Vybhav Kadaba
/
EV-PRO-MW1001_Development_updateFW
Bumped Mbed FW version to 01.20.0080
Diff: src/admw_1001.c
- Revision:
- 5:0728bde67bdb
- Parent:
- 4:2ca06eee5735
- Child:
- 6:9d393a9677f4
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/admw_1001.c Wed Jun 05 05:39:15 2019 +0000 @@ -0,0 +1,3342 @@ +/* +Copyright 2018 (c) Analog Devices, Inc. + +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + - Neither the name of Analog Devices, Inc. nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + - The use of this software may or may not infringe the patent rights + of one or more patent holders. This license does not release you + from the requirement that you obtain separate licenses from these + patent holders to use this software. + - Use of the software either in source or binary form, must be run + on or directly connected to an Analog Devices Inc. component. + +THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR +IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, +INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +/****************************************************************************** +Copyright 2017 (c) Analog Devices, Inc. + +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + - Neither the name of Analog Devices, Inc. nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + - The use of this software may or may not infringe the patent rights + of one or more patent holders. This license does not release you + from the requirement that you obtain separate licenses from these + patent holders to use this software. + - Use of the software either in source or binary form, must be run + on or directly connected to an Analog Devices Inc. component. + +THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR +IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, +INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + *****************************************************************************/ + +/*! + ****************************************************************************** + * @file: + * @brief: ADMW API implementation for ADSNS1000 + *----------------------------------------------------------------------------- + */ + +#include <float.h> +#include <math.h> +#include <string.h> + +#include "admw_platform.h" +#include "admw_api.h" +#include "admw1001/admw1001_api.h" + +#include "admw1001/ADMW1001_REGISTERS_typedefs.h" +#include "admw1001/ADMW1001_REGISTERS.h" +#include "admw1001/admw1001_lut_data.h" +#include "admw1001/admw1001_host_comms.h" + +#include "crc16.h" + + +uint32_t getDataCnt = 0; + +/* + * The following macros are used to encapsulate the register access code + * to improve readability in the functions further below in this file + */ +#define STRINGIFY(name) #name + +/* Expand the full name of the reset value macro for the specified register */ +#define REG_RESET_VAL(_name) REG_##_name##_RESET + +/* Checks if a value is outside the bounds of the specified register field */ +#define CHECK_REG_FIELD_VAL(_field, _val) \ + do { \ + uint32_t _mask = BITM_##_field; \ + uint32_t _shift = BITP_##_field; \ + if ((((_val) << _shift) & ~(_mask)) != 0) { \ + ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s", \ + (uint32_t)(_val), \ + STRINGIFY(ADMW_##_field)); \ + return ADMW_INVALID_PARAM; \ + } \ + } while(false) + +/* + * Encapsulates the write to a specified register + * NOTE - this will cause the calling function to return on error + */ +#define WRITE_REG(_hdev, _val, _name, _type) \ + do { \ + ADMW_RESULT _res; \ + _type _regval = _val; \ + _res = admw1001_WriteRegister((_hdev), \ + REG_##_name, \ + &_regval, sizeof(_regval)); \ + if (_res != ADMW_SUCCESS) \ + return _res; \ + } while(false) + +/* Wrapper macro to write a value to a uint32_t register */ +#define WRITE_REG_U32(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, uint32_t) +/* Wrapper macro to write a value to a uint16_t register */ +#define WRITE_REG_U16(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, uint16_t) +/* Wrapper macro to write a value to a uint8_t register */ +#define WRITE_REG_U8(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, uint8_t) +/* Wrapper macro to write a value to a float32_t register */ +#define WRITE_REG_FLOAT(_hdev, _val, _name) \ + WRITE_REG(_hdev, _val, _name, float32_t) + +/* + * Encapsulates the read from a specified register + * NOTE - this will cause the calling function to return on error + */ +#define READ_REG(_hdev, _val, _name, _type) \ + do { \ + ADMW_RESULT _res; \ + _type _regval; \ + _res = admw1001_ReadRegister((_hdev), \ + REG_##_name, \ + &_regval, sizeof(_regval)); \ + if (_res != ADMW_SUCCESS) \ + return _res; \ + _val = _regval; \ + } while(false) + +/* Wrapper macro to read a value from a uint32_t register */ +#define READ_REG_U32(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, uint32_t) +/* Wrapper macro to read a value from a uint16_t register */ +#define READ_REG_U16(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, uint16_t) +/* Wrapper