Register map updated

Committer:
Vkadaba
Date:
Thu Sep 26 06:15:39 2019 +0000
Revision:
23:bb685f35b08b
Parent:
18:cbf514cce921
Child:
32:52445bef314d
Fixing code alignment

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
ADIJake 0:85855ecd3257 55
ADIJake 0:85855ecd3257 56 #include "crc16.h"
Vkadaba 13:97cb32670539 57 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 58 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 59
ADIJake 0:85855ecd3257 60 uint32_t getDataCnt = 0;
ADIJake 0:85855ecd3257 61
ADIJake 0:85855ecd3257 62 /*
ADIJake 0:85855ecd3257 63 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 64 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 65 */
ADIJake 0:85855ecd3257 66 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 67
ADIJake 0:85855ecd3257 68 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 69 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 70
ADIJake 0:85855ecd3257 71 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 72 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 73 do { \
Vkadaba 8:2f2775c34640 74 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 75 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 76 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 77 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 78 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 79 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 80 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 81 } \
ADIJake 0:85855ecd3257 82 } while(false)
ADIJake 0:85855ecd3257 83
ADIJake 0:85855ecd3257 84 /*
ADIJake 0:85855ecd3257 85 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 86 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 87 */
ADIJake 0:85855ecd3257 88 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 89 do { \
Vkadaba 8:2f2775c34640 90 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 91 _type _regval = _val; \
Vkadaba 8:2f2775c34640 92 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 93 REG_##_name, \
ADIJake 0:85855ecd3257 94 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 95 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 96 return _res; \
ADIJake 0:85855ecd3257 97 } while(false)
ADIJake 0:85855ecd3257 98
ADIJake 0:85855ecd3257 99 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 100 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 101 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 102 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 103 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 104 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 105 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 106 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 107 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 108 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 109 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 110 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 111
ADIJake 0:85855ecd3257 112 /*
ADIJake 0:85855ecd3257 113 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 114 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 115 */
ADIJake 0:85855ecd3257 116 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 117 do { \
Vkadaba 8:2f2775c34640 118 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 119 _type _regval; \
Vkadaba 8:2f2775c34640 120 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 121 REG_##_name, \
ADIJake 0:85855ecd3257 122 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 123 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 124 return _res; \
ADIJake 0:85855ecd3257 125 _val = _regval; \
ADIJake 0:85855ecd3257 126 } while(false)
ADIJake 0:85855ecd3257 127
ADIJake 0:85855ecd3257 128 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 129 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 130 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 131 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 132 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 133 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 134 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 135 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 136 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 137 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 138 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 139 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 140
ADIJake 0:85855ecd3257 141 /*
ADIJake 0:85855ecd3257 142 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 143 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 144 */
Vkadaba 8:2f2775c34640 145 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 146 do { \
Vkadaba 8:2f2775c34640 147 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 148 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 149 REG_##_name, \
Vkadaba 6:9d393a9677f4 150 _arr, _len); \
Vkadaba 8:2f2775c34640 151 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 152 return _res; \
ADIJake 0:85855ecd3257 153 } while(false)
ADIJake 0:85855ecd3257 154
ADIJake 0:85855ecd3257 155 /*
ADIJake 0:85855ecd3257 156 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 157 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 158 */
Vkadaba 6:9d393a9677f4 159 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 160 do { \
Vkadaba 8:2f2775c34640 161 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 162 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 163 REG##_name, \
Vkadaba 6:9d393a9677f4 164 _arr, _len); \
Vkadaba 8:2f2775c34640 165 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 166 return _res; \
ADIJake 0:85855ecd3257 167 } while(false)
ADIJake 0:85855ecd3257 168
Vkadaba 8:2f2775c34640 169 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 170 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 171
Vkadaba 8:2f2775c34640 172 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 173 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 174
Vkadaba 8:2f2775c34640 175 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 176 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 177
Vkadaba 8:2f2775c34640 178 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 179 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 180
Vkadaba 8:2f2775c34640 181 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 182 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 183
Vkadaba 8:2f2775c34640 184 #define ADMW1001_CHANNEL_IS_VIRTUAL(c) \
Vkadaba 8:2f2775c34640 185 ((c) == ADMW1001_CH_ID_DIG_SPI_1 || (c) == ADMW1001_CH_ID_DIG_SPI_2)
ADIJake 0:85855ecd3257 186
Vkadaba 23:bb685f35b08b 187 typedef struct {
ADIJake 0:85855ecd3257 188 unsigned nDeviceIndex;
Vkadaba 5:0728bde67bdb 189 ADMW_SPI_HANDLE hSpi;
Vkadaba 5:0728bde67bdb 190 ADMW_GPIO_HANDLE hGpio;
Vkadaba 23:bb685f35b08b 191
Vkadaba 8:2f2775c34640 192 } ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 193
Vkadaba 5:0728bde67bdb 194 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 195
ADIJake 0:85855ecd3257 196 /*
Vkadaba 5:0728bde67bdb 197 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 198 */
Vkadaba 5:0728bde67bdb 199 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 200 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 201 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 202 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 203 {
Vkadaba 5:0728bde67bdb 204 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 205 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 206
Vkadaba 5:0728bde67bdb 207 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 208 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 209
ADIJake 0:85855ecd3257 210 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 211 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 212
Vkadaba 5:0728bde67bdb 213 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 214 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 215 return eRet;
ADIJake 0:85855ecd3257 216
Vkadaba 5:0728bde67bdb 217 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 218 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 219 return eRet;
ADIJake 0:85855ecd3257 220
Vkadaba 5:0728bde67bdb 221 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 222 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 223 return eRet;
ADIJake 0:85855ecd3257 224
ADIJake 0:85855ecd3257 225 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 226 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 227 }
ADIJake 0:85855ecd3257 228
ADIJake 0:85855ecd3257 229 /*
ADIJake 0:85855ecd3257 230 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 231 */
Vkadaba 5:0728bde67bdb 232 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 233 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 234 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 235 bool * const pbAsserted)
ADIJake 0:85855ecd3257 236 {
Vkadaba 5:0728bde67bdb 237 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 238
Vkadaba 5:0728bde67bdb 239 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 240 }
ADIJake 0:85855ecd3257 241
ADIJake 0:85855ecd3257 242 /*
ADIJake 0:85855ecd3257 243 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 244 */
Vkadaba 5:0728bde67bdb 245 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 246 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 247 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 248 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 249 void * const pCallbackParam)
ADIJake 0:85855ecd3257 250 {
Vkadaba 5:0728bde67bdb 251 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 252
Vkadaba 23:bb685f35b08b 253 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 254 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 255 pCallbackParam);
Vkadaba 23:bb685f35b08b 256 } else {
Vkadaba 5:0728bde67bdb 257 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 258 }
ADIJake 0:85855ecd3257 259 }
ADIJake 0:85855ecd3257 260
Vkadaba 8:2f2775c34640 261 /*!
Vkadaba 8:2f2775c34640 262 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 263 *
Vkadaba 8:2f2775c34640 264 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 265 *
Vkadaba 8:2f2775c34640 266 * @return Status
Vkadaba 8:2f2775c34640 267 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 268 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 269 *
Vkadaba 23:bb685f35b08b 270 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 271 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 272 *
ADIJake 0:85855ecd3257 273 */
Vkadaba 8:2f2775c34640 274 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 275 {
Vkadaba 5:0728bde67bdb 276 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 277 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 278
ADIJake 0:85855ecd3257 279 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 280 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 281 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 282 return eRet;
ADIJake 0:85855ecd3257 283
Vkadaba 5:0728bde67bdb 284 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 285
Vkadaba 5:0728bde67bdb 286 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 287 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 288 return eRet;
ADIJake 0:85855ecd3257 289
Vkadaba 5:0728bde67bdb 290 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 291 }
ADIJake 0:85855ecd3257 292
ADIJake 0:85855ecd3257 293 /*!
Vkadaba 8:2f2775c34640 294 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 295 *
ADIJake 0:85855ecd3257 296 * @param[in]
ADIJake 0:85855ecd3257 297 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 298 *
ADIJake 0:85855ecd3257 299 * @return Status
Vkadaba 5:0728bde67bdb 300 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 301 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 302 *
Vkadaba 8:2f2775c34640 303 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 304 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 305 * and command running.
ADIJake 0:85855ecd3257 306 *
ADIJake 0:85855ecd3257 307 */
Vkadaba 5:0728bde67bdb 308 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 309 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 310 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 311 {
Vkadaba 8:2f2775c34640 312 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 313 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 314
Vkadaba 8:2f2775c34640 315 ADMW_CORE_Alert_Status_2_t alert2Reg;
ADIJake 0:85855ecd3257 316 READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2);
ADIJake 0:85855ecd3257 317
ADIJake 0:85855ecd3257 318 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 319
ADIJake 0:85855ecd3257 320 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 321 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 322 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 323 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 324 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 325 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 326 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 327 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 328
Vkadaba 8:2f2775c34640 329 ADMW_CORE_Alert_Code_t alertCodeReg;
ADIJake 0:85855ecd3257 330 READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE);
ADIJake 0:85855ecd3257 331 pStatus->alertCode = alertCodeReg.Alert_Code;
ADIJake 0:85855ecd3257 332
Vkadaba 8:2f2775c34640 333 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 334 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 335 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 336
Vkadaba 23:bb685f35b08b 337 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 338 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 339 ADMW_CORE_Alert_Code_Ch_t channelAlertCodeReg;
ADIJake 0:85855ecd3257 340 READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i));
ADIJake 0:85855ecd3257 341 pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch;
ADIJake 0:85855ecd3257 342
Vkadaba 8:2f2775c34640 343 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 344 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 345 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 346
ADIJake 0:85855ecd3257 347 if (alertDetailReg.Time_Out)
Vkadaba 5:0728bde67bdb 348 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_TIMEOUT;
ADIJake 0:85855ecd3257 349 if (alertDetailReg.Under_Range)
Vkadaba 5:0728bde67bdb 350 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_UNDER_RANGE;
ADIJake 0:85855ecd3257 351 if (alertDetailReg.Over_Range)
Vkadaba 5:0728bde67bdb 352 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_OVER_RANGE;
ADIJake 0:85855ecd3257 353 if (alertDetailReg.Low_Limit)
Vkadaba 5:0728bde67bdb 354 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LOW_LIMIT;
ADIJake 0:85855ecd3257 355 if (alertDetailReg.High_Limit)
Vkadaba 5:0728bde67bdb 356 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_HIGH_LIMIT;
ADIJake 0:85855ecd3257 357 if (alertDetailReg.Sensor_Open)
Vkadaba 5:0728bde67bdb 358 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_OPEN;
ADIJake 0:85855ecd3257 359 if (alertDetailReg.Ref_Detect)
Vkadaba 5:0728bde67bdb 360 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_REF_DETECT;
ADIJake 0:85855ecd3257 361 if (alertDetailReg.Config_Err)
Vkadaba 5:0728bde67bdb 362 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_CONFIG_ERR;
ADIJake 0:85855ecd3257 363 if (alertDetailReg.LUT_Error_Ch)
Vkadaba 5:0728bde67bdb 364 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_ERR;
ADIJake 0:85855ecd3257 365 if (alertDetailReg.Sensor_Not_Ready)
Vkadaba 5:0728bde67bdb 366 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_NOT_READY;
ADIJake 0:85855ecd3257 367 if (alertDetailReg.Comp_Not_Ready)
Vkadaba 5:0728bde67bdb 368 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_COMP_NOT_READY;
ADIJake 0:85855ecd3257 369 if (alertDetailReg.Correction_UnderRange)
Vkadaba 5:0728bde67bdb 370 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_UNDER_RANGE;
ADIJake 0:85855ecd3257 371 if (alertDetailReg.Correction_OverRange)
Vkadaba 5:0728bde67bdb 372 pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_OVER_RANGE;
ADIJake 0:85855ecd3257 373 }
ADIJake 0:85855ecd3257 374 }
ADIJake 0:85855ecd3257 375
ADIJake 0:85855ecd3257 376 if (alert2Reg.Configuration_Error)
Vkadaba 5:0728bde67bdb 377 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
ADIJake 0:85855ecd3257 378 if (alert2Reg.LUT_Error)
Vkadaba 5:0728bde67bdb 379 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 380 }
ADIJake 0:85855ecd3257 381
Vkadaba 23:bb685f35b08b 382 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 383 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 384
Vkadaba 8:2f2775c34640 385 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 386 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 387 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 388
Vkadaba 8:2f2775c34640 389 ADMW_CORE_Diagnostics_Status_t diagStatusReg;
ADIJake 0:85855ecd3257 390 READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS);
ADIJake 0:85855ecd3257 391
ADIJake 0:85855ecd3257 392 if (diagStatusReg.Diag_Checksum_Error)
Vkadaba 5:0728bde67bdb 393 pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CHECKSUM_ERROR;
ADIJake 0:85855ecd3257 394 if (diagStatusReg.Diag_Conversion_Error)
Vkadaba 5:0728bde67bdb 395 pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CONVERSION_ERROR;
ADIJake 0:85855ecd3257 396 if (diagStatusReg.Diag_Calibration_Error)
Vkadaba 5:0728bde67bdb 397 pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CALIBRATION_ERROR;
ADIJake 0:85855ecd3257 398 }
ADIJake 0:85855ecd3257 399
Vkadaba 23:bb685f35b08b 400 if (statusReg.Alert_Active || statusReg.Error) {
Vkadaba 8:2f2775c34640 401 ADMW_CORE_Debug_Code_t debugCodeReg;
ADIJake 0:85855ecd3257 402 READ_REG_U32(hDevice, debugCodeReg.VALUE32, CORE_DEBUG_CODE);
ADIJake 0:85855ecd3257 403 pStatus->debugCode = debugCodeReg.Debug_Code;
ADIJake 0:85855ecd3257 404 }
ADIJake 0:85855ecd3257 405
Vkadaba 5:0728bde67bdb 406 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 407 }
ADIJake 0:85855ecd3257 408
Vkadaba 5:0728bde67bdb 409 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 410 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 411 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 412 {
Vkadaba 8:2f2775c34640 413 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 414
ADIJake 0:85855ecd3257 415 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 416
ADIJake 0:85855ecd3257 417 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 418 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 419 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 420
ADIJake 0:85855ecd3257 421 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 422
Vkadaba 5:0728bde67bdb 423 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 424 }
ADIJake 0:85855ecd3257 425
Vkadaba 5:0728bde67bdb 426 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 427 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 428 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 429 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 430 {
Vkadaba 8:2f2775c34640 431 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 432 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 433 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 434
ADIJake 0:85855ecd3257 435 /*
ADIJake 0:85855ecd3257 436 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 437 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 438 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 439 */
Vkadaba 23:bb685f35b08b 440 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 441 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 442 if (eRet)
ADIJake 0:85855ecd3257 443 return eRet;
ADIJake 0:85855ecd3257 444
ADIJake 0:85855ecd3257 445 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 446 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 447 }
ADIJake 0:85855ecd3257 448
ADIJake 0:85855ecd3257 449 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 450 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 451
Vkadaba 23:bb685f35b08b 452 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 453 do {
ADIJake 0:85855ecd3257 454 /* Allow a minimum 50usec delay for status update before checking */
Vkadaba 5:0728bde67bdb 455 admw_TimeDelayUsec(50);
Vkadaba 5:0728bde67bdb 456
Vkadaba 5:0728bde67bdb 457 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 458 if (eRet)
ADIJake 0:85855ecd3257 459 return eRet;
ADIJake 0:85855ecd3257 460 } while (bCommandRunning);
ADIJake 0:85855ecd3257 461 }
ADIJake 0:85855ecd3257 462
Vkadaba 5:0728bde67bdb 463 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 464 }
ADIJake 0:85855ecd3257 465
Vkadaba 5:0728bde67bdb 466 ADMW_RESULT admw_Shutdown(
Vkadaba 5:0728bde67bdb 467 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 468 {
Vkadaba 5:0728bde67bdb 469 return executeCommand(hDevice, CORE_COMMAND_POWER_DOWN, false);
ADIJake 0:85855ecd3257 470 }
ADIJake 0:85855ecd3257 471
ADIJake 0:85855ecd3257 472
Vkadaba 5:0728bde67bdb 473 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 474 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 475 {
Vkadaba 5:0728bde67bdb 476 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 477 }
ADIJake 0:85855ecd3257 478
ADIJake 0:85855ecd3257 479 /*!
