+ {
+ if (isnan(fHighThresholdLimit))
+ fHighThresholdLimit = INFINITY;
+ if (isnan(fLowThresholdLimit))
+ fLowThresholdLimit = -INFINITY;
+ }
+
+ WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
+ CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
+ WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
+ CORE_LOW_THRESHOLD_LIMITn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetOffsetGain(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ float32_t fOffsetAdjustment,
+ float32_t fGainAdjustment)
+{
+ /* Replace with default values if NaNs are specified (or 0.0 for gain) */
+ if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
+ fGainAdjustment = 1.0f;
+ if (isnan(fOffsetAdjustment))
+ fOffsetAdjustment = 0.0f;
+
+ WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
+ WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetSensorParameter(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ float32_t fSensorParam)
+{
+ if (fSensorParam == 0.0f)
+ fSensorParam = NAN;
+
+ WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetChannelSettlingTime(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ uint32_t nSettlingTime)
+{
+ CORE_Settling_Time_t settlingTimeReg;
+
+ if (nSettlingTime < (1 << 12))
+ {
+ settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MICROSECONDS;
+ }
+ else if (nSettlingTime < (1000 * (1 << 12)))
+ {
+ settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MILLISECONDS;
+ nSettlingTime /= 1000;
+ }
+ else
+ {
+ settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_SECONDS;
+ nSettlingTime /= 1000000;
+ }
+
+ CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
+ settlingTimeReg.Settling_Time = nSettlingTime;
+
+ WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetChannelConfig(
+ ADMW_DEVICE_HANDLE hDevice,
+ ADMW1001_CHANNEL_ID eChannelId,
+ ADMW1001_CHANNEL_CONFIG *pChannelConfig)
+{
+ ADMW_RESULT eRet;
+
+ if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId))
+ {
+ eRet = admw1001_SetChannelCount(hDevice, eChannelId,
+ pChannelConfig->enableChannel ?
+ pChannelConfig->measurementsPerCycle : 0);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
+ pChannelConfig->priority,
+ pChannelConfig->enableFFT);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set priority for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ /* If the channel is not enabled, we can skip the following steps */
+ if (pChannelConfig->enableChannel || pChannelConfig->enableFFT)
+ {
+ eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
+ pChannelConfig->cycleSkipCount);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ switch (eChannelId)
+ {
+ case ADMW1001_CHANNEL_ID_CJC_0:
+ case ADMW1001_CHANNEL_ID_CJC_1:
+ case ADMW1001_CHANNEL_ID_SENSOR_0:
+ case ADMW1001_CHANNEL_ID_SENSOR_1:
+ case ADMW1001_CHANNEL_ID_SENSOR_2:
+ case ADMW1001_CHANNEL_ID_SENSOR_3:
+ case ADMW1001_CHANNEL_ID_VOLTAGE_0:
+ case ADMW1001_CHANNEL_ID_CURRENT_0:
+ eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
+ break;
+ case ADMW1001_CHANNEL_ID_I2C_0:
+ case ADMW1001_CHANNEL_ID_I2C_1:
+ eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
+ break;
+ case ADMW1001_CHANNEL_ID_SPI_0:
+ eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig);
+ break;
+ case ADMW1001_CHANNEL_ID_UART:
+ eRet = admw_SetUartChannelConfig(hDevice, eChannelId, pChannelConfig);
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
+ return ADMW_INVALID_PARAM;
+ }
+
+ eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
+ pChannelConfig->extraSettlingTime);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set settling time for channel %d",
+ eChannelId);
+ return eRet;
+ }
+ }
+ }
+
+ if (pChannelConfig->enableChannel || pChannelConfig->enableFFT)
+ {
+ /* Threshold limits can be configured individually for virtual channels */
+ eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
+ pChannelConfig->highThreshold,