macro to read a value from a uint8_t register */ +#define READ_REG_U8(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, uint8_t) +/* Wrapper macro to read a value from a float32_t register */ +#define READ_REG_FLOAT(_hdev, _val, _name) \ + READ_REG(_hdev, _val, _name, float32_t) + +/* + * Wrapper macro to write an array of values to a uint8_t register + * NOTE - this is intended only for writing to a keyhole data register + */ +#define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \ + do { \ + ADMW_RESULT _res; \ + _res = admw1001_WriteRegister(_hdev, \ + REG_##_name, \ + _arr, _len); \ + if (_res != ADMW_SUCCESS) \ + return _res; \ + } while(false) + +/* + * Wrapper macro to read an array of values from a uint8_t register + * NOTE - this is intended only for reading from a keyhole data register + */ +#define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \ + do { \ + ADMW_RESULT _res; \ + _res = admw1001_ReadRegister((_hdev), \ + REG_##_name, \ + _arr, _len); \ + if (_res != ADMW_SUCCESS) \ + return _res; \ + } while(false) + +#define ADMW1001_CHANNEL_IS_ADC(c) \ + ((c) >= ADMW1001_CHANNEL_ID_CJC_0 && (c) <= ADMW1001_CHANNEL_ID_CURRENT_0) + +#define ADMW1001_CHANNEL_IS_ADC_CJC(c) \ + ((c) >= ADMW1001_CHANNEL_ID_CJC_0 && (c) <= ADMW1001_CHANNEL_ID_CJC_1) + +#define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \ + ((c) >= ADMW1001_CHANNEL_ID_SENSOR_0 && (c) <= ADMW1001_CHANNEL_ID_SENSOR_3) + +#define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \ + ((c) == ADMW1001_CHANNEL_ID_VOLTAGE_0) + +#define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \ + ((c) == ADMW1001_CHANNEL_ID_CURRENT_0) + +#define ADMW1001_CHANNEL_IS_VIRTUAL(c) \ + ((c) == ADMW1001_CHANNEL_ID_SPI_1 || (c) == ADMW1001_CHANNEL_ID_SPI_2) + +typedef struct +{ + unsigned nDeviceIndex; + ADMW_SPI_HANDLE hSpi; + ADMW_GPIO_HANDLE hGpio; +} ADMW_DEVICE_CONTEXT; + +static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES]; + +/* + * Open an ADMW device instance. + */ +ADMW_RESULT admw_Open( + unsigned const nDeviceIndex, + ADMW_CONNECTION * const pConnectionInfo, + ADMW_DEVICE_HANDLE * const phDevice) +{ + ADMW_DEVICE_CONTEXT *pCtx; + ADMW_RESULT eRet; + + if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES) + return ADMW_INVALID_DEVICE_NUM; + + pCtx = &gDeviceCtx[nDeviceIndex]; + pCtx->nDeviceIndex = nDeviceIndex; + + eRet = admw_LogOpen(&pConnectionInfo->log); + if (eRet != ADMW_SUCCESS) + return eRet; + + eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio); + if (eRet != ADMW_SUCCESS) + return eRet; + + eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi); + if (eRet != ADMW_SUCCESS) + return eRet; + + *phDevice = pCtx; + return ADMW_SUCCESS; +} + +/* + * Get the current state of the specified GPIO input signal. + */ +ADMW_RESULT admw_GetGpioState( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_GPIO_PIN const ePinId, + bool * const pbAsserted) +{ + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + + return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted); +} + +/* + * Register an application-defined callback function for GPIO interrupts. + */ +ADMW_RESULT admw_RegisterGpioCallback( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_GPIO_PIN const ePinId, + ADMW_GPIO_CALLBACK const callbackFunction, + void * const pCallbackParam) +{ + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + + if (callbackFunction) + { + return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction, + pCallbackParam); + } + else + { + return admw_GpioIrqDisable(pCtx->hGpio, ePinId); + } +} + +/* + * Reset the specified ADMW device. + */ +ADMW_RESULT admw_Reset( + ADMW_DEVICE_HANDLE const hDevice) +{ + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + ADMW_RESULT eRet; + + /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */ + eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false); + if (eRet != ADMW_SUCCESS) + return eRet; + + admw_TimeDelayUsec(4); + + eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true); + if (eRet != ADMW_SUCCESS) + return eRet; + + return ADMW_SUCCESS; +} + + +/*! + * @brief Get general status of ADISense module. + * + * @param[in] + * @param[out] pStatus : Pointer to CORE Status struct. + * + * @return Status + * - #ADMW_SUCCESS Call completed successfully. + * - #ADMW_FAILURE If status register read fails. + * + * @details Read the general status register for the ADISense + * module. Indicates Error, Alert conditions, data ready + * and command running. + * + */ +ADMW_RESULT admw_GetStatus( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_STATUS * const pStatus) +{ + CORE_Status_t statusReg; + READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS); + + CORE_Alert_Status_2_t alert2Reg; + READ_REG_U16(hDevice, alert2Reg.VALUE16, CORE_ALERT_STATUS_2); + + memset(pStatus, 0, sizeof(*pStatus)); + + if (!statusReg.Cmd_Running) /* Active-low, so invert it */ + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY; + if (statusReg.Drdy) + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY; + if (statusReg.FIFO_Error) + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR; + if (alert2Reg.Ext_Flash_Error) + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_EXT_FLASH_ERROR; + if (statusReg.Alert_Active) + { + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT; + + CORE_Alert_Code_t alertCodeReg; + READ_REG_U16(hDevice, alertCodeReg.VALUE16, CORE_ALERT_CODE); + pStatus->alertCode = alertCodeReg.Alert_Code; + + CORE_Channel_Alert_Status_t channelAlertStatusReg; + READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16, + CORE_CHANNEL_ALERT_STATUS); + + for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) + { + if (channelAlertStatusReg.VALUE16 & (1 << i)) + { + CORE_Alert_Code_Ch_t channelAlertCodeReg; + READ_REG_U16(hDevice, channelAlertCodeReg.VALUE16, CORE_ALERT_CODE_CHn(i)); + pStatus->channelAlertCodes[i] = channelAlertCodeReg.Alert_Code_Ch; + + CORE_Alert_Detail_Ch_t alertDetailReg; + READ_REG_U16(hDevice, alertDetailReg.VALUE16, + CORE_ALERT_DETAIL_CHn(i)); + + if (alertDetailReg.Time_Out) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_TIMEOUT; + if (alertDetailReg.Under_Range) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_UNDER_RANGE; + if (alertDetailReg.Over_Range) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_OVER_RANGE; + if (alertDetailReg.Low_Limit) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LOW_LIMIT; + if (alertDetailReg.High_Limit) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_HIGH_LIMIT; + if (alertDetailReg.Sensor_Open) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_OPEN; + if (alertDetailReg.Ref_Detect) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_REF_DETECT; + if (alertDetailReg.Config_Err) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_CONFIG_ERR; + if (alertDetailReg.LUT_Error_Ch) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_ERR; + if (alertDetailReg.Sensor_Not_Ready) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_SENSOR_NOT_READY; + if (alertDetailReg.Comp_Not_Ready) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_COMP_NOT_READY; + if (alertDetailReg.Correction_UnderRange) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_UNDER_RANGE; + if (alertDetailReg.Correction_OverRange) + pStatus->channelAlerts[i] |= ADMW_CHANNEL_ALERT_LUT_OVER_RANGE; + } + } + + if (alert2Reg.Configuration_Error) + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR; + if (alert2Reg.LUT_Error) + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR; + } + + if (statusReg.Error) + { + pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR; + + CORE_Error_Code_t errorCodeReg; + READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE); + pStatus->errorCode = errorCodeReg.Error_Code; + + CORE_Diagnostics_Status_t diagStatusReg; + READ_REG_U16(hDevice, diagStatusReg.VALUE16, CORE_DIAGNOSTICS_STATUS); + + if (diagStatusReg.Diag_Checksum_Error) + pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CHECKSUM_ERROR; + if (diagStatusReg.Diag_Comms_Error) + pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_COMMS_ERROR; + if (diagStatusReg.Diag_Supply_Monitor_Error) + pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_SUPPLY_MONITOR_ERROR; + if (diagStatusReg.Diag_Supply_Cap_Error) + pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_SUPPLY_CAP_ERROR; + if (diagStatusReg.Diag_Conversion_Error) + pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CONVERSION_ERROR; + if (diagStatusReg.Diag_Calibration_Error) + pStatus->diagnosticsStatus |= ADMW_DIAGNOSTICS_STATUS_CALIBRATION_ERROR; + } + + if (statusReg.Alert_Active || statusReg.Error) + { + CORE_Debug_Code_t debugCodeReg; + READ_REG_U32(hDevice, debugCodeReg.VALUE32, CORE_DEBUG_CODE); + pStatus->debugCode = debugCodeReg.Debug_Code; + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_GetCommandRunningState( + ADMW_DEVICE_HANDLE hDevice, + bool *pbCommandRunning) +{ + CORE_Status_t statusReg; + + READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS); + + /* We should never normally see 0xFF here if the module is operational */ + if (statusReg.VALUE8 == 0xFF) + return ADMW_ERR_NOT_INITIALIZED; + + *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */ + + return ADMW_SUCCESS; +} + +static ADMW_RESULT executeCommand( + ADMW_DEVICE_HANDLE const hDevice, + CORE_Command_Special_Command const command, + bool const bWaitForCompletion) +{ + CORE_Command_t commandReg; + bool bCommandRunning; + ADMW_RESULT eRet; + + /* + * Don't allow another command to be issued if one is already running, but + * make an exception for CORE_COMMAND_NOP which can be used to + * request a running command to be stopped (e.g. continuous measurement) + */ + if (command != CORE_COMMAND_NOP) + { + eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning); + if (eRet) + return eRet; + + if (bCommandRunning) + return ADMW_IN_USE; + } + + commandReg.Special_Command = command; + WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND); + + if (bWaitForCompletion) + { + do { + /* Allow a minimum 50usec delay for status update before checking */ + admw_TimeDelayUsec(50); + + eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning); + if (eRet) + return eRet; + } while (bCommandRunning); + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_Shutdown( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_POWER_DOWN, false); +} + + +ADMW_RESULT admw_ApplyConfigUpdates( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true); +} + +/*! + * @brief Start a measurement cycle. + * + * @param[out] + * + * @return Status + * - #ADMW_SUCCESS Call completed successfully. + * - #ADMW_FAILURE + * + * @details Sends the latch config command. Configuration for channels in + * conversion cycle should be completed before this function. + * Channel enabled bit should be set before this function. + * Starts a conversion and configures the format of the sample. + * + */ +ADMW_RESULT admw_StartMeasurement( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_MEASUREMENT_MODE const eMeasurementMode) +{ + switch (eMeasurementMode) + { + case ADMW_MEASUREMENT_MODE_HEALTHCHECK: + return executeCommand(hDevice, CORE_COMMAND_SYSTEM_CHECK, false); + case ADMW_MEASUREMENT_MODE_NORMAL: + return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false); + case ADMW_MEASUREMENT_MODE_OMIT_RAW: + return executeCommand(hDevice, CORE_COMMAND_CONVERT, false); + case ADMW_MEASUREMENT_MODE_FFT: + return executeCommand(hDevice, CORE_COMMAND_CONVERT_FFT, false); + default: + ADMW_LOG_ERROR("Invalid measurement mode %d specified", + eMeasurementMode); + return ADMW_INVALID_PARAM; + } +} + +/* + * Store the configuration settings to persistent memory on the device. + * The settings can be saved to 4 different flash memory areas (slots). + * No other command must be running when this is called. + * Do not power down the device while this command is running. + */ +ADMW_RESULT admw_SaveConfig( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_USER_CONFIG_SLOT const eSlotId) +{ + switch (eSlotId) + { + case ADMW_FLASH_CONFIG_1: + return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true); + case ADMW_FLASH_CONFIG_2: + return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_2, true); + case ADMW_FLASH_CONFIG_3: + return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_3, true); + case ADMW_FLASH_CONFIG_4: + return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_4, true); + default: + ADMW_LOG_ERROR("Invalid user config target slot %d specified", + eSlotId); + return ADMW_INVALID_PARAM; + } +} + +/* + * Restore the configuration settings from persistent memory on the device. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_RestoreConfig( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_USER_CONFIG_SLOT const eSlotId) +{ + switch (eSlotId) + { + case ADMW_FLASH_CONFIG_1: + return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true); + case ADMW_FLASH_CONFIG_2: + return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_2, true); + case ADMW_FLASH_CONFIG_3: + return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_3, true); + case ADMW_FLASH_CONFIG_4: + return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_4, true); + default: + ADMW_LOG_ERROR("Invalid user config source slot %d specified", + eSlotId); + return ADMW_INVALID_PARAM; + } +} + +/* + * Erase the entire external flash memory. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_EraseExternalFlash( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_ERASE_EXTERNAL_FLASH, true); +} + +/* + * Read the number of samples stored in external flash memory. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_GetExternalFlashSampleCount( + ADMW_DEVICE_HANDLE const hDevice, + uint32_t * nSampleCount) +{ + CORE_Ext_Flash_Sample_Count_t nCount; + + READ_REG_U32(hDevice, nCount.VALUE32, CORE_EXT_FLASH_SAMPLE_COUNT); + + *nSampleCount = nCount.VALUE32; + + return ADMW_SUCCESS; +} + +// DEBUG - TO BE DELETED +ADMW_RESULT admw_SetExternalFlashIndex( + ADMW_DEVICE_HANDLE const hDevice, + uint32_t nStartIndex) +{ + WRITE_REG_U32(hDevice, nStartIndex, CORE_EXT_FLASH_INDEX); + + return ADMW_SUCCESS; +} + +/* + * Read a set of data samples stored in the device external flash memory. + * This may be called at any time. + */ +ADMW_RESULT admw_GetExternalFlashData( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_DATA_SAMPLE * const pSamples, + uint32_t const nStartIndex, + uint32_t const nRequested, + uint32_t * const pnReturned) +{ + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = ADMW1001_HOST_COMMS_READ_CMD | + (REG_CORE_EXT_FLASH_DATA & ADMW1001_HOST_COMMS_ADR_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + unsigned nValidSamples = 0; + ADMW_RESULT eRet = ADMW_SUCCESS; + + /* Setup initial sample */ + WRITE_REG_U32(hDevice, nStartIndex, CORE_EXT_FLASH_INDEX); + + /* Send flash read command */ + do { + eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADMW_LOG_ERROR("Failed to send read command for external