ADIJake 0:85855ecd3257 480 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 481 *
ADIJake 0:85855ecd3257 482 * @param[out]
ADIJake 0:85855ecd3257 483 *
ADIJake 0:85855ecd3257 484 * @return Status
Vkadaba 5:0728bde67bdb 485 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 486 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 487 *
ADIJake 0:85855ecd3257 488 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 489 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 490 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 491 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 492 *
ADIJake 0:85855ecd3257 493 */
Vkadaba 5:0728bde67bdb 494 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 495 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 496 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 497 {
Vkadaba 23:bb685f35b08b 498 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 499 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 500 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 501 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 502 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 503 default:
Vkadaba 23:bb685f35b08b 504 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 505 eMeasurementMode);
Vkadaba 23:bb685f35b08b 506 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 507 }
ADIJake 0:85855ecd3257 508 }
ADIJake 0:85855ecd3257 509
ADIJake 0:85855ecd3257 510 /*
ADIJake 0:85855ecd3257 511 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 512 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 513 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 514 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 515 */
Vkadaba 5:0728bde67bdb 516 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 517 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 518 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 519 {
Vkadaba 23:bb685f35b08b 520 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 521 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 522 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 523 default:
Vkadaba 5:0728bde67bdb 524 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 525 eSlotId);
Vkadaba 5:0728bde67bdb 526 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 527 }
ADIJake 0:85855ecd3257 528 }
ADIJake 0:85855ecd3257 529
ADIJake 0:85855ecd3257 530 /*
ADIJake 0:85855ecd3257 531 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 532 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 533 */
Vkadaba 5:0728bde67bdb 534 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 535 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 536 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 537 {
Vkadaba 23:bb685f35b08b 538 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 539 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 540 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 541 default:
Vkadaba 5:0728bde67bdb 542 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 543 eSlotId);
Vkadaba 5:0728bde67bdb 544 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 545 }
ADIJake 0:85855ecd3257 546 }
ADIJake 0:85855ecd3257 547
ADIJake 0:85855ecd3257 548 /*
ADIJake 0:85855ecd3257 549 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 550 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 551 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 552 */
Vkadaba 5:0728bde67bdb 553 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 554 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 555 {
Vkadaba 5:0728bde67bdb 556 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 557 }
ADIJake 0:85855ecd3257 558
ADIJake 0:85855ecd3257 559 /*
ADIJake 0:85855ecd3257 560 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 561 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 562 */
Vkadaba 5:0728bde67bdb 563 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 564 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 565 {
Vkadaba 5:0728bde67bdb 566 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 567 }
ADIJake 0:85855ecd3257 568
ADIJake 0:85855ecd3257 569 /*
ADIJake 0:85855ecd3257 570 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 571 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 572 */
Vkadaba 5:0728bde67bdb 573 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 574 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 575 {
Vkadaba 5:0728bde67bdb 576 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 577 }
ADIJake 0:85855ecd3257 578
ADIJake 0:85855ecd3257 579 /*
ADIJake 0:85855ecd3257 580 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 581 * This may be called at any time.
ADIJake 0:85855ecd3257 582 */
Vkadaba 5:0728bde67bdb 583 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 584 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 585 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 586 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 587 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 588 uint32_t const nRequested,
ADIJake 0:85855ecd3257 589 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 590 {
Vkadaba 5:0728bde67bdb 591 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 592 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 593 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 594 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 595 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 596 command >> 8,
ADIJake 0:85855ecd3257 597 command & 0xFF
ADIJake 0:85855ecd3257 598 };
ADIJake 0:85855ecd3257 599 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 600 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 601 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 602
ADIJake 0:85855ecd3257 603 do {
Vkadaba 5:0728bde67bdb 604 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 605 sizeof(command), false);
Vkadaba 23:bb685f35b08b 606 if (eRet) {
Vkadaba 5:0728bde67bdb 607 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 608 return eRet;
ADIJake 0:85855ecd3257 609 }
Vkadaba 5:0728bde67bdb 610 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 611 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 612 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
ADIJake 0:85855ecd3257 613
Vkadaba 23:bb685f35b08b 614 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 615 bool bHoldCs = true;
ADIJake 0:85855ecd3257 616
ADIJake 0:85855ecd3257 617 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 618 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 619 bHoldCs = false;
ADIJake 0:85855ecd3257 620
ADIJake 0:85855ecd3257 621 getDataCnt++;
ADIJake 0:85855ecd3257 622
Vkadaba 5:0728bde67bdb 623 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 624 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 625 if (eRet) {
Vkadaba 5:0728bde67bdb 626 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 627 return eRet;
ADIJake 0:85855ecd3257 628 }
ADIJake 0:85855ecd3257 629
Vkadaba 23:bb685f35b08b 630 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 631 /*
ADIJake 0:85855ecd3257 632 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 633 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 634 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 635 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 636 */
Vkadaba 5:0728bde67bdb 637 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 638 break;
ADIJake 0:85855ecd3257 639 }
ADIJake 0:85855ecd3257 640
Vkadaba 5:0728bde67bdb 641 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 642
Vkadaba 5:0728bde67bdb 643 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 644 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 645 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 646 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 647 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 648
ADIJake 0:85855ecd3257 649 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 650 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 651 else
ADIJake 0:85855ecd3257 652 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 653
ADIJake 0:85855ecd3257 654 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 655 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 656
ADIJake 0:85855ecd3257 657 nValidSamples++;
ADIJake 0:85855ecd3257 658
Vkadaba 5:0728bde67bdb 659 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 660 }
ADIJake 0:85855ecd3257 661 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 662
ADIJake 0:85855ecd3257 663 return eRet;
ADIJake 0:85855ecd3257 664 }
ADIJake 0:85855ecd3257 665
ADIJake 0:85855ecd3257 666 /*
Vkadaba 5:0728bde67bdb 667 * Close the given ADMW device.
ADIJake 0:85855ecd3257 668 */
Vkadaba 5:0728bde67bdb 669 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 670 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 671 {
Vkadaba 5:0728bde67bdb 672 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 673
Vkadaba 5:0728bde67bdb 674 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 675 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 676 admw_LogClose();
Vkadaba 5:0728bde67bdb 677
Vkadaba 5:0728bde67bdb 678 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 679 }
ADIJake 0:85855ecd3257 680
Vkadaba 5:0728bde67bdb 681 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 682 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 683 uint16_t nAddress,
ADIJake 0:85855ecd3257 684 void *pData,
ADIJake 0:85855ecd3257 685 unsigned nLength)
ADIJake 0:85855ecd3257 686 {
Vkadaba 5:0728bde67bdb 687 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 688 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 689 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 690 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 691 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 692 command >> 8,
ADIJake 0:85855ecd3257 693 command & 0xFF
ADIJake 0:85855ecd3257 694 };
ADIJake 0:85855ecd3257 695 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 696
ADIJake 0:85855ecd3257 697 do {
Vkadaba 5:0728bde67bdb 698 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 699 sizeof(command), false);
Vkadaba 23:bb685f35b08b 700 if (eRet) {
Vkadaba 5:0728bde67bdb 701 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 702 nAddress);
ADIJake 0:85855ecd3257 703 return eRet;
ADIJake 0:85855ecd3257 704 }
ADIJake 0:85855ecd3257 705
Vkadaba 5:0728bde67bdb 706 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 707 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 708 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 709
Vkadaba 5:0728bde67bdb 710 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 711 if (eRet) {
Vkadaba 5:0728bde67bdb 712 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 713 nLength, nAddress);
ADIJake 0:85855ecd3257 714 return eRet;
ADIJake 0:85855ecd3257 715 }
ADIJake 0:85855ecd3257 716
Vkadaba 5:0728bde67bdb 717 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 718
Vkadaba 5:0728bde67bdb 719 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 720 }
ADIJake 0:85855ecd3257 721
Vkadaba 6:9d393a9677f4 722 ADMW_RESULT admw1001_Write_Debug_Register(
Vkadaba 6:9d393a9677f4 723 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 724 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 725 void *pData,
Vkadaba 6:9d393a9677f4 726 unsigned nLength)
Vkadaba 6:9d393a9677f4 727 {
Vkadaba 6:9d393a9677f4 728 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 729 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 730 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_WRITE_CMD |
Vkadaba 23:bb685f35b08b 731 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 732 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 733 command >> 8,
Vkadaba 6:9d393a9677f4 734 command & 0xFF
Vkadaba 6:9d393a9677f4 735 };
Vkadaba 6:9d393a9677f4 736 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 737
Vkadaba 6:9d393a9677f4 738 do {
Vkadaba 6:9d393a9677f4 739 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 740 sizeof(command), false);
Vkadaba 23:bb685f35b08b 741 if (eRet) {
Vkadaba 6:9d393a9677f4 742 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 743 nAddress);
Vkadaba 6:9d393a9677f4 744 return eRet;
Vkadaba 6:9d393a9677f4 745 }
Vkadaba 6:9d393a9677f4 746
Vkadaba 6:9d393a9677f4 747 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 748 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 749 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 750
Vkadaba 6:9d393a9677f4 751 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 752 if (eRet) {
Vkadaba 6:9d393a9677f4 753 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 754 nLength, nAddress);
Vkadaba 6:9d393a9677f4 755 return eRet;
Vkadaba 6:9d393a9677f4 756 }
Vkadaba 6:9d393a9677f4 757
Vkadaba 6:9d393a9677f4 758 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 759
Vkadaba 6:9d393a9677f4 760 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 761 }
Vkadaba 5:0728bde67bdb 762 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 763 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 764 uint16_t nAddress,
ADIJake 0:85855ecd3257 765 void *pData,
ADIJake 0:85855ecd3257 766 unsigned nLength)
ADIJake 0:85855ecd3257 767 {
Vkadaba 5:0728bde67bdb 768 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 769 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 770 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 771 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 772 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 773 command >> 8,
ADIJake 0:85855ecd3257 774 command & 0xFF
ADIJake 0:85855ecd3257 775 };
ADIJake 0:85855ecd3257 776 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 777
ADIJake 0:85855ecd3257 778 do {
Vkadaba 5:0728bde67bdb 779 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 780 sizeof(command), false);
Vkadaba 23:bb685f35b08b 781 if (eRet) {
Vkadaba 5:0728bde67bdb 782 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 783 nAddress);
ADIJake 0:85855ecd3257 784 return eRet;
ADIJake 0:85855ecd3257 785 }
ADIJake 0:85855ecd3257 786
Vkadaba 5:0728bde67bdb 787 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 788 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 789 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 790
Vkadaba 5:0728bde67bdb 791 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 792 if (eRet) {
Vkadaba 5:0728bde67bdb 793 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 794 nLength, nAddress);
ADIJake 0:85855ecd3257 795 return eRet;
ADIJake 0:85855ecd3257 796 }
ADIJake 0:85855ecd3257 797
Vkadaba 5:0728bde67bdb 798 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 799
Vkadaba 5:0728bde67bdb 800 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 801 }
ADIJake 0:85855ecd3257 802
Vkadaba 6:9d393a9677f4 803 ADMW_RESULT admw1001_Read_Debug_Register(
Vkadaba 6:9d393a9677f4 804 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 805 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 806 void *pData,
Vkadaba 6:9d393a9677f4 807 unsigned nLength)
Vkadaba 6:9d393a9677f4 808 {
Vkadaba 6:9d393a9677f4 809 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 810 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 811 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_READ_CMD |
Vkadaba 23:bb685f35b08b 812 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 813 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 814 command >> 8,
Vkadaba 6:9d393a9677f4 815 command & 0xFF
Vkadaba 6:9d393a9677f4 816 };
Vkadaba 6:9d393a9677f4 817 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 818
Vkadaba 6:9d393a9677f4 819 do {
Vkadaba 6:9d393a9677f4 820 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 821 sizeof(command), false);
Vkadaba 23:bb685f35b08b 822 if (eRet) {
Vkadaba 6:9d393a9677f4 823 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 824 nAddress);
Vkadaba 6:9d393a9677f4 825 return eRet;
Vkadaba 6:9d393a9677f4 826 }
Vkadaba 6:9d393a9677f4 827
Vkadaba 6:9d393a9677f4 828 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 829 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 830 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 831