+ pChannelConfig->lowThreshold);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ /* Offset and gain can be configured individually for virtual channels */
+ eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
+ pChannelConfig->offsetAdjustment,
+ pChannelConfig->gainAdjustment);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
+ eChannelId);
+ return eRet;
+ }
+
+ /* Set sensor specific parameter */
+ eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
+ pChannelConfig->sensorParameter);
+ if (eRet != ADMW_SUCCESS)
+ {
+ ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
+ eChannelId);
+ return eRet;
+ }
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw_SetConfig(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW_CONFIG * const pConfig)
+{
+ ADMW1001_CONFIG *pDeviceConfig;
+ ADMW_PRODUCT_ID productId;
+ ADMW_RESULT eRet;
+
+ if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001)
+ {
+ ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
+ pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
+ return ADMW_INVALID_PARAM;
+ }
+
+ /* Check that the actual Product ID is a match? */
+ eRet = admw_GetProductID(hDevice, &productId);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to read device Product ID register");
+ return eRet;
+ }
+ if (pConfig->productId != productId)
+ {
+ ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
+ pConfig->productId, productId);
+ return ADMW_INVALID_PARAM;
+ }
+
+ pDeviceConfig = &pConfig->admw1001;
+
+ eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to set power configuration");
+ return eRet;
+ }
+
+ eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to set measurement configuration");
+ return eRet;
+ }
+
+ eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to set diagnostics configuration");
+ return eRet;
+ }
+
+ for (ADMW1001_CHANNEL_ID id = ADMW1001_CHANNEL_ID_CJC_0;
+ id < ADMW1001_MAX_CHANNELS;
+ id++)
+ {
+ eRet = admw1001_SetChannelConfig(hDevice, id,
+ &pDeviceConfig->channels[id]);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
+ return eRet;
+ }
+ }
+
+ eRet = admw1001_SetFftConfig(hDevice, &pDeviceConfig->fft,
+ pDeviceConfig->channels);
+ if (eRet)
+ {
+ ADMW_LOG_ERROR("Failed to set FFT configuration");
+ return eRet;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetLutData(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW1001_LUT * const pLutData)
+{
+ ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
+ ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
+ unsigned actualLength = 0;
+
+ if (pLutData->header.signature != ADMW_LUT_SIGNATURE)
+ {
+ ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
+ ADMW_LUT_SIGNATURE, pLutHeader->signature);
+ return ADMW_INVALID_SIGNATURE;
+ }
+
+ for (unsigned i = 0; i < pLutHeader->numTables; i++)
+ {
+ ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
+ ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data;
+ unsigned short calculatedCrc;
+
+ switch (pDesc->geometry)
+ {
+ case ADMW1001_LUT_GEOMETRY_COEFFS:
+ switch (pDesc->equation)
+ {
+ case ADMW1001_LUT_EQUATION_POLYN:
+ case ADMW1001_LUT_EQUATION_POLYNEXP:
+ case ADMW1001_LUT_EQUATION_QUADRATIC:
+ case ADMW1001_LUT_EQUATION_STEINHART:
+ case ADMW1001_LUT_EQUATION_LOGARITHMIC:
+ case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
+ pDesc->equation, i);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ case ADMW1001_LUT_GEOMETRY_NES_1D:
+ case ADMW1001_LUT_GEOMETRY_NES_2D:
+ case ADMW1001_LUT_GEOMETRY_ES_1D:
+ case ADMW1001_LUT_GEOMETRY_ES_2D:
+ if (pDesc->equation != ADMW1001_LUT_EQUATION_LUT) {
+ ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
+ pDesc->equation, i);
+ return ADMW_INVALID_PARAM;
+ }
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
+ pDesc->geometry, i);
+ return ADMW_INVALID_PARAM;
+ }
+
+ switch (pDesc->dataType)
+ {
+ case ADMW1001_LUT_DATA_TYPE_FLOAT32:
+ case ADMW1001_LUT_DATA_TYPE_FLOAT64:
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