flash"); + return eRet; + } + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || + (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); + + /* Read samples from external flash memory */ + for (unsigned i = 0; i < nRequested; i++) + { + ADMW1001_Sensor_Result_t sensorResult; + bool bHoldCs = true; + + /* Keep the CS signal asserted for all but the last sample */ + if ((i + 1) == nRequested) + bHoldCs = false; + + eRet = admw_SpiTransfer(pCtx->hSpi, NULL, (uint8_t *) (&sensorResult), + 8, bHoldCs); + if (eRet) + { + ADMW_LOG_ERROR("Failed to read data from external flash"); + return eRet; + } + + ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples]; + + pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0; + if (sensorResult.Ch_Error) + pSample->status |= ADMW_DEVICE_STATUS_ERROR; + if (sensorResult.Ch_Alert) + pSample->status |= ADMW_DEVICE_STATUS_ALERT; + + if (sensorResult.Ch_Raw) + pSample->rawValue = sensorResult.Raw_Sample; + else + pSample->rawValue = 0; + + pSample->channelId = sensorResult.Channel_ID; + pSample->processedValue = sensorResult.Sensor_Result; + + nValidSamples++; + } + *pnReturned = nValidSamples; + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + + return eRet; +} + + +/* + * Store the LUT data to persistent memory on the device. + * No other command must be running when this is called. + * Do not power down the device while this command is running. + */ +ADMW_RESULT admw_SaveLutData( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true); +} + +/* + * Restore the LUT data from persistent memory on the device. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_RestoreLutData( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true); +} + +/* + * Stop the measurement cycles on the device. + * To be used only if a measurement command is currently running. + */ +ADMW_RESULT admw_StopMeasurement( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_NOP, true); +} + +/* + * Run built-in diagnostic checks on the device. + * Diagnostics are executed according to the current applied settings. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_RunDiagnostics( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_RUN_DIAGNOSTICS, true); +} + +/* + * Run self-calibration routines on the device. + * Calibration is executed according to the current applied settings. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_RunCalibration( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_SELF_CALIBRATION, true); +} + +/* + * Run digital calibration routines on the device. + * Calibration is executed according to the current applied settings. + * No other command must be running when this is called. + */ +ADMW_RESULT admw_RunDigitalCalibration( + ADMW_DEVICE_HANDLE const hDevice) +{ + return executeCommand(hDevice, CORE_COMMAND_CALIBRATE_DIGITAL, true); +} + +/* + * Read a set of data samples from the device. + * This may be called at any time. + */ +ADMW_RESULT admw_GetData( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_MEASUREMENT_MODE const eMeasurementMode, + ADMW_DATA_SAMPLE * const pSamples, + uint8_t const nBytesPerSample, + uint32_t const nRequested, + uint32_t * const pnReturned) +{ + ADMW1001_Sensor_Result_t sensorResult; + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = ADMW1001_HOST_COMMS_READ_CMD | + (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + unsigned nValidSamples = 0; + ADMW_RESULT eRet = ADMW_SUCCESS; + + do { + eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADMW_LOG_ERROR("Failed to send read command for FIFO register"); + return eRet; + } + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || + (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); + + for (unsigned i = 0; i < nRequested; i++) + { + bool bHoldCs = true; + + /* Keep the CS signal asserted for all but the last sample */ + if ((i + 1) == nRequested) + bHoldCs = false; + + getDataCnt++; + + eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult, + nBytesPerSample, bHoldCs); + if (eRet) + { + ADMW_LOG_ERROR("Failed to read data from FIFO register"); + return eRet; + } + + if (! sensorResult.Ch_Valid) + { + /* + * Reading an invalid sample indicates that there are no + * more samples available or we've lost sync with the device. + * In the latter case, it might be recoverable, but return here + * to let the application check the device status and decide itself. + */ + eRet = ADMW_INCOMPLETE; + break; + } + + ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples]; + + pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0; + if (sensorResult.Ch_Error) + pSample->status |= ADMW_DEVICE_STATUS_ERROR; + if (sensorResult.Ch_Alert) + pSample->status |= ADMW_DEVICE_STATUS_ALERT; + + if (sensorResult.Ch_Raw) + pSample->rawValue = sensorResult.Raw_Sample; + else + pSample->rawValue = 0; + + pSample->channelId = sensorResult.Channel_ID; + pSample->processedValue = sensorResult.Sensor_Result; + + nValidSamples++; + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + } + *pnReturned = nValidSamples; + + return eRet; +} + +/* + * Close the given ADMW device. + */ +ADMW_RESULT admw_Close( + ADMW_DEVICE_HANDLE const hDevice) +{ + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + + admw_GpioClose(pCtx->hGpio); + admw_SpiClose(pCtx->hSpi); + admw_LogClose(); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_WriteRegister( + ADMW_DEVICE_HANDLE hDevice, + uint16_t nAddress, + void *pData, + unsigned nLength) +{ + ADMW_RESULT eRet; + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD | + (nAddress & ADMW1001_HOST_COMMS_ADR_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + + do { + eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADMW_LOG_ERROR("Failed to send write command for register %u", + nAddress); + return eRet; + } + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || + (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); + + eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false); + if (eRet) + { + ADMW_LOG_ERROR("Failed to write data (%dB) to register %u", + nLength, nAddress); + return eRet; + } + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_ReadRegister( + ADMW_DEVICE_HANDLE hDevice, + uint16_t nAddress, + void *pData, + unsigned nLength) +{ + ADMW_RESULT eRet; + ADMW_DEVICE_CONTEXT *pCtx = hDevice; + uint16_t command = ADMW1001_HOST_COMMS_READ_CMD | + (nAddress & ADMW1001_HOST_COMMS_ADR_MASK); + uint8_t commandData[2] = { + command >> 8, + command & 0xFF + }; + uint8_t commandResponse[2]; + + do { + eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse, + sizeof(command), false); + if (eRet) + { + ADMW_LOG_ERROR("Failed to send read command for register %u", + nAddress); + return eRet; + } + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) || + (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1)); + + eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false); + if (eRet) + { + ADMW_LOG_ERROR("Failed to read data (%uB) from register %u", + nLength, nAddress); + return eRet; + } + + admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_GetDeviceReadyState( + ADMW_DEVICE_HANDLE const hDevice, + bool * const bReady) +{ + ADMW_SPI_Chip_Type_t chipTypeReg; + + READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE); + /* If we read this register successfully, assume the device is ready */ + *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_GetDataReadyModeInfo( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_MEASUREMENT_MODE const eMeasurementMode, + ADMW1001_OPERATING_MODE * const peOperatingMode, + ADMW1001_DATAREADY_MODE * const peDataReadyMode, + uint32_t * const pnSamplesPerDataready, + uint32_t * const pnSamplesPerCycle, + uint8_t * const pnBytesPerSample) +{ + unsigned nChannelsEnabled = 0; + unsigned nSamplesPerCycle = 0; + + CORE_Mode_t modeReg; + READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); + + if ((eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) || + (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE)) + *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE; + else if (modeReg.Conversion_Mode == CORE_MODE_MULTICYCLE) + *peOperatingMode = ADMW1001_OPERATING_MODE_MULTICYCLE; + else + *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS; + + + /* FFT mode is quite different to the other modes: + * - Each FFT result produces a batch of samples + * - The size of the batch depends on selected FFT size and output config options + * - DATAREADY will fire for each FFT result (once per channel) + * - The size of the cycle depends on the number of channels enabled for FFT + */ + if (eMeasurementMode == ADMW_MEASUREMENT_MODE_FFT) + { + CORE_FFT_Config_t fftConfigReg; + + unsigned nFftChannels; + unsigned nSamplesPerChannel; + + READ_REG_U32(hDevice, fftConfigReg.VALUE32, CORE_FFT_CONFIG); + + nFftChannels = fftConfigReg.FFT_Num_Channels + 1; + + if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_MAX16) + { + nSamplesPerChannel = 16; + *pnBytesPerSample = 8; + } + else if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_FULL) + { + nSamplesPerChannel = (256 << fftConfigReg.FFT_Num_Bins) >> 1; + *pnBytesPerSample = 5; + } + else if (fftConfigReg.FFT_Output == CORE_FFT_CONFIG_FFT_OUTPUT_FULL_WITH_RAW) + { + nSamplesPerChannel = (256 << fftConfigReg.FFT_Num_Bins); + *pnBytesPerSample = 8; + } + else + { + ADMW_LOG_ERROR("Invalid FFT output format option %d configured", + fftConfigReg.FFT_Output); + return ADMW_INVALID_PARAM; + } + + *pnSamplesPerDataready = nSamplesPerChannel; + *pnSamplesPerCycle = nSamplesPerChannel * nFftChannels; + + *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE; + + if (modeReg.FFT_Mode == CORE_MODE_FFT_MODE_CONTINUOUS) + { + *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS; + } + else + { + *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE; + } + } + else + { + if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) + { + *pnBytesPerSample = 5; + } + else + { + *pnBytesPerSample = 8; + } + + for (ADMW1001_CHANNEL_ID chId = ADMW1001_CHANNEL_ID_CJC_0; + chId < ADMW1001_MAX_CHANNELS; + chId++) + { + CORE_Sensor_Details_t sensorDetailsReg; + CORE_Channel_Count_t channelCountReg; + + if (ADMW1001_CHANNEL_IS_VIRTUAL(chId)) + continue; + + READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId)); + READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId)); + + if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) + { + CORE_Sensor_Type_t sensorTypeReg; + unsigned nActualChannels = 1; + + READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId)); + + if (chId == ADMW1001_CHANNEL_ID_SPI_0) + { + /* Some sensors automatically generate samples on additional "virtual" channels + * so these channels must be counted as active when those sensors are selected + * and we use the count from the corresponding "physical" channel */ + if ((sensorTypeReg.Sensor_Type >= + CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_A_DEF_L1) && + (sensorTypeReg.Sensor_Type <= + CORE_SENSOR_TYPE_SENSOR_SPI_ACCELEROMETER_B_ADV_L2)) + nActualChannels += 2; + } + + nChannelsEnabled += nActualChannels; + if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) + /* Assume a single sample per channel in test mode */ + nSamplesPerCycle += nActualChannels; + else + nSamplesPerCycle += nActualChannels * + (channelCountReg.Channel_Count + 1); + } + } + + if (nChannelsEnabled == 0) + { + *pnSamplesPerDataready = 0; + *pnSamplesPerCycle = 0; + return ADMW_SUCCESS; + } + + *pnSamplesPerCycle = nSamplesPerCycle; + + if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) + { + *pnSamplesPerDataready = 1; + } + else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) + { + *pnSamplesPerDataready = nSamplesPerCycle; + } + else + { + /* Assume DRDY will be asserted after max. 1 cycle in test mode */ + if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) + { + *pnSamplesPerDataready = nSamplesPerCycle; + } + else + { + CORE_Fifo_Num_Cycles_t fifoNumCyclesReg; + READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES); + + *pnSamplesPerDataready = + nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles; + } + } + + if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) + *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION; + else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) + *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE; + else + { + /* Assume DRDY will be asserted after max. 1 cycle in test mode */ + if (eMeasurementMode == ADMW_MEASUREMENT_MODE_HEALTHCHECK) + *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE; + else + *peDataReadyMode = ADMW1001_DATAREADY_PER_MULTICYCLE_BURST; + } + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_GetProductID( + ADMW_DEVICE_HANDLE hDevice, + ADMW_PRODUCT_ID *pProductId) +{ + ADMW_SPI_Product_ID_L_t productIdLoReg; + ADMW_SPI_Product_ID_H_t productIdHiReg; + + READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L); + READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H); + + *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) + | productIdLoReg.VALUE8); + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetPowerMode( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_POWER_MODE powerMode) +{ + CORE_Power_Config_t powerConfigReg; + + if (powerMode == ADMW1001_POWER_MODE_LOW) + { + powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_LOW_POWER; + } + else if (powerMode == ADMW1001_POWER_MODE_MID) + { + powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_MID_POWER; + } + else if (powerMode == ADMW1001_POWER_MODE_FULL) + { + powerConfigReg.Power_Mode_ADC = CORE_POWER_CONFIG_ADC_FULL_POWER; + } + else + { + ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetPowerConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_POWER_CONFIG *pPowerConfig) +{ + ADMW_RESULT eRet; + + eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set power mode"); + return eRet; + } + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetMode( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_OPERATING_MODE eOperatingMode, + ADMW1001_DATAREADY_MODE eDataReadyMode, + ADMW1001_CALIBRATION_MODE eCalibrationMode, + bool bEnableExtFlash) +{ + CORE_Mode_t modeReg; + + modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE); + + if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) + { + modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE; + } + else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) + { + modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS; + } + else if (eOperatingMode == ADMW1001_OPERATING_MODE_MULTICYCLE) + { + modeReg.Conversion_Mode = CORE_MODE_MULTICYCLE; + } + else + { + ADMW_LOG_ERROR("Invalid operating mode %d specified", + eOperatingMode); + return ADMW_INVALID_PARAM; + } + + if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) + { + modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION; + } + else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) + { + modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE; + } + else if (eDataReadyMode == ADMW1001_DATAREADY_PER_MULTICYCLE_BURST) + { + if (eOperatingMode != ADMW1001_OPERATING_MODE_MULTICYCLE) + { + ADMW_LOG_ERROR( + "Data-ready mode %d cannot be used with operating mode %d", + eDataReadyMode, eOperatingMode); + return ADMW_INVALID_PARAM; + } + else + { + modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL; + } + } + else + { + ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode); + return ADMW_INVALID_PARAM; + } + + if (eCalibrationMode == ADMW1001_NO_CALIBRATION) + { + modeReg.Calibration_Method = CORE_MODE_NO_CAL; + } + else if (eCalibrationMode == ADMW1001_DO_CALIBRATION) + { + modeReg.Calibration_Method = CORE_MODE_DO_CAL; + } + else + { + ADMW_LOG_ERROR("Invalid calibration mode %d specified", + eCalibrationMode); + return ADMW_INVALID_PARAM; + } + + modeReg.Ext_Flash_Store = (bEnableExtFlash ? + CORE_MODE_EXT_FLASH_USED : + CORE_MODE_EXT_FLASH_NOT_USED); + + WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_SetCycleControl( + ADMW_DEVICE_HANDLE hDevice, + uint32_t nCycleInterval, + +#ifdef __V2_3_CFG_FMT__ + ADMW1001_CYCLE_TYPE eCycleType, + ADMW1001_FILTER_SETTLING eFilterSettling) +#else + ADMW1001_CYCLE_TYPE eCycleType) +#endif +{ + CORE_Cycle_Control_t cycleControlReg; + + cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL); + + if (nCycleInterval < (1 << 12)) + { + cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MICROSECONDS; + } + else if (nCycleInterval < (1000 * (1 << 12))) + { + cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_MILLISECONDS; + nCycleInterval /= 1000; + } + else + { + cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS; + nCycleInterval /= 1000000; + } + + CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval); + cycleControlReg.Cycle_Time = nCycleInterval; + + if (eCycleType == ADMW1001_CYCLE_TYPE_SWITCH) + { + cycleControlReg.Cycle_Type = CORE_CYCLE_CONTROL_CYCLE_TYPE_SWITCH; + } + else if (eCycleType == ADMW1001_CYCLE_TYPE_FULL) + { + cycleControlReg.Cycle_Type = CORE_CYCLE_CONTROL_CYCLE_TYPE_FULL; + } + else + { + ADMW_LOG_ERROR("Invalid cycle type %d specified", eCycleType); + return ADMW_INVALID_PARAM; + } + +#ifdef __V2_3_CFG_FMT__ + if (eFilterSettling == ADMW1001_FILTER_SETTLING_ALWAYS) + { + cycleControlReg.Filter_Settling = CORE_CYCLE_CONTROL_FILTER_SETTLING_SETTLED; + } + else if (eFilterSettling == ADMW1001_FILTER_SETTLING_FAST) + { + cycleControlReg.Filter_Settling = CORE_CYCLE_CONTROL_FILTER_SETTLING_FAST; + } + else + { + ADMW_LOG_ERROR("Invalid filter settling option %d specified", eFilterSettling); + return ADMW_INVALID_PARAM; + } +#endif + + WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetMultiCycleConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_MULTICYCLE_CONFIG *pMultiCycleConfig) +{ + CHECK_REG_FIELD_VAL(CORE_FIFO_NUM_CYCLES_FIFO_NUM_CYCLES, + pMultiCycleConfig->cyclesPerBurst); + + WRITE_REG_U8(hDevice, pMultiCycleConfig->cyclesPerBurst, + CORE_FIFO_NUM_CYCLES); + + WRITE_REG_U32(hDevice, pMultiCycleConfig->burstInterval, + CORE_MULTI_CYCLE_REPEAT_INTERVAL); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetExternalReferenceValues( + ADMW_DEVICE_HANDLE hDevice, + float32_t externalRef1Value, + float32_t externalRef2Value) +{ + WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE1); + WRITE_REG_FLOAT(hDevice, externalRef2Value, CORE_EXTERNAL_REFERENCE2); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetMeasurementConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_MEASUREMENT_CONFIG *pMeasConfig) +{ + ADMW_RESULT eRet; + + eRet = admw_SetMode(hDevice, + pMeasConfig->operatingMode, + pMeasConfig->dataReadyMode, + pMeasConfig->calibrationMode, + pMeasConfig->enableExternalFlash); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set operating mode"); + return eRet; + } + + eRet = admw_SetCycleControl(hDevice, + pMeasConfig->cycleInterval, + pMeasConfig->cycleType); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set cycle control"); + return eRet; + } + + if (pMeasConfig->operatingMode == ADMW1001_OPERATING_MODE_MULTICYCLE) + { + eRet = admw_SetMultiCycleConfig(hDevice, + &pMeasConfig->multiCycleConfig); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set multi-cycle configuration"); + return eRet; + } + } + + eRet = admw_SetExternalReferenceValues(hDevice, + pMeasConfig->externalRef1Value, + pMeasConfig->externalRef2Value); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set external reference values"); + return eRet; + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetDiagnosticsConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig) +{ + CORE_Diagnostics_Control_t diagnosticsControlReg; + + diagnosticsControlReg.VALUE16 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL); + + if (pDiagnosticsConfig->disableGlobalDiag) + diagnosticsControlReg.Diag_Global_En = 0; + else + diagnosticsControlReg.Diag_Global_En = 1; + + if (pDiagnosticsConfig->disableMeasurementDiag) + diagnosticsControlReg.Diag_Meas_En = 0; + else + diagnosticsControlReg.Diag_Meas_En = 1; + + switch (