Vkadaba 6:9d393a9677f4 832 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 833 if (eRet) {
Vkadaba 6:9d393a9677f4 834 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 835 nLength, nAddress);
Vkadaba 6:9d393a9677f4 836 return eRet;
Vkadaba 6:9d393a9677f4 837 }
Vkadaba 6:9d393a9677f4 838
Vkadaba 6:9d393a9677f4 839 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 840
Vkadaba 6:9d393a9677f4 841 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 842 }
Vkadaba 5:0728bde67bdb 843 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 5:0728bde67bdb 844 ADMW_DEVICE_HANDLE const hDevice,
ADIJake 0:85855ecd3257 845 bool * const bReady)
ADIJake 0:85855ecd3257 846 {
Vkadaba 5:0728bde67bdb 847 ADMW_SPI_Chip_Type_t chipTypeReg;
ADIJake 0:85855ecd3257 848
ADIJake 0:85855ecd3257 849 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
ADIJake 0:85855ecd3257 850 /* If we read this register successfully, assume the device is ready */
Vkadaba 5:0728bde67bdb 851 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 5:0728bde67bdb 852
Vkadaba 5:0728bde67bdb 853 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 854 }
ADIJake 0:85855ecd3257 855
Vkadaba 5:0728bde67bdb 856 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 857 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 858 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 859 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 860 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 861 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 862 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 863 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 864 {
ADIJake 0:85855ecd3257 865 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 866 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 867
Vkadaba 8:2f2775c34640 868 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 869 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 870
Vkadaba 6:9d393a9677f4 871 if (eMeasurementMode == (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE))
Vkadaba 5:0728bde67bdb 872 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
ADIJake 0:85855ecd3257 873 else
Vkadaba 5:0728bde67bdb 874 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 875
Vkadaba 23:bb685f35b08b 876 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 8:2f2775c34640 877 *pnBytesPerSample = 5;
Vkadaba 23:bb685f35b08b 878 } else {
Vkadaba 8:2f2775c34640 879 *pnBytesPerSample = 8;
Vkadaba 6:9d393a9677f4 880 }
Vkadaba 23:bb685f35b08b 881
Vkadaba 8:2f2775c34640 882 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 883 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 884 chId++) {
Vkadaba 8:2f2775c34640 885 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 886 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 887
Vkadaba 8:2f2775c34640 888 if (ADMW1001_CHANNEL_IS_VIRTUAL(chId))
Vkadaba 8:2f2775c34640 889 continue;
Vkadaba 23:bb685f35b08b 890
Vkadaba 8:2f2775c34640 891 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 892 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 893
Vkadaba 23:bb685f35b08b 894 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) {
Vkadaba 8:2f2775c34640 895 ADMW_CORE_Sensor_Type_t sensorTypeReg;
Vkadaba 8:2f2775c34640 896 unsigned nActualChannels = 1;
Vkadaba 23:bb685f35b08b 897
Vkadaba 8:2f2775c34640 898 READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
Vkadaba 23:bb685f35b08b 899
Vkadaba 23:bb685f35b08b 900 if (chId == ADMW1001_CH_ID_DIG_SPI_0) {
Vkadaba 23:bb685f35b08b 901 /* Some sensors automatically generate samples on additional
Vkadaba 23:bb685f35b08b 902 * "virtual" channels so these channels must be counted as
Vkadaba 23:bb685f35b08b 903 * active when those sensors are selected and we use the count
Vkadaba 23:bb685f35b08b 904 * from the corresponding "physical" channel
Vkadaba 8:2f2775c34640 905 */
Vkadaba 8:2f2775c34640 906 if ((sensorTypeReg.Sensor_Type >=
Vkadaba 23:bb685f35b08b 907 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_A) &&
Vkadaba 23:bb685f35b08b 908 (sensorTypeReg.Sensor_Type <=
Vkadaba 23:bb685f35b08b 909 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_B)) {
Vkadaba 8:2f2775c34640 910 nActualChannels += 2;
Vkadaba 8:2f2775c34640 911 }
Vkadaba 8:2f2775c34640 912 }
Vkadaba 23:bb685f35b08b 913
Vkadaba 8:2f2775c34640 914 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 915
Vkadaba 8:2f2775c34640 916 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 917 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 918 }
Vkadaba 6:9d393a9677f4 919 }
Vkadaba 23:bb685f35b08b 920
Vkadaba 23:bb685f35b08b 921 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 922 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 923 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 924 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 925 }
Vkadaba 23:bb685f35b08b 926
Vkadaba 6:9d393a9677f4 927 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 928
Vkadaba 23:bb685f35b08b 929 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 930 *pnSamplesPerDataready = 1;
Vkadaba 23:bb685f35b08b 931 } else {
Vkadaba 8:2f2775c34640 932 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 6:9d393a9677f4 933 }
Vkadaba 23:bb685f35b08b 934
Vkadaba 23:bb685f35b08b 935 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 936 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 937 } else {
Vkadaba 8:2f2775c34640 938 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
ADIJake 0:85855ecd3257 939 }
Vkadaba 23:bb685f35b08b 940
Vkadaba 5:0728bde67bdb 941 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 942 }
ADIJake 0:85855ecd3257 943
Vkadaba 5:0728bde67bdb 944 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 945 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 946 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 947 {
Vkadaba 5:0728bde67bdb 948 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 949 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 950
ADIJake 0:85855ecd3257 951 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 952 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 953
Vkadaba 23:bb685f35b08b 954 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 955 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 956 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 957 }
ADIJake 0:85855ecd3257 958
Vkadaba 5:0728bde67bdb 959 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 960 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 961 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 962 {
Vkadaba 8:2f2775c34640 963 ADMW_CORE_Power_Config_t powerConfigReg;
Vkadaba 5:0728bde67bdb 964
Vkadaba 23:bb685f35b08b 965 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 966 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 967 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 968 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 969 } else {
Vkadaba 5:0728bde67bdb 970 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 971 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 972 }
ADIJake 0:85855ecd3257 973
ADIJake 0:85855ecd3257 974 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 975
Vkadaba 5:0728bde67bdb 976 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 977 }
ADIJake 0:85855ecd3257 978
Vkadaba 5:0728bde67bdb 979 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 980 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 981 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 982 {
Vkadaba 5:0728bde67bdb 983 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 984
Vkadaba 5:0728bde67bdb 985 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 986 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 987 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 988 return eRet;
ADIJake 0:85855ecd3257 989 }
ADIJake 0:85855ecd3257 990
Vkadaba 5:0728bde67bdb 991 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 992 }
ADIJake 0:85855ecd3257 993
Vkadaba 5:0728bde67bdb 994 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 995 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 996 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 997 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 998 {
Vkadaba 8:2f2775c34640 999 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 1000
ADIJake 0:85855ecd3257 1001 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 1002
Vkadaba 23:bb685f35b08b 1003 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 1004 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 1005 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 1006 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 1007 } else {
Vkadaba 5:0728bde67bdb 1008 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 1009 eOperatingMode);
Vkadaba 5:0728bde67bdb 1010 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1011 }
ADIJake 0:85855ecd3257 1012
Vkadaba 23:bb685f35b08b 1013 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 1014 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 1015 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 1016 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 23:bb685f35b08b 1017 } else {
Vkadaba 5:0728bde67bdb 1018 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 1019 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1020 }
ADIJake 0:85855ecd3257 1021
ADIJake 0:85855ecd3257 1022 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 1023
Vkadaba 5:0728bde67bdb 1024 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1025 }
ADIJake 0:85855ecd3257 1026
Vkadaba 8:2f2775c34640 1027 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1028 uint32_t nCycleInterval,
Vkadaba 8:2f2775c34640 1029 bool vBiasEnable)
ADIJake 0:85855ecd3257 1030 {
Vkadaba 8:2f2775c34640 1031 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 1032
ADIJake 0:85855ecd3257 1033 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1034
Vkadaba 23:bb685f35b08b 1035 if (nCycleInterval < (1000 * (1 << 12))) {
Vkadaba 5:0728bde67bdb 1036 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MILLISECONDS;
ADIJake 0:85855ecd3257 1037 nCycleInterval /= 1000;
Vkadaba 23:bb685f35b08b 1038 } else {
Vkadaba 5:0728bde67bdb 1039 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
ADIJake 0:85855ecd3257 1040 nCycleInterval /= 1000000;
ADIJake 0:85855ecd3257 1041 }
ADIJake 0:85855ecd3257 1042
Vkadaba 23:bb685f35b08b 1043 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1044 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1045 }
ADIJake 0:85855ecd3257 1046 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1047 cycleControlReg.Cycle_Time = nCycleInterval;
ADIJake 0:85855ecd3257 1048
ADIJake 0:85855ecd3257 1049 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1050
Vkadaba 5:0728bde67bdb 1051 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1052 }
ADIJake 0:85855ecd3257 1053
Vkadaba 5:0728bde67bdb 1054 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1055 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1056 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1057 {
Vkadaba 6:9d393a9677f4 1058 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1059
Vkadaba 5:0728bde67bdb 1060 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1061 }
ADIJake 0:85855ecd3257 1062
Vkadaba 5:0728bde67bdb 1063 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1064 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1065 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1066 {
Vkadaba 5:0728bde67bdb 1067 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1068
Vkadaba 5:0728bde67bdb 1069 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1070 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1071 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1072 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1073 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1074 return eRet;
ADIJake 0:85855ecd3257 1075 }
ADIJake 0:85855ecd3257 1076
Vkadaba 8:2f2775c34640 1077 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 8:2f2775c34640 1078 pMeasConfig->vBiasEnable);
Vkadaba 23:bb685f35b08b 1079 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1080 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1081 return eRet;
ADIJake 0:85855ecd3257 1082 }
ADIJake 0:85855ecd3257 1083
Vkadaba 23:bb685f35b08b 1084 if(pMeasConfig->externalRef1Value>0) {
Vkadaba 8:2f2775c34640 1085 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1086 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1087 }
Vkadaba 8:2f2775c34640 1088
Vkadaba 23:bb685f35b08b 1089 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1090 ADMW_LOG_ERROR("Failed to set external reference values");
ADIJake 0:85855ecd3257 1091 return eRet;
ADIJake 0:85855ecd3257 1092 }
ADIJake 0:85855ecd3257 1093
Vkadaba 5:0728bde67bdb 1094 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1095 }
ADIJake 0:85855ecd3257 1096
Vkadaba 5:0728bde67bdb 1097 ADMW_RESULT admw1001_SetDiagnosticsConfig(
Vkadaba 5:0728bde67bdb 1098 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1099 ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
ADIJake 0:85855ecd3257 1100 {
Vkadaba 8:2f2775c34640 1101 ADMW_CORE_Diagnostics_Control_t diagnosticsControlReg;
ADIJake 0:85855ecd3257 1102
ADIJake 0:85855ecd3257 1103 diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
ADIJake 0:85855ecd3257 1104
ADIJake 0:85855ecd3257 1105 if (pDiagnosticsConfig->disableGlobalDiag)
ADIJake 0:85855ecd3257 1106 diagnosticsControlReg.Diag_Global_En = 0;
ADIJake 0:85855ecd3257 1107 else
ADIJake 0:85855ecd3257 1108 diagnosticsControlReg.Diag_Global_En = 1;
ADIJake 0:85855ecd3257 1109
ADIJake 0:85855ecd3257 1110 if (pDiagnosticsConfig->disableMeasurementDiag)
ADIJake 0:85855ecd3257 1111 diagnosticsControlReg.Diag_Meas_En = 0;
ADIJake 0:85855ecd3257 1112 else
ADIJake 0:85855ecd3257 1113 diagnosticsControlReg.Diag_Meas_En = 1;
ADIJake 0:85855ecd3257 1114
Vkadaba 23:bb685f35b08b 1115 switch (pDiagnosticsConfig->osdFrequency) {
Vkadaba 23:bb685f35b08b 1116 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_DISABLED:
Vkadaba 23:bb685f35b08b 1117 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_OFF;
Vkadaba 23:bb685f35b08b 1118 break;
Vkadaba 23:bb685f35b08b 1119 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE:
Vkadaba 23:bb685f35b08b 1120 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE;
Vkadaba 23:bb685f35b08b 1121 break;
Vkadaba 23:bb685f35b08b 1122 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES:
Vkadaba 23:bb685f35b08b 1123 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES;
Vkadaba 23:bb685f35b08b 1124 break;
Vkadaba 23:bb685f35b08b 1125 case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES:
Vkadaba 23:bb685f35b08b 1126 diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES;
Vkadaba 23:bb685f35b08b 1127 break;
Vkadaba 23:bb685f35b08b 1128 default:
Vkadaba 23:bb685f35b08b 1129 ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
Vkadaba 23:bb685f35b08b 1130 pDiagnosticsConfig->osdFrequency);
Vkadaba 23:bb685f35b08b 1131 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1132 }
ADIJake 0:85855ecd3257 1133
ADIJake 0:85855ecd3257 1134 WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL);
ADIJake 0:85855ecd3257 1135
Vkadaba 5:0728bde67bdb 1136 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1137 }
ADIJake 0:85855ecd3257 1138
Vkadaba 5:0728bde67bdb 1139 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1140 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1141 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1142 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1143 {
Vkadaba 8:2f2775c34640 1144 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1145
ADIJake 0:85855ecd3257 1146 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1147
Vkadaba 23:bb685f35b08b 1148 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1149 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1150
ADIJake 0:85855ecd3257 1151 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1152 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1153