+ pDesc->dataType, i);
+ return ADMW_INVALID_PARAM;
+ }
+
+ calculatedCrc = admw_crc16_ccitt(pData, pDesc->length);
+ if (calculatedCrc != pDesc->crc16)
+ {
+ ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
+ i, pDesc->crc16, calculatedCrc);
+ return ADMW_CRC_ERROR;
+ }
+
+ actualLength += sizeof(*pDesc) + pDesc->length;
+
+ /* Move to the next look-up table */
+ pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
+ }
+
+ if (actualLength != pLutHeader->totalLength)
+ {
+ ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
+ pLutHeader->totalLength, actualLength);
+ return ADMW_WRONG_SIZE;
+ }
+
+ if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE)
+ {
+ ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
+ ADMW_LUT_MAX_SIZE);
+ return ADMW_WRONG_SIZE;
+ }
+
+ /* Write the LUT data to the device */
+ unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
+ WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
+ WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_SetLutDataRaw(
+ ADMW_DEVICE_HANDLE const hDevice,
+ ADMW1001_LUT_RAW * const pLutData)
+{
+ return admw1001_SetLutData(hDevice,
+ (ADMW1001_LUT *)pLutData);
+}
+
+static ADMW_RESULT getLutTableSize(
+ ADMW1001_LUT_DESCRIPTOR * const pDesc,
+ ADMW1001_LUT_TABLE_DATA * const pData,
+ unsigned *pLength)
+{
+ switch (pDesc->geometry)
+ {
+ case ADMW1001_LUT_GEOMETRY_COEFFS:
+ if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN)
+ *pLength = ADMW1001_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d);
+ else
+ *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList);
+ break;
+ case ADMW1001_LUT_GEOMETRY_NES_1D:
+ *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
+ break;
+ case ADMW1001_LUT_GEOMETRY_NES_2D:
+ *pLength = ADMW1001_LUT_2D_NES_SIZE(pData->lut2dNes);
+ break;
+ case ADMW1001_LUT_GEOMETRY_ES_1D:
+ *pLength = ADMW1001_LUT_1D_ES_SIZE(pData->lut1dEs);
+ break;
+ case ADMW1001_LUT_GEOMETRY_ES_2D:
+ *pLength = ADMW1001_LUT_2D_ES_SIZE(pData->lut2dEs);
+ break;
+ default:
+ ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
+ pDesc->geometry);
+ return ADMW_INVALID_PARAM;
+ }
+
+ return ADMW_SUCCESS;
+}
+
+ADMW_RESULT admw1001_AssembleLutData(
+ ADMW1001_LUT * pLutBuffer,
+ unsigned nLutBufferSize,
+ unsigned const nNumTables,
+ ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
+ ADMW1001_LUT_TABLE_DATA * const ppData[])
+{
+ ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
+ uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
+
+ if (sizeof(*pHdr) > nLutBufferSize)
+ {
+ ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
+ return ADMW_INVALID_PARAM;
+ }
+
+ /* First initialise the top-level header */
+ pHdr->signature = ADMW_LUT_SIGNATURE;
+ pHdr->version.major = 1;
+ pHdr->version.minor = 0;
+ pHdr->numTables = 0;
+ pHdr->totalLength = 0;
+
+ /*
+ * Walk through the list of table pointers provided, appending the table
+ * descriptor+data from each one to the provided LUT buffer
+ */
+ for (unsigned i = 0; i < nNumTables; i++)
+ {
+ ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
+ ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
+ ADMW_RESULT res;
+ unsigned dataLength = 0;
+
+ /* Calculate the length of the table data */
+ res = getLutTableSize(pDesc, pData, &dataLength);
+ if (res != ADMW_SUCCESS)
+ return res;
+
+ /* Fill in the table descriptor length and CRC fields */
+ pDesc->length = dataLength;
+ pDesc->crc16 = admw_crc16_ccitt(pData, dataLength);
+
+ if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize)
+ {
+ ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
+ return ADMW_INVALID_PARAM;
+ }
+
+ /* Append the table to the LUT buffer (desc + data) */
+ memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
+ pHdr->totalLength += sizeof(*pDesc);
+ memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
+ pHdr->totalLength += dataLength;
+
+ pHdr->numTables++;
+ }
+
+ return ADMW_SUCCESS;
+}
+