ADIJake 0:85855ecd3257 1154 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1155 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1156 } else {
ADIJake 0:85855ecd3257 1157 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1158 }
ADIJake 0:85855ecd3257 1159
ADIJake 0:85855ecd3257 1160 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1161
Vkadaba 5:0728bde67bdb 1162 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1163 }
ADIJake 0:85855ecd3257 1164
Vkadaba 5:0728bde67bdb 1165 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1166 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1167 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1168 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1169 {
Vkadaba 8:2f2775c34640 1170 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1171
ADIJake 0:85855ecd3257 1172 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1173
ADIJake 0:85855ecd3257 1174 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1175 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1176
ADIJake 0:85855ecd3257 1177 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1178
Vkadaba 5:0728bde67bdb 1179 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1180 }
ADIJake 0:85855ecd3257 1181
Vkadaba 5:0728bde67bdb 1182 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1183 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1184 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1185 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1186 {
Vkadaba 8:2f2775c34640 1187 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1188
ADIJake 0:85855ecd3257 1189 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1190
ADIJake 0:85855ecd3257 1191 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1192
ADIJake 0:85855ecd3257 1193 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1194
ADIJake 0:85855ecd3257 1195 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1196
Vkadaba 5:0728bde67bdb 1197 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1198 }
ADIJake 0:85855ecd3257 1199
Vkadaba 5:0728bde67bdb 1200 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1201 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1202 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1203 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1204 {
Vkadaba 8:2f2775c34640 1205 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1206
ADIJake 0:85855ecd3257 1207 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1208
ADIJake 0:85855ecd3257 1209 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1210 switch(sensorType) {
Vkadaba 8:2f2775c34640 1211 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 8:2f2775c34640 1212 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 8:2f2775c34640 1213 case ADMW1001_ADC_SENSOR_RTD_3WIRE_1:
Vkadaba 8:2f2775c34640 1214 case ADMW1001_ADC_SENSOR_RTD_3WIRE_2:
Vkadaba 8:2f2775c34640 1215 case ADMW1001_ADC_SENSOR_RTD_3WIRE_3:
Vkadaba 8:2f2775c34640 1216 case ADMW1001_ADC_SENSOR_RTD_3WIRE_4:
Vkadaba 8:2f2775c34640 1217 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 8:2f2775c34640 1218 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 8:2f2775c34640 1219 case ADMW1001_ADC_SENSOR_RTD_4WIRE_1:
Vkadaba 8:2f2775c34640 1220 case ADMW1001_ADC_SENSOR_RTD_4WIRE_2:
Vkadaba 8:2f2775c34640 1221 case ADMW1001_ADC_SENSOR_RTD_4WIRE_3:
Vkadaba 8:2f2775c34640 1222 case ADMW1001_ADC_SENSOR_RTD_4WIRE_4:
Vkadaba 8:2f2775c34640 1223 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1:
Vkadaba 8:2f2775c34640 1224 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2:
Vkadaba 8:2f2775c34640 1225 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3:
Vkadaba 8:2f2775c34640 1226 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4:
Vkadaba 8:2f2775c34640 1227 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1:
Vkadaba 8:2f2775c34640 1228 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2:
Vkadaba 8:2f2775c34640 1229 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3:
Vkadaba 8:2f2775c34640 1230 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4:
Vkadaba 8:2f2775c34640 1231 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 8:2f2775c34640 1232 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 8:2f2775c34640 1233 case ADMW1001_ADC_SENSOR_RTD_2WIRE_1:
Vkadaba 8:2f2775c34640 1234 case ADMW1001_ADC_SENSOR_RTD_2WIRE_2:
Vkadaba 8:2f2775c34640 1235 case ADMW1001_ADC_SENSOR_RTD_2WIRE_3:
Vkadaba 8:2f2775c34640 1236 case ADMW1001_ADC_SENSOR_RTD_2WIRE_4:
Vkadaba 8:2f2775c34640 1237 case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA:
Vkadaba 8:2f2775c34640 1238 case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA:
Vkadaba 8:2f2775c34640 1239 case ADMW1001_ADC_SENSOR_DIODE_2C_1:
Vkadaba 8:2f2775c34640 1240 case ADMW1001_ADC_SENSOR_DIODE_3C_1:
Vkadaba 8:2f2775c34640 1241 case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K:
Vkadaba 8:2f2775c34640 1242 case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K:
Vkadaba 8:2f2775c34640 1243 case ADMW1001_ADC_SENSOR_THERMISTOR_1:
Vkadaba 8:2f2775c34640 1244 case ADMW1001_ADC_SENSOR_THERMISTOR_2:
Vkadaba 8:2f2775c34640 1245 case ADMW1001_ADC_SENSOR_THERMISTOR_3:
Vkadaba 8:2f2775c34640 1246 case ADMW1001_ADC_SENSOR_THERMISTOR_4:
Vkadaba 6:9d393a9677f4 1247 if (! (ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId) ||
Vkadaba 23:bb685f35b08b 1248 ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId))) {
Vkadaba 6:9d393a9677f4 1249 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1250 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1251 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1252 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1253 }
Vkadaba 6:9d393a9677f4 1254 break;
Vkadaba 6:9d393a9677f4 1255 case ADMW1001_ADC_SENSOR_VOLTAGE:
Vkadaba 8:2f2775c34640 1256 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A:
Vkadaba 8:2f2775c34640 1257 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B:
Vkadaba 8:2f2775c34640 1258 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1:
Vkadaba 8:2f2775c34640 1259 case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2:
Vkadaba 8:2f2775c34640 1260 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1261 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1262 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 8:2f2775c34640 1263 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1:
Vkadaba 8:2f2775c34640 1264 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2:
Vkadaba 8:2f2775c34640 1265 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3:
Vkadaba 8:2f2775c34640 1266 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4:
Vkadaba 23:bb685f35b08b 1267 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1268 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1269 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1270 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1271 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1272 }
Vkadaba 6:9d393a9677f4 1273 break;
Vkadaba 6:9d393a9677f4 1274 case ADMW1001_ADC_SENSOR_CURRENT:
Vkadaba 8:2f2775c34640 1275 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A:
Vkadaba 8:2f2775c34640 1276 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1:
Vkadaba 8:2f2775c34640 1277 case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2:
Vkadaba 23:bb685f35b08b 1278 if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId)) {
Vkadaba 6:9d393a9677f4 1279 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1280 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1281 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1282 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1283 }
Vkadaba 6:9d393a9677f4 1284 break;
Vkadaba 6:9d393a9677f4 1285 default:
Vkadaba 6:9d393a9677f4 1286 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1287 sensorType);
Vkadaba 5:0728bde67bdb 1288 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1289 }
ADIJake 0:85855ecd3257 1290
ADIJake 0:85855ecd3257 1291 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1292
ADIJake 0:85855ecd3257 1293 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1294
Vkadaba 5:0728bde67bdb 1295 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1296 }
ADIJake 0:85855ecd3257 1297
Vkadaba 5:0728bde67bdb 1298 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1299 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1300 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1301 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1302 /*
ADIJake 0:85855ecd3257 1303 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1304 * General details:
ADIJake 0:85855ecd3257 1305 * - Measurement_Units
ADIJake 0:85855ecd3257 1306 * - Compensation_Channel
ADIJake 0:85855ecd3257 1307 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1308 * ADC-specific details:
ADIJake 0:85855ecd3257 1309 * - PGA_Gain
ADIJake 0:85855ecd3257 1310 * - Reference_Select
ADIJake 0:85855ecd3257 1311 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1312 */
ADIJake 0:85855ecd3257 1313 {
Vkadaba 5:0728bde67bdb 1314 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1315 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1316 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1317
ADIJake 0:85855ecd3257 1318 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1319
Vkadaba 23:bb685f35b08b 1320 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1321 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1322 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1323 break;
Vkadaba 8:2f2775c34640 1324 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1325 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1326 break;
Vkadaba 8:2f2775c34640 1327 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1328 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1329 break;
Vkadaba 8:2f2775c34640 1330 default:
Vkadaba 8:2f2775c34640 1331 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1332 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1333 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1334 }
ADIJake 0:85855ecd3257 1335
Vkadaba 23:bb685f35b08b 1336 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1337 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1338 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1339 } else {
ADIJake 0:85855ecd3257 1340 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1341 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1342 }
ADIJake 0:85855ecd3257 1343
Vkadaba 23:bb685f35b08b 1344 switch(refType) {
Vkadaba 8:2f2775c34640 1345 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1346 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1347 break;
Vkadaba 8:2f2775c34640 1348 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1349 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1350 break;
Vkadaba 8:2f2775c34640 1351 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1352 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1353 break;
Vkadaba 8:2f2775c34640 1354 default:
Vkadaba 8:2f2775c34640 1355 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1356 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1357 }
Vkadaba 23:bb685f35b08b 1358
Vkadaba 23:bb685f35b08b 1359 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1360 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1361 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1362 break;
Vkadaba 8:2f2775c34640 1363 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1364 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1365 break;
Vkadaba 8:2f2775c34640 1366 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1367 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1368 break;
Vkadaba 8:2f2775c34640 1369 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1370 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1371 break;
Vkadaba 8:2f2775c34640 1372 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1373 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1374 break;
Vkadaba 8:2f2775c34640 1375 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1376 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1377 break;
Vkadaba 8:2f2775c34640 1378 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1379 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1380 break;
Vkadaba 8:2f2775c34640 1381 case ADMW1001_ADC_GAIN_128X:
Vkadaba 8:2f2775c34640 1382 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128;
Vkadaba 8:2f2775c34640 1383 break;
Vkadaba 8:2f2775c34640 1384 default:
Vkadaba 8:2f2775c34640 1385 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1386 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1387 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1388 }
ADIJake 0:85855ecd3257 1389
Vkadaba 23:bb685f35b08b 1390 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1391 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1392 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1393 break;
Vkadaba 8:2f2775c34640 1394 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1395 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1396 break;
Vkadaba 8:2f2775c34640 1397 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1398 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1399 break;
Vkadaba 8:2f2775c34640 1400 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1401 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1402 break;
Vkadaba 8:2f2775c34640 1403 default:
Vkadaba 8:2f2775c34640 1404 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1405 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1406 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1407 }
Vkadaba 6:9d393a9677f4 1408
Vkadaba 23:bb685f35b08b 1409 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1410 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1411 } else {
ADIJake 0:85855ecd3257 1412 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1413 }
Vkadaba 23:bb685f35b08b 1414
Vkadaba 23:bb685f35b08b 1415 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1416 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1417 case ADMW1001_LUT_UNITY:
Vkadaba 8:2f2775c34640 1418 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1419 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1420 break;
Vkadaba 8:2f2775c34640 1421 default:
Vkadaba 8:2f2775c34640 1422 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1423 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1424 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1425 }
Vkadaba 23:bb685f35b08b 1426
ADIJake 0:85855ecd3257 1427 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1428
Vkadaba 5:0728bde67bdb 1429 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1430 }
ADIJake 0:85855ecd3257 1431
Vkadaba 5:0728bde67bdb 1432 static ADMW_RESULT admw_SetChannelAdcFilter(
Vkadaba 5:0728bde67bdb 1433 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1434 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1435 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig)
ADIJake 0:85855ecd3257 1436 {
Vkadaba 8:2f2775c34640 1437 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 6:9d393a9677f4 1438 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
ADIJake 0:85855ecd3257 1439
Vkadaba 23:bb685f35b08b 1440 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1441 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1442 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1443 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1444 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1445 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1446 } else {
Vkadaba 5:0728bde67bdb 1447 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1448 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1449 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1450 }
Vkadaba 23:bb685f35b08b 1451
Vkadaba 8:2f2775c34640 1452 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1453 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1454
Vkadaba 6:9d393a9677f4 1455 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1456 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1457 else
Vkadaba 6:9d393a9677f4 1458 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1459
Vkadaba 23:bb685f35b08b 1460 switch(pFilterConfig->groundSwitch) {
Vkadaba 23:bb685f35b08b 1461 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 23:bb685f35b08b 1462 MeasSetupReg.GND_SW = CORE_MEASUREMENT_SETUP_GND_SW_OPEN;
Vkadaba 23:bb685f35b08b 1463 break;
Vkadaba 23:bb685f35b08b 1464 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 23:bb685f35b08b 1465 MeasSetupReg.GND_SW = CORE_MEASUREMENT_SETUP_GND_SW_CLOSED;
Vkadaba 23:bb685f35b08b 1466 break;
Vkadaba 23:bb685f35b08b 1467 default:
Vkadaba 23:bb685f35b08b 1468 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 23:bb685f35b08b 1469 pFilterConfig->groundSwitch);
Vkadaba 23:bb685f35b08b 1470 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1471 }
Vkadaba 23:bb685f35b08b 1472
Vkadaba 6:9d393a9677f4 1473 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1474
Vkadaba 5:0728bde67bdb 1475 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1476 }
ADIJake 0:85855ecd3257 1477
Vkadaba 5:0728bde67bdb 1478 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1479 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1480 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1481 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1482 {
Vkadaba 8:2f2775c34640 1483 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1484
Vkadaba 6:9d393a9677f4 1485 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1486
Vkadaba 18:cbf514cce921 1487 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1488 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1489 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1490 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1491 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1492 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1493 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1494 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1495 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1496 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1497 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1498 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1499 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1500 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1501 else {
Vkadaba 6:9d393a9677f4 1502 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1503 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1504 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1505 }
ADIJake 0:85855ecd3257 1506
Vkadaba 18:cbf514cce921 1507
Vkadaba 23:bb685f35b08b 1508
Vkadaba 6:9d393a9677f4 1509 switch(pCurrentConfig->diodeRatio) {
Vkadaba 23:bb685f35b08b 1510 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_10UA_100UA:
Vkadaba 23:bb685f35b08b 1511 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_2PT_10UA_100UA;
Vkadaba 23:bb685f35b08b 1512 break;
Vkadaba 23:bb685f35b08b 1513 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_20UA_160UA:
Vkadaba 23:bb685f35b08b 1514 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_2PT_20UA_160UA;
Vkadaba 23:bb685f35b08b 1515 break;
Vkadaba 23:bb685f35b08b 1516 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_50UA_300UA:
Vkadaba 23:bb685f35b08b 1517 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_2PT_50UA_300UA;
Vkadaba 23:bb685f35b08b 1518 break;
Vkadaba 23:bb685f35b08b 1519 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_100UA_600UA:
Vkadaba 23:bb685f35b08b 1520 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_2PT_100UA_600UA;
Vkadaba 23:bb685f35b08b 1521 break;
Vkadaba 23:bb685f35b08b 1522 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_10UA_50UA_100UA:
Vkadaba 23:bb685f35b08b 1523 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_3PT_10UA_50UA_100UA;
Vkadaba 23:bb685f35b08b 1524 break;
Vkadaba 23:bb685f35b08b 1525 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_20UA_100UA_160UA:
Vkadaba 23:bb685f35b08b 1526 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_3PT_20UA_100UA_160UA;
Vkadaba 23:bb685f35b08b 1527 break;
Vkadaba 23:bb685f35b08b 1528 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_50UA_150UA_300UA:
Vkadaba 23:bb685f35b08b 1529 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_3PT_50UA_150UA_300UA;
Vkadaba 23:bb685f35b08b 1530 break;
Vkadaba 23:bb685f35b08b 1531 case ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_100UA_300UA_600UA:
Vkadaba 23:bb685f35b08b 1532 channelExcitationReg.IOUT_Diode_Ratio = CORE_CHANNEL_EXCITATION_DIODE_3PT_100UA_300UA_600UA;
Vkadaba 23:bb685f35b08b 1533 break;
Vkadaba 23:bb685f35b08b 1534 default:
Vkadaba 23:bb685f35b08b 1535 ADMW_LOG_ERROR("Invalid diode ratio %d specified",
Vkadaba 23:bb685f35b08b 1536 pCurrentConfig->diodeRatio);
Vkadaba 23:bb685f35b08b 1537 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1538 }
Vkadaba 6:9d393a9677f4 1539
Vkadaba 6:9d393a9677f4 1540 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1541
Vkadaba 5:0728bde67bdb 1542 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1543 }
ADIJake 0:85855ecd3257 1544
Vkadaba 5:0728bde67bdb 1545 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1546 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1547 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1548 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1549 {
Vkadaba 5:0728bde67bdb 1550 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1551 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1552 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1553
Vkadaba 5:0728bde67bdb 1554 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1555 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1556 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1557 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1558 eChannelId);
ADIJake 0:85855ecd3257 1559 return eRet;
ADIJake 0:85855ecd3257 1560 }
ADIJake 0:85855ecd3257 1561
Vkadaba 5:0728bde67bdb 1562 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1563 pChannelConfig);
Vkadaba 23:bb685f35b08b 1564 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1565 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1566 eChannelId);
ADIJake 0:85855ecd3257 1567 return eRet;
ADIJake 0:85855ecd3257 1568 }
ADIJake 0:85855ecd3257 1569
Vkadaba 5:0728bde67bdb 1570 eRet = admw_SetChannelAdcFilter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1571 &pAdcChannelConfig->filter);
Vkadaba 23:bb685f35b08b 1572 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1573 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1574 eChannelId);
ADIJake 0:85855ecd3257 1575 return eRet;
ADIJake 0:85855ecd3257 1576 }
ADIJake 0:85855ecd3257 1577
Vkadaba 5:0728bde67bdb 1578 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1579 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1580 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1581 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1582 eChannelId);
ADIJake 0:85855ecd3257 1583 return eRet;
ADIJake 0:85855ecd3257 1584 }
ADIJake 0:85855ecd3257 1585
Vkadaba 5:0728bde67bdb 1586 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1587 }
ADIJake 0:85855ecd3257 1588
Vkadaba 5:0728bde67bdb 1589 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1590 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1591 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1592 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1593 {
Vkadaba 8:2f2775c34640 1594 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1595
ADIJake 0:85855ecd3257 1596 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1597
Vkadaba 23:bb685f35b08b 1598 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1599 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1600 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1601 } else {
Vkadaba 5:0728bde67bdb 1602 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1603 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1604 }
ADIJake 0:85855ecd3257 1605
Vkadaba 23:bb685f35b08b 1606 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1607 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1608 } else {
Vkadaba 5:0728bde67bdb 1609 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1610 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1611 }
ADIJake 0:85855ecd3257 1612
ADIJake 0:85855ecd3257 1613 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1614 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1615 else
ADIJake 0:85855ecd3257 1616 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1617
ADIJake 0:85855ecd3257 1618 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1619
Vkadaba 5:0728bde67bdb 1620 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1621 }
ADIJake 0:85855ecd3257 1622
Vkadaba 5:0728bde67bdb 1623 static ADMW_RESULT admw_SetDigitalSensorCommands(
Vkadaba 5:0728bde67bdb 1624 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1625 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1626 ADMW1001_DIGITAL_SENSOR_COMMAND *pConfigCommand,
Vkadaba 5:0728bde67bdb 1627 ADMW1001_DIGITAL_SENSOR_COMMAND *pDataRequestCommand)
ADIJake 0:85855ecd3257 1628 {
Vkadaba 8:2f2775c34640 1629 ADMW_CORE_Digital_Sensor_Num_Cmds_t numCmdsReg;
ADIJake 0:85855ecd3257 1630
ADIJake 0:85855ecd3257 1631 numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn);
ADIJake 0:85855ecd3257 1632
ADIJake 0:85855ecd3257 1633 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS,
ADIJake 0:85855ecd3257 1634 pConfigCommand->commandLength);
ADIJake 0:85855ecd3257 1635 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS,
ADIJake 0:85855ecd3257 1636 pDataRequestCommand->commandLength);
ADIJake 0:85855ecd3257 1637
ADIJake 0:85855ecd3257 1638 numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength;
ADIJake 0:85855ecd3257 1639 numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength;
ADIJake 0:85855ecd3257 1640
ADIJake 0:85855ecd3257 1641 WRITE_REG_U8(hDevice, numCmdsReg.VALUE8,
ADIJake 0:85855ecd3257 1642 CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId));
ADIJake 0:85855ecd3257 1643
ADIJake 0:85855ecd3257 1644 /*
ADIJake 0:85855ecd3257 1645 * NOTE - the fall-through cases in the switch statement below are
Vkadaba 8:2f2775c34640 1646 * intentional.
ADIJake 0:85855ecd3257 1647 */
Vkadaba 23:bb685f35b08b 1648 switch (pConfigCommand->commandLength) {
Vkadaba 8:2f2775c34640 1649 case 7:
Vkadaba 8:2f2775c34640 1650 WRITE_REG_U8(hDevice, pConfigCommand->command[6],
Vkadaba 8:2f2775c34640 1651 CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId));
Vkadaba 8:2f2775c34640 1652 case 6:
Vkadaba 8:2f2775c34640 1653 WRITE_REG_U8(hDevice, pConfigCommand->command[5],
Vkadaba 8:2f2775c34640 1654 CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId));
Vkadaba 8:2f2775c34640 1655 case 5:
Vkadaba 8:2f2775c34640 1656 WRITE_REG_U8(hDevice, pConfigCommand->command[4],
Vkadaba 8:2f2775c34640 1657 CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId));
Vkadaba 8:2f2775c34640 1658 case 4:
Vkadaba 8:2f2775c34640 1659 WRITE_REG_U8(hDevice, pConfigCommand->command[3],
Vkadaba 8:2f2775c34640 1660 CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId));
Vkadaba 8:2f2775c34640 1661 case 3:
Vkadaba 8:2f2775c34640 1662 WRITE_REG_U8(hDevice, pConfigCommand->command[2],
Vkadaba 8:2f2775c34640 1663 CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId));
Vkadaba 8:2f2775c34640 1664 case 2:
Vkadaba 8:2f2775c34640 1665 WRITE_REG_U8(hDevice, pConfigCommand->command[1],
Vkadaba 8:2f2775c34640 1666 CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId));
Vkadaba 8:2f2775c34640 1667 case 1:
Vkadaba 8:2f2775c34640 1668 WRITE_REG_U8(hDevice, pConfigCommand->command[0],
Vkadaba 8:2f2775c34640 1669 CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId));
Vkadaba 8:2f2775c34640 1670 case 0:
Vkadaba 8:2f2775c34640 1671 default:
Vkadaba 8:2f2775c34640 1672 break;
ADIJake 0:85855ecd3257 1673 };
ADIJake 0:85855ecd3257 1674
Vkadaba 23:bb685f35b08b 1675 switch (pDataRequestCommand->commandLength) {
Vkadaba 8:2f2775c34640 1676 case 7:
Vkadaba 8:2f2775c34640 1677 WRITE_REG_U8(hDevice, pDataRequestCommand->command[6],
Vkadaba 8:2f2775c34640 1678 CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId));
Vkadaba 8:2f2775c34640 1679 case 6:
Vkadaba 8:2f2775c34640 1680 WRITE_REG_U8(hDevice, pDataRequestCommand->command[5],
Vkadaba 8:2f2775c34640 1681 CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId));
Vkadaba 8:2f2775c34640 1682 case 5:
Vkadaba 8:2f2775c34640 1683 WRITE_REG_U8(hDevice, pDataRequestCommand->command[4],
Vkadaba 8:2f2775c34640 1684 CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId));
Vkadaba 8:2f2775c34640 1685 case 4:
Vkadaba 8:2f2775c34640 1686 WRITE_REG_U8(hDevice, pDataRequestCommand->command[3],
Vkadaba 8:2f2775c34640 1687 CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId));
Vkadaba 8:2f2775c34640 1688 case 3:
Vkadaba 8:2f2775c34640 1689 WRITE_REG_U8(hDevice, pDataRequestCommand->command[2],
Vkadaba 8:2f2775c34640 1690 CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId));
Vkadaba 8:2f2775c34640 1691 case 2:
Vkadaba 8:2f2775c34640 1692 WRITE_REG_U8(hDevice, pDataRequestCommand->command[1],
Vkadaba 8:2f2775c34640 1693 CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId));
Vkadaba 8:2f2775c34640 1694 case 1:
Vkadaba 8:2f2775c34640 1695 WRITE_REG_U8(hDevice, pDataRequestCommand->command[0],
Vkadaba 8:2f2775c34640 1696 CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId));
Vkadaba 8:2f2775c34640 1697 case 0:
Vkadaba 8:2f2775c34640 1698 default:
Vkadaba 8:2f2775c34640 1699 break;
ADIJake 0:85855ecd3257 1700 };
ADIJake 0:85855ecd3257 1701
Vkadaba 5:0728bde67bdb 1702 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1703 }
ADIJake 0:85855ecd3257 1704
Vkadaba 5:0728bde67bdb 1705 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1706 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1707 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1708 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1709 {
Vkadaba 8:2f2775c34640 1710 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1711
ADIJake 0:85855ecd3257 1712 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1713
Vkadaba 23:bb685f35b08b 1714 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1715 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1716 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1717 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1718 }
Vkadaba 23:bb685f35b08b 1719 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1720 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1721 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1722 }
ADIJake 0:85855ecd3257 1723
ADIJake 0:85855ecd3257 1724 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1725 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1726 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1727 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1728 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1729 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1730
ADIJake 0:85855ecd3257 1731 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1732 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1733 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1734 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1735 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1736
Vkadaba 23:bb685f35b08b 1737 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1738 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1739 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1740 break;
Vkadaba 23:bb685f35b08b 1741 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1742 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1743 break;
Vkadaba 23:bb685f35b08b 1744 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1745 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1746 break;
Vkadaba 23:bb685f35b08b 1747 default:
Vkadaba 23:bb685f35b08b 1748 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1749 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1750 }
Vkadaba 23:bb685f35b08b 1751 } else {
Vkadaba 5:0728bde67bdb 1752 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1753 }
ADIJake 0:85855ecd3257 1754
ADIJake 0:85855ecd3257 1755 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1756 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1757
ADIJake 0:85855ecd3257 1758
Vkadaba 5:0728bde67bdb 1759 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1760 }
ADIJake 0:85855ecd3257 1761
Vkadaba 5:0728bde67bdb 1762 static ADMW_RESULT admw_SetDigitalCalibrationParam(
Vkadaba 23:bb685f35b08b 1763 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 23:bb685f35b08b 1764 ADMW1001_CH_ID eChannelId,
Vkadaba 23:bb685f35b08b 1765 ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam)
ADIJake 0:85855ecd3257 1766 {
Vkadaba 8:2f2775c34640 1767 ADMW_CORE_Calibration_Parameter_t calibrationParamReg;
ADIJake 0:85855ecd3257 1768
ADIJake 0:85855ecd3257 1769 calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn);
ADIJake 0:85855ecd3257 1770
ADIJake 0:85855ecd3257 1771 if (pCalibrationParam->enableCalibrationParam == false)
ADIJake 0:85855ecd3257 1772 calibrationParamReg.Calibration_Parameter_Enable = 0;
ADIJake 0:85855ecd3257 1773 else
ADIJake 0:85855ecd3257 1774 calibrationParamReg.Calibration_Parameter_Enable = 1;
ADIJake 0:85855ecd3257 1775
ADIJake 0:85855ecd3257 1776 CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER,
Vkadaba 23:bb685f35b08b 1777 pCalibrationParam->calibrationParam);
ADIJake 0:85855ecd3257 1778
ADIJake 0:85855ecd3257 1779 calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam;
ADIJake 0:85855ecd3257 1780
ADIJake 0:85855ecd3257 1781 WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32,
ADIJake 0:85855ecd3257 1782 CORE_CALIBRATION_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 1783
Vkadaba 5:0728bde67bdb 1784 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1785 }
ADIJake 0:85855ecd3257 1786
Vkadaba 5:0728bde67bdb 1787 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1788 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1789 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1790 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1791 {
Vkadaba 8:2f2775c34640 1792 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1793
ADIJake 0:85855ecd3257 1794 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1795
ADIJake 0:85855ecd3257 1796 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1797 switch(sensorType) {
Vkadaba 8:2f2775c34640 1798 case ADMW1001_I2C_SENSOR_HUMIDITY_A:
Vkadaba 8:2f2775c34640 1799 case ADMW1001_I2C_SENSOR_HUMIDITY_B:
Vkadaba 8:2f2775c34640 1800 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1801 break;
Vkadaba 8:2f2775c34640 1802 default:
Vkadaba 8:2f2775c34640 1803 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1804 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1805 }
ADIJake 0:85855ecd3257 1806
ADIJake 0:85855ecd3257 1807 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1808
Vkadaba 5:0728bde67bdb 1809 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1810 }
ADIJake 0:85855ecd3257 1811
Vkadaba 5:0728bde67bdb 1812 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1813 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1814 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1815 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1816 {
ADIJake 0:85855ecd3257 1817 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1818 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1819
Vkadaba 5:0728bde67bdb 1820 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1821 }
ADIJake 0:85855ecd3257 1822
Vkadaba 5:0728bde67bdb 1823 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1824 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1825 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1826 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1827 {
Vkadaba 8:2f2775c34640 1828 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1829
ADIJake 0:85855ecd3257 1830 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1831
Vkadaba 23:bb685f35b08b 1832 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1833 digitalSensorComms.Digital_Sensor_Comms_En = 1;
ADIJake 0:85855ecd3257 1834
Vkadaba 23:bb685f35b08b 1835 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1836 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1837 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1838 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1839 } else {
Vkadaba 5:0728bde67bdb 1840 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1841 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1842 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1843 }
ADIJake 0:85855ecd3257 1844
Vkadaba 23:bb685f35b08b 1845 if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) {
Vkadaba 5:0728bde67bdb 1846 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0;
Vkadaba 23:bb685f35b08b 1847 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) {
Vkadaba 5:0728bde67bdb 1848 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1;
Vkadaba 23:bb685f35b08b 1849 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) {
Vkadaba 5:0728bde67bdb 1850 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2;
Vkadaba 23:bb685f35b08b 1851 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) {
Vkadaba 5:0728bde67bdb 1852 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3;
Vkadaba 23:bb685f35b08b 1853 } else {
Vkadaba 5:0728bde67bdb 1854 ADMW_LOG_ERROR("Invalid SPI mode %d specified",
Vkadaba 23:bb685f35b08b 1855 pDigitalComms->spiMode);
Vkadaba 5:0728bde67bdb 1856 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1857 }
ADIJake 0:85855ecd3257 1858
Vkadaba 23:bb685f35b08b 1859 switch (pDigitalComms->spiClock) {
Vkadaba 23:bb685f35b08b 1860 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_8MHZ:
Vkadaba 23:bb685f35b08b 1861 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_8MHZ;
Vkadaba 23:bb685f35b08b 1862 break;
Vkadaba 23:bb685f35b08b 1863 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_4MHZ:
Vkadaba 23:bb685f35b08b 1864 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_4MHZ;
Vkadaba 23:bb685f35b08b 1865 break;
Vkadaba 23:bb685f35b08b 1866 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_2MHZ:
Vkadaba 23:bb685f35b08b 1867 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_2MHZ;
Vkadaba 23:bb685f35b08b 1868 break;
Vkadaba 23:bb685f35b08b 1869 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1MHZ:
Vkadaba 23:bb685f35b08b 1870 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1MHZ;
Vkadaba 23:bb685f35b08b 1871 break;
Vkadaba 23:bb685f35b08b 1872 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_500KHZ:
Vkadaba 23:bb685f35b08b 1873 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_500KHZ;
Vkadaba 23:bb685f35b08b 1874 break;
Vkadaba 23:bb685f35b08b 1875 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_250KHZ:
Vkadaba 23:bb685f35b08b 1876 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_250KHZ;
Vkadaba 23:bb685f35b08b 1877 break;
Vkadaba 23:bb685f35b08b 1878 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_125KHZ:
Vkadaba 23:bb685f35b08b 1879 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_125KHZ;
Vkadaba 23:bb685f35b08b 1880 break;
Vkadaba 23:bb685f35b08b 1881 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_62P5KHZ:
Vkadaba 23:bb685f35b08b 1882 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_62P5KHZ;
Vkadaba 23:bb685f35b08b 1883 break;
Vkadaba 23:bb685f35b08b 1884 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_31P3KHZ:
Vkadaba 23:bb685f35b08b 1885 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_31P3KHZ;
Vkadaba 23:bb685f35b08b 1886 break;
Vkadaba 23:bb685f35b08b 1887 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_15P6KHZ:
Vkadaba 23:bb685f35b08b 1888 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_15P6KHZ;
Vkadaba 23:bb685f35b08b 1889 break;
Vkadaba 23:bb685f35b08b 1890 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_7P8KHZ:
Vkadaba 23:bb685f35b08b 1891 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_7P8KHZ;
Vkadaba 23:bb685f35b08b 1892 break;
Vkadaba 23:bb685f35b08b 1893 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3P9KHZ:
Vkadaba 23:bb685f35b08b 1894 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3P9KHZ;
Vkadaba 23:bb685f35b08b 1895 break;
Vkadaba 23:bb685f35b08b 1896 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1P9KHZ:
Vkadaba 23:bb685f35b08b 1897 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1P9KHZ;
Vkadaba 23:bb685f35b08b 1898 break;
Vkadaba 23:bb685f35b08b 1899 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_977HZ:
Vkadaba 23:bb685f35b08b 1900 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_977HZ;
Vkadaba 23:bb685f35b08b 1901 break;
Vkadaba 23:bb685f35b08b 1902 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_488HZ:
Vkadaba 23:bb685f35b08b 1903 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_488HZ;
Vkadaba 23:bb685f35b08b 1904 break;
Vkadaba 23:bb685f35b08b 1905 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_244HZ:
Vkadaba 23:bb685f35b08b 1906 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_244HZ;
Vkadaba 23:bb685f35b08b 1907 break;
Vkadaba 23:bb685f35b08b 1908 default:
Vkadaba 23:bb685f35b08b 1909 ADMW_LOG_ERROR("Invalid SPI clock %d specified",
Vkadaba 23:bb685f35b08b 1910 pDigitalComms->spiClock);
Vkadaba 23:bb685f35b08b 1911 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1912 }
Vkadaba 23:bb685f35b08b 1913 } else {
ADIJake 0:85855ecd3257 1914 digitalSensorComms.Digital_Sensor_Comms_En = 0;
ADIJake 0:85855ecd3257 1915 }
ADIJake 0:85855ecd3257 1916
ADIJake 0:85855ecd3257 1917 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1918
Vkadaba 5:0728bde67bdb 1919 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1920 }
ADIJake 0:85855ecd3257 1921
Vkadaba 5:0728bde67bdb 1922 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1923 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1924 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1925 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1926 {
Vkadaba 5:0728bde67bdb 1927 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1928 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1929 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1930
Vkadaba 5:0728bde67bdb 1931 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1932 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1933 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1934 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1935 eChannelId);
ADIJake 0:85855ecd3257 1936 return eRet;
ADIJake 0:85855ecd3257 1937 }
ADIJake 0:85855ecd3257 1938
Vkadaba 5:0728bde67bdb 1939 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1940 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1941 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1942 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1943 eChannelId);
ADIJake 0:85855ecd3257 1944 return eRet;
ADIJake 0:85855ecd3257 1945 }
ADIJake 0:85855ecd3257 1946
Vkadaba 5:0728bde67bdb 1947 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1948 pChannelConfig);
Vkadaba 23:bb685f35b08b 1949 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1950 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1951 eChannelId);
ADIJake 0:85855ecd3257 1952 return eRet;
ADIJake 0:85855ecd3257 1953 }
ADIJake 0:85855ecd3257 1954
Vkadaba 5:0728bde67bdb 1955 eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1956 &pI2cChannelConfig->configurationCommand,
Vkadaba 23:bb685f35b08b 1957 &pI2cChannelConfig->dataRequestCommand);
Vkadaba 23:bb685f35b08b 1958 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1959 ADMW_LOG_ERROR("Failed to set I2C sensor commands for channel %d",
Vkadaba 23:bb685f35b08b 1960 eChannelId);
ADIJake 0:85855ecd3257 1961 return eRet;
ADIJake 0:85855ecd3257 1962 }
ADIJake 0:85855ecd3257 1963
Vkadaba 5:0728bde67bdb 1964 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1965 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1966 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1967 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1968 eChannelId);
ADIJake 0:85855ecd3257 1969 return eRet;
ADIJake 0:85855ecd3257 1970 }
ADIJake 0:85855ecd3257 1971
Vkadaba 5:0728bde67bdb 1972 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1973 &pI2cChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 1974 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1975 ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 1976 eChannelId);
ADIJake 0:85855ecd3257 1977 return eRet;
ADIJake 0:85855ecd3257 1978 }
ADIJake 0:85855ecd3257 1979
Vkadaba 5:0728bde67bdb 1980 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1981 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1982 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1983 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 1984 eChannelId);
ADIJake 0:85855ecd3257 1985 return eRet;
ADIJake 0:85855ecd3257 1986 }
ADIJake 0:85855ecd3257 1987
Vkadaba 5:0728bde67bdb 1988 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1989 }
ADIJake 0:85855ecd3257 1990
Vkadaba 5:0728bde67bdb 1991 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 1992 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1993 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1994 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1995 {
Vkadaba 8:2f2775c34640 1996 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1997
ADIJake 0:85855ecd3257 1998 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1999
ADIJake 0:85855ecd3257 2000 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 2001 switch(sensorType) {
Vkadaba 23:bb685f35b08b 2002 case ADMW1001_SPI_SENSOR_PRESSURE_A:
Vkadaba 23:bb685f35b08b 2003 case ADMW1001_SPI_SENSOR_ACCELEROMETER_A:
Vkadaba 23:bb685f35b08b 2004 case ADMW1001_SPI_SENSOR_ACCELEROMETER_B:
Vkadaba 23:bb685f35b08b 2005
Vkadaba 23:bb685f35b08b 2006 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 2007 break;
Vkadaba 23:bb685f35b08b 2008 default:
Vkadaba 23:bb685f35b08b 2009 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 2010 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2011 }
ADIJake 0:85855ecd3257 2012
ADIJake 0:85855ecd3257 2013 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 2014
Vkadaba 5:0728bde67bdb 2015 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2016 }
ADIJake 0:85855ecd3257 2017
Vkadaba 5:0728bde67bdb 2018 ADMW_RESULT admw_SetSpiChannelConfig(
Vkadaba 5:0728bde67bdb 2019 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2020 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2021 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2022 {
Vkadaba 5:0728bde67bdb 2023 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2024 ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig =
ADIJake 0:85855ecd3257 2025 &pChannelConfig->spiChannelConfig;
ADIJake 0:85855ecd3257 2026
Vkadaba 5:0728bde67bdb 2027 eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2028 pSpiChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 2029 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2030 ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d",
Vkadaba 23:bb685f35b08b 2031 eChannelId);
ADIJake 0:85855ecd3257 2032 return eRet;
ADIJake 0:85855ecd3257 2033 }
ADIJake 0:85855ecd3257 2034
Vkadaba 5:0728bde67bdb 2035 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2036 pChannelConfig);
Vkadaba 23:bb685f35b08b 2037 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2038 ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d",
Vkadaba 23:bb685f35b08b 2039 eChannelId);
ADIJake 0:85855ecd3257 2040 return eRet;
ADIJake 0:85855ecd3257 2041 }
ADIJake 0:85855ecd3257 2042
Vkadaba 5:0728bde67bdb 2043 eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2044 &pSpiChannelConfig->configurationCommand,
Vkadaba 23:bb685f35b08b 2045 &pSpiChannelConfig->dataRequestCommand);
Vkadaba 23:bb685f35b08b 2046 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2047 ADMW_LOG_ERROR("Failed to set SPI sensor commands for channel %d",
Vkadaba 23:bb685f35b08b 2048 eChannelId);
ADIJake 0:85855ecd3257 2049 return eRet;
ADIJake 0:85855ecd3257 2050 }
ADIJake 0:85855ecd3257 2051
Vkadaba 5:0728bde67bdb 2052 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2053 &pSpiChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 2054 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2055 ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 2056 eChannelId);
ADIJake 0:85855ecd3257 2057 return eRet;
ADIJake 0:85855ecd3257 2058 }
ADIJake 0:85855ecd3257 2059
Vkadaba 5:0728bde67bdb 2060 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2061 &pSpiChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 2062 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2063 ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 2064 eChannelId);
ADIJake 0:85855ecd3257 2065 return eRet;
ADIJake 0:85855ecd3257 2066 }
ADIJake 0:85855ecd3257 2067
Vkadaba 5:0728bde67bdb 2068 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2069 &pSpiChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 2070 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2071 ADMW_LOG_ERROR("Failed to set SPI comms for channel %d",
Vkadaba 23:bb685f35b08b 2072 eChannelId);
ADIJake 0:85855ecd3257 2073 return eRet;
ADIJake 0:85855ecd3257 2074 }
ADIJake 0:85855ecd3257 2075
Vkadaba 5:0728bde67bdb 2076 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2077 }
ADIJake 0:85855ecd3257 2078
Vkadaba 5:0728bde67bdb 2079 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 2080 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2081 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2082 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 2083 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 2084 {
ADIJake 0:85855ecd3257 2085 /*
ADIJake 0:85855ecd3257 2086 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 2087 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 2088 */
Vkadaba 23:bb685f35b08b 2089 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 2090 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2091 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 2092 } else {
ADIJake 0:85855ecd3257 2093 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 2094 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2095 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 2096 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 2097 }
ADIJake 0:85855ecd3257 2098
ADIJake 0:85855ecd3257 2099 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 2100 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2101 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 2102 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2103
Vkadaba 5:0728bde67bdb 2104 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2105 }
ADIJake 0:85855ecd3257 2106
Vkadaba 5:0728bde67bdb 2107 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 2108 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2109 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2110 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 2111 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 2112 {
ADIJake 0:85855ecd3257 2113 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 2114 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 2115 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 2116 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 2117 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 2118
ADIJake 0:85855ecd3257 2119 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 2120 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 2121
Vkadaba 5:0728bde67bdb 2122 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2123 }
ADIJake 0:85855ecd3257 2124
Vkadaba 5:0728bde67bdb 2125 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 2126 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2127 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2128 float32_t fSensorParam)
ADIJake 0:85855ecd3257 2129 {
ADIJake 0:85855ecd3257 2130 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 2131 fSensorParam = NAN;
ADIJake 0:85855ecd3257 2132
ADIJake 0:85855ecd3257 2133 WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 2134
Vkadaba 5:0728bde67bdb 2135 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2136 }
ADIJake 0:85855ecd3257 2137
Vkadaba 5:0728bde67bdb 2138 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 2139 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2140 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2141 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 2142 {
Vkadaba 8:2f2775c34640 2143 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 2144
Vkadaba 23:bb685f35b08b 2145 if (nSettlingTime < (1 << 12)) {
Vkadaba 5:0728bde67bdb 2146 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MICROSECONDS;
Vkadaba 23:bb685f35b08b 2147 } else if (nSettlingTime < (1000 * (1 << 12))) {
Vkadaba 5:0728bde67bdb 2148 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MILLISECONDS;
ADIJake 0:85855ecd3257 2149 nSettlingTime /= 1000;
Vkadaba 23:bb685f35b08b 2150 } else {
Vkadaba 5:0728bde67bdb 2151 settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_SECONDS;
ADIJake 0:85855ecd3257 2152 nSettlingTime /= 1000000;
ADIJake 0:85855ecd3257 2153 }
ADIJake 0:85855ecd3257 2154
ADIJake 0:85855ecd3257 2155 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 2156 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 2157
ADIJake 0:85855ecd3257 2158 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 2159
Vkadaba 5:0728bde67bdb 2160 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2161 }
ADIJake 0:85855ecd3257 2162
Vkadaba 5:0728bde67bdb 2163 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 2164 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2165 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2166 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2167 {
Vkadaba 5:0728bde67bdb 2168 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2169
Vkadaba 23:bb685f35b08b 2170 if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) {
Vkadaba 5:0728bde67bdb 2171 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2172 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 2173 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 2174 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2175 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 2176 eChannelId);
ADIJake 0:85855ecd3257 2177 return eRet;
ADIJake 0:85855ecd3257 2178 }
ADIJake 0:85855ecd3257 2179
Vkadaba 5:0728bde67bdb 2180 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2181 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 2182 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2183 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 2184 eChannelId);
ADIJake 0:85855ecd3257 2185 return eRet;
ADIJake 0:85855ecd3257 2186 }
ADIJake 0:85855ecd3257 2187
ADIJake 0:85855ecd3257 2188 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 2189 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 2190 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2191 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 2192 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2193 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 2194 eChannelId);
ADIJake 0:85855ecd3257 2195 return eRet;
ADIJake 0:85855ecd3257 2196 }
ADIJake 0:85855ecd3257 2197
Vkadaba 23:bb685f35b08b 2198 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 2199 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2200 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2201 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2202 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2203 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2204 break;
Vkadaba 23:bb685f35b08b 2205 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 2206 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 2207 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2208 break;
Vkadaba 23:bb685f35b08b 2209 case ADMW1001_CH_ID_DIG_SPI_0:
Vkadaba 23:bb685f35b08b 2210 eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2211 break;
Vkadaba 23:bb685f35b08b 2212 default:
Vkadaba 23:bb685f35b08b 2213 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 23:bb685f35b08b 2214 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2215 }
ADIJake 0:85855ecd3257 2216
Vkadaba 5:0728bde67bdb 2217 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2218 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 2219 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2220 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 2221 eChannelId);
ADIJake 0:85855ecd3257 2222 return eRet;
ADIJake 0:85855ecd3257 2223 }
ADIJake 0:85855ecd3257 2224 }
ADIJake 0:85855ecd3257 2225 }
ADIJake 0:85855ecd3257 2226
Vkadaba 23:bb685f35b08b 2227 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 2228 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2229 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2230 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 2231 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 2232 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2233 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 2234 eChannelId);
ADIJake 0:85855ecd3257 2235 return eRet;
ADIJake 0:85855ecd3257 2236 }
ADIJake 0:85855ecd3257 2237
ADIJake 0:85855ecd3257 2238 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2239 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2240 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 2241 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 2242 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2243 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 2244 eChannelId);
ADIJake 0:85855ecd3257 2245 return eRet;
ADIJake 0:85855ecd3257 2246 }
ADIJake 0:85855ecd3257 2247
ADIJake 0:85855ecd3257 2248 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 2249 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2250 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 2251 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2252 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 2253 eChannelId);
ADIJake 0:85855ecd3257 2254 return eRet;
ADIJake 0:85855ecd3257 2255 }
ADIJake 0:85855ecd3257 2256 }
ADIJake 0:85855ecd3257 2257
Vkadaba 5:0728bde67bdb 2258 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2259 }
ADIJake 0:85855ecd3257 2260
Vkadaba 5:0728bde67bdb 2261 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 2262 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2263 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 2264 {
Vkadaba 5:0728bde67bdb 2265 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 2266 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 2267 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2268
Vkadaba 23:bb685f35b08b 2269 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 2270 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 2271 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 2272 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2273 }
Vkadaba 23:bb685f35b08b 2274
Vkadaba 23:bb685f35b08b 2275 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 2276 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 2277 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 2278 pConfig->versionId);
Vkadaba 6:9d393a9677f4 2279 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2280 }
Vkadaba 23:bb685f35b08b 2281
Vkadaba 23:bb685f35b08b 2282
ADIJake 0:85855ecd3257 2283 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2284 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2285 if (eRet) {
Vkadaba 5:0728bde67bdb 2286 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2287 return eRet;
ADIJake 0:85855ecd3257 2288 }
Vkadaba 23:bb685f35b08b 2289 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2290 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2291 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2292 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2293 }
ADIJake 0:85855ecd3257 2294
Vkadaba 5:0728bde67bdb 2295 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2296
Vkadaba 5:0728bde67bdb 2297 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2298 if (eRet) {
Vkadaba 5:0728bde67bdb 2299 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2300 return eRet;
ADIJake 0:85855ecd3257 2301 }
ADIJake 0:85855ecd3257 2302
Vkadaba 5:0728bde67bdb 2303 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2304 if (eRet) {
Vkadaba 5:0728bde67bdb 2305 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2306 return eRet;
ADIJake 0:85855ecd3257 2307 }
ADIJake 0:85855ecd3257 2308
Vkadaba 5:0728bde67bdb 2309 eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 23:bb685f35b08b 2310 if (eRet) {
Vkadaba 5:0728bde67bdb 2311 ADMW_LOG_ERROR("Failed to set diagnostics configuration");
ADIJake 0:85855ecd3257 2312 return eRet;
ADIJake 0:85855ecd3257 2313 }
ADIJake 0:85855ecd3257 2314
Vkadaba 8:2f2775c34640 2315 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2316 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2317 id++) {
Vkadaba 5:0728bde67bdb 2318 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2319 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2320 if (eRet) {
Vkadaba 5:0728bde67bdb 2321 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2322 return eRet;
ADIJake 0:85855ecd3257 2323 }
ADIJake 0:85855ecd3257 2324 }
ADIJake 0:85855ecd3257 2325
Vkadaba 5:0728bde67bdb 2326 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2327 }
ADIJake 0:85855ecd3257 2328
Vkadaba 5:0728bde67bdb 2329 ADMW_RESULT admw1001_SetLutData(
Vkadaba 8:2f2775c34640 2330 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2331 ADMW1001_LUT * const pLutData)
ADIJake 0:85855ecd3257 2332 {
Vkadaba 5:0728bde67bdb 2333 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 8:2f2775c34640 2334 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
ADIJake 0:85855ecd3257 2335 unsigned actualLength = 0;
ADIJake 0:85855ecd3257 2336
Vkadaba 23:bb685f35b08b 2337 if (pLutData->header.signature != ADMW_LUT_SIGNATURE) {
Vkadaba 5:0728bde67bdb 2338 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 23:bb685f35b08b 2339 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 5:0728bde67bdb 2340 return ADMW_INVALID_SIGNATURE;
ADIJake 0:85855ecd3257 2341 }
ADIJake 0:85855ecd3257 2342
Vkadaba 23:bb685f35b08b 2343 for (unsigned i = 0; i < pLutHeader->numTables; i++) {
Vkadaba 5:0728bde67bdb 2344 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 5:0728bde67bdb 2345 ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data;
ADIJake 0:85855ecd3257 2346 unsigned short calculatedCrc;
ADIJake 0:85855ecd3257 2347
Vkadaba 23:bb685f35b08b 2348 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2349 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2350 switch (pDesc->equation) {
Vkadaba 23:bb685f35b08b 2351 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 23:bb685f35b08b 2352 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 23:bb685f35b08b 2353 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 23:bb685f35b08b 2354 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 23:bb685f35b08b 2355 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 23:bb685f35b08b 2356 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 23:bb685f35b08b 2357 break;
Vkadaba 23:bb685f35b08b 2358 default:
Vkadaba 23:bb685f35b08b 2359 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2360 pDesc->equation, i);
Vkadaba 23:bb685f35b08b 2361 return ADMW_INVALID_PARAM;
Vkadaba 23:bb685f35b08b 2362 }
ADIJake 0:85855ecd3257 2363 break;
Vkadaba 23:bb685f35b08b 2364 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2365 case ADMW1001_LUT_GEOMETRY_NES_2D:
Vkadaba 23:bb685f35b08b 2366 case ADMW1001_LUT_GEOMETRY_ES_1D:
Vkadaba 23:bb685f35b08b 2367 case ADMW1001_LUT_GEOMETRY_ES_2D:
Vkadaba 23:bb685f35b08b 2368 if (pDesc->equation != ADMW1001_LUT_EQUATION_LUT) {
Vkadaba 5:0728bde67bdb 2369 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2370 pDesc->equation, i);
Vkadaba 5:0728bde67bdb 2371 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2372 }
Vkadaba 23:bb685f35b08b 2373 break;
Vkadaba 23:bb685f35b08b 2374 default:
Vkadaba 23:bb685f35b08b 2375 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2376 pDesc->geometry, i);
Vkadaba 23:bb685f35b08b 2377 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2378 }
ADIJake 0:85855ecd3257 2379
Vkadaba 23:bb685f35b08b 2380 switch (pDesc->dataType) {
Vkadaba 23:bb685f35b08b 2381 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 23:bb685f35b08b 2382 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 23:bb685f35b08b 2383 break;
Vkadaba 23:bb685f35b08b 2384 default:
Vkadaba 23:bb685f35b08b 2385 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 23:bb685f35b08b 2386 pDesc->dataType, i);
Vkadaba 23:bb685f35b08b 2387 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2388 }
ADIJake 0:85855ecd3257 2389
Vkadaba 5:0728bde67bdb 2390 calculatedCrc = admw_crc16_ccitt(pData, pDesc->length);
Vkadaba 23:bb685f35b08b 2391 if (calculatedCrc != pDesc->crc16) {
Vkadaba 5:0728bde67bdb 2392 ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)",
Vkadaba 23:bb685f35b08b 2393 i, pDesc->crc16, calculatedCrc);
Vkadaba 5:0728bde67bdb 2394 return ADMW_CRC_ERROR;
ADIJake 0:85855ecd3257 2395 }
ADIJake 0:85855ecd3257 2396
ADIJake 0:85855ecd3257 2397 actualLength += sizeof(*pDesc) + pDesc->length;
ADIJake 0:85855ecd3257 2398
ADIJake 0:85855ecd3257 2399 /* Move to the next look-up table */
Vkadaba 5:0728bde67bdb 2400 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
ADIJake 0:85855ecd3257 2401 }
ADIJake 0:85855ecd3257 2402
Vkadaba 23:bb685f35b08b 2403 if (actualLength != pLutHeader->totalLength) {
Vkadaba 5:0728bde67bdb 2404 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 23:bb685f35b08b 2405 pLutHeader->totalLength, actualLength);
Vkadaba 5:0728bde67bdb 2406 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2407 }
ADIJake 0:85855ecd3257 2408
Vkadaba 23:bb685f35b08b 2409 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE) {
Vkadaba 5:0728bde67bdb 2410 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 23:bb685f35b08b 2411 ADMW_LUT_MAX_SIZE);
Vkadaba 5:0728bde67bdb 2412 return ADMW_WRONG_SIZE;
ADIJake 0:85855ecd3257 2413 }
ADIJake 0:85855ecd3257 2414
ADIJake 0:85855ecd3257 2415 /* Write the LUT data to the device */
ADIJake 0:85855ecd3257 2416 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
ADIJake 0:85855ecd3257 2417 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
ADIJake 0:85855ecd3257 2418 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
ADIJake 0:85855ecd3257 2419
Vkadaba 5:0728bde67bdb 2420 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2421 }
ADIJake 0:85855ecd3257 2422
Vkadaba 5:0728bde67bdb 2423 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2424 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2425 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2426 {
Vkadaba 5:0728bde67bdb 2427 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2428 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2429 }
ADIJake 0:85855ecd3257 2430
Vkadaba 5:0728bde67bdb 2431 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2432 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2433 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2434 unsigned *pLength)
ADIJake 0:85855ecd3257 2435 {
Vkadaba 23:bb685f35b08b 2436 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2437 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2438 if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN)
Vkadaba 23:bb685f35b08b 2439 *pLength = ADMW1001_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d);
Vkadaba 23:bb685f35b08b 2440 else
Vkadaba 23:bb685f35b08b 2441 *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList);
Vkadaba 23:bb685f35b08b 2442 break;
Vkadaba 23:bb685f35b08b 2443 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2444 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2445 break;
Vkadaba 23:bb685f35b08b 2446 case ADMW1001_LUT_GEOMETRY_NES_2D:
Vkadaba 23:bb685f35b08b 2447 *pLength = ADMW1001_LUT_2D_NES_SIZE(pData->lut2dNes);
Vkadaba 23:bb685f35b08b 2448 break;
Vkadaba 23:bb685f35b08b 2449 case ADMW1001_LUT_GEOMETRY_ES_1D:
Vkadaba 23:bb685f35b08b 2450 *pLength = ADMW1001_LUT_1D_ES_SIZE(pData->lut1dEs);
Vkadaba 23:bb685f35b08b 2451 break;
Vkadaba 23:bb685f35b08b 2452 case ADMW1001_LUT_GEOMETRY_ES_2D:
Vkadaba 23:bb685f35b08b 2453 *pLength = ADMW1001_LUT_2D_ES_SIZE(pData->lut2dEs);
Vkadaba 23:bb685f35b08b 2454 break;
Vkadaba 23:bb685f35b08b 2455 default:
Vkadaba 23:bb685f35b08b 2456 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2457 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2458 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2459 }
ADIJake 0:85855ecd3257 2460
Vkadaba 5:0728bde67bdb 2461 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2462 }
ADIJake 0:85855ecd3257 2463
Vkadaba 5:0728bde67bdb 2464 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2465 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2466 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2467 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2468 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2469 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2470 {
Vkadaba 5:0728bde67bdb 2471 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2472 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2473
Vkadaba 23:bb685f35b08b 2474 if (sizeof(*pHdr) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2475 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2476 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2477 }
ADIJake 0:85855ecd3257 2478
ADIJake 0:85855ecd3257 2479 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2480 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2481 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2482 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2483 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2484 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2485
ADIJake 0:85855ecd3257 2486 /*
ADIJake 0:85855ecd3257 2487 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2488 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2489 */
Vkadaba 23:bb685f35b08b 2490 for (unsigned i = 0; i < nNumTables; i++) {
Vkadaba 5:0728bde67bdb 2491 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2492 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2493 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2494 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2495
ADIJake 0:85855ecd3257 2496 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2497 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2498 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2499 return res;
ADIJake 0:85855ecd3257 2500
ADIJake 0:85855ecd3257 2501 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2502 pDesc->length = dataLength;
Vkadaba 5:0728bde67bdb 2503 pDesc->crc16 = admw_crc16_ccitt(pData, dataLength);
ADIJake 0:85855ecd3257 2504
Vkadaba 23:bb685f35b08b 2505 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) {
Vkadaba 5:0728bde67bdb 2506 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2507 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2508 }
ADIJake 0:85855ecd3257 2509
ADIJake 0:85855ecd3257 2510 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2511 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2512 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2513 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2514 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2515
ADIJake 0:85855ecd3257 2516 pHdr->numTables++;
ADIJake 0:85855ecd3257 2517 }
ADIJake 0:85855ecd3257 2518
Vkadaba 5:0728bde67bdb 2519 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2520 }
Vkadaba 14:266ab283b086 2521
Vkadaba 14:266ab283b086 2522 ADMW_RESULT deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 14:266ab283b086 2523 {
Vkadaba 14:266ab283b086 2524 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 14:266ab283b086 2525 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 14:266ab283b086 2526 ADMW_RESULT res;
Vkadaba 14:266ab283b086 2527 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 23:bb685f35b08b 2528 if(res != ADMW_SUCCESS) {
Vkadaba 14:266ab283b086 2529 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 14:266ab283b086 2530 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 14:266ab283b086 2531 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 23:bb685f35b08b 2532 } else {
Vkadaba 14:266ab283b086 2533 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 14:266ab283b086 2534 strcat(nData, buffer);
Vkadaba 14:266ab283b086 2535 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 14:266ab283b086 2536 }
Vkadaba 14:266ab283b086 2537 return ADMW_SUCCESS;
Vkadaba 23:bb685f35b08b 2538 }
Vkadaba 23:bb685f35b08b 2539
Vkadaba 13:97cb32670539 2540 ADMW_RESULT admw1001_getFirmwareStatus(
Vkadaba 13:97cb32670539 2541 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 13:97cb32670539 2542 bool * const bFirmwareStatus)
Vkadaba 13:97cb32670539 2543 {
Vkadaba 13:97cb32670539 2544 bool bitCommand;
Vkadaba 13:97cb32670539 2545 ADMW_RESULT eRet;
Vkadaba 13:97cb32670539 2546 uint8_t pinreg = 0x1;
Vkadaba 13:97cb32670539 2547
Vkadaba 13:97cb32670539 2548 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 13:97cb32670539 2549 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 13:97cb32670539 2550 uint16_t nSize;
Vkadaba 13:97cb32670539 2551
Vkadaba 13:97cb32670539 2552 //Construct Read Status command
Vkadaba 13:97cb32670539 2553 DataBuffer[0] = 0x07;
Vkadaba 13:97cb32670539 2554 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 13:97cb32670539 2555
Vkadaba 13:97cb32670539 2556 DataBuffer[2] = 0x00;
Vkadaba 13:97cb32670539 2557 DataBuffer[3] = 0x00; //Data words
Vkadaba 13:97cb32670539 2558
Vkadaba 13:97cb32670539 2559 DataBuffer[4] = 0x53;
Vkadaba 13:97cb32670539 2560 DataBuffer[5] = 0x00; //Command ID
Vkadaba 13:97cb32670539 2561
Vkadaba 13:97cb32670539 2562 DataBuffer[6] = 0x00;
Vkadaba 13:97cb32670539 2563 DataBuffer[7] = 0x00;
Vkadaba 13:97cb32670539 2564 DataBuffer[8] = 0x00;
Vkadaba 13:97cb32670539 2565 DataBuffer[9] = 0x00; //Address
Vkadaba 13:97cb32670539 2566
Vkadaba 13:97cb32670539 2567 DataBuffer[10] = 0x53;
Vkadaba 23:bb685f35b08b 2568 DataBuffer[11] = 0x00;
Vkadaba 13:97cb32670539 2569 DataBuffer[12] = 0x00;
Vkadaba 13:97cb32670539 2570 DataBuffer[13] = 0x00; //Checksum
Vkadaba 13:97cb32670539 2571
Vkadaba 13:97cb32670539 2572 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 13:97cb32670539 2573
Vkadaba 23:bb685f35b08b 2574 do {
Vkadaba 13:97cb32670539 2575 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 13:97cb32670539 2576 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 13:97cb32670539 2577 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 13:97cb32670539 2578 if( eRet != ADMW_SUCCESS) {
Vkadaba 23:bb685f35b08b 2579 return eRet;
Vkadaba 13:97cb32670539 2580 }
Vkadaba 13:97cb32670539 2581
Vkadaba 13:97cb32670539 2582 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 23:bb685f35b08b 2583 // pinreg == '0x00' - Error occured in SFL
Vkadaba 13:97cb32670539 2584 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 13:97cb32670539 2585 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 13:97cb32670539 2586 // pinreg == '0x03' - SFL not booted
Vkadaba 13:97cb32670539 2587
Vkadaba 13:97cb32670539 2588 pinreg = (bitCommand);
Vkadaba 23:bb685f35b08b 2589
Vkadaba 23:bb685f35b08b 2590 } while(pinreg != 0x0u);
Vkadaba 13:97cb32670539 2591
Vkadaba 13:97cb32670539 2592 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 23:bb685f35b08b 2593 nSize, false);
Vkadaba 23:bb685f35b08b 2594 if (eRet) {
Vkadaba 13:97cb32670539 2595 return eRet;
Vkadaba 13:97cb32670539 2596 }
Vkadaba 13:97cb32670539 2597
Vkadaba 13:97cb32670539 2598 //wait for command irq line to go low after sending read status header
Vkadaba 13:97cb32670539 2599 wait_ms( 100 );
Vkadaba 13:97cb32670539 2600
Vkadaba 23:bb685f35b08b 2601 do {
Vkadaba 13:97cb32670539 2602 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 23:bb685f35b08b 2603 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 13:97cb32670539 2604 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 13:97cb32670539 2605 if( eRet != ADMW_SUCCESS) {
Vkadaba 23:bb685f35b08b 2606 return eRet;
Vkadaba 13:97cb32670539 2607 }
Vkadaba 23:bb685f35b08b 2608
Vkadaba 13:97cb32670539 2609 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 23:bb685f35b08b 2610 // pinreg == '0x00' - Error occured in SFL
Vkadaba 13:97cb32670539 2611 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 13:97cb32670539 2612 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 13:97cb32670539 2613 // pinreg == '0x03' - SFL not booted
Vkadaba 23:bb685f35b08b 2614
Vkadaba 13:97cb32670539 2615 pinreg = (bitCommand);
Vkadaba 13:97cb32670539 2616
Vkadaba 23:bb685f35b08b 2617 } while(pinreg != 0x0u);
Vkadaba 13:97cb32670539 2618
Vkadaba 13:97cb32670539 2619 nSize = SFL_READ_STATUS_RESPONSE_SIZE;
Vkadaba 13:97cb32670539 2620
Vkadaba 13:97cb32670539 2621 eRet = admw_SpiReceive(pCtx->hSpi, NULL, DataBuffer,
Vkadaba 23:bb685f35b08b 2622 nSize, false);
Vkadaba 23:bb685f35b08b 2623
Vkadaba 23:bb685f35b08b 2624 if (eRet) {
Vkadaba 13:97cb32670539 2625 return eRet;
Vkadaba 13:97cb32670539 2626 }
Vkadaba 13:97cb32670539 2627
Vkadaba 13:97cb32670539 2628 //Verifying the application version from the response to check if firmware is present or not
Vkadaba 23:bb685f35b08b 2629 /*
Vkadaba 13:97cb32670539 2630 Flash Memory description
Vkadaba 13:97cb32670539 2631 ______________
Vkadaba 13:97cb32670539 2632 | Secure | 0x0000 0000
Vkadaba 13:97cb32670539 2633 | Flashloader |
Vkadaba 13:97cb32670539 2634 |______________| 0x0000 3BFF
Vkadaba 23:bb685f35b08b 2635 | Security |------------------
Vkadaba 13:97cb32670539 2636 | Page | 0x0000 3C00
Vkadaba 13:97cb32670539 2637 | |
Vkadaba 13:97cb32670539 2638 |______________| 0x0000 3FFF
Vkadaba 13:97cb32670539 2639 | |------------------
Vkadaba 13:97cb32670539 2640 | App Info | 0x0000 4000
Vkadaba 13:97cb32670539 2641 | Page |
Vkadaba 13:97cb32670539 2642 |______________| 0x0000 4800
Vkadaba 13:97cb32670539 2643 | |------------------
Vkadaba 13:97cb32670539 2644 | Application |
Vkadaba 13:97cb32670539 2645 | Image | Application resides only in this region
Vkadaba 13:97cb32670539 2646 |______________|------------------
Vkadaba 13:97cb32670539 2647 | Reserved | 0x0003 FFF8
Vkadaba 13:97cb32670539 2648 | for | Reserved memory region
Vkadaba 13:97cb32670539 2649 | Signature | 0x0003 FFFF
Vkadaba 13:97cb32670539 2650 |______________|------------------
Vkadaba 13:97cb32670539 2651
Vkadaba 13:97cb32670539 2652 Application version is stored in the App Info Page, the app version is updated in this region everytime the new application firmware is downloaded.
Vkadaba 13:97cb32670539 2653 Here we verify if Application version is present in the Read Status response
Vkadaba 13:97cb32670539 2654 If the app version bytes value is 0xFFFFFFFF then there is no firmware else there exist a firmware
Vkadaba 23:bb685f35b08b 2655
Vkadaba 13:97cb32670539 2656 Read Status Response:
Vkadaba 13:97cb32670539 2657 ____________________________________________________________________________________________________________________________________
Vkadaba 13:97cb32670539 2658 | | | | | |
Vkadaba 13:97cb32670539 2659 |uint16_t nFlashLoaderVersion | uint16_t nStatus | uint32_t nApplicationVersion | uint32_t nApplicationHash[8] | uint16_t nChecksum |
Vkadaba 13:97cb32670539 2660 |_____________________________|__________________|______________________________|______________________________|_____________________|
Vkadaba 23:bb685f35b08b 2661
Vkadaba 13:97cb32670539 2662 */
Vkadaba 13:97cb32670539 2663
Vkadaba 13:97cb32670539 2664 if( ((DataBuffer[4] == 0xFF) &&
Vkadaba 23:bb685f35b08b 2665 (DataBuffer[5] == 0xFF) &&
Vkadaba 23:bb685f35b08b 2666 (DataBuffer[6] == 0xFF) &&
Vkadaba 23:bb685f35b08b 2667 (DataBuffer[7] == 0xFF)) ||
Vkadaba 23:bb685f35b08b 2668 ((DataBuffer[4] == 0x00) &&
Vkadaba 23:bb685f35b08b 2669 (DataBuffer[5] == 0x00) &&
Vkadaba 23:bb685f35b08b 2670 (DataBuffer[6] == 0x00) &&
Vkadaba 23:bb685f35b08b 2671 (DataBuffer[7] == 0x00))) {
Vkadaba 23:bb685f35b08b 2672 *bFirmwareStatus = false;
Vkadaba 23:bb685f35b08b 2673 } else {
Vkadaba 23:bb685f35b08b 2674 *bFirmwareStatus = true;
Vkadaba 13:97cb32670539 2675 }
Vkadaba 13:97cb32670539 2676
Vkadaba 13:97cb32670539 2677 return eRet;
Vkadaba 14:266ab283b086 2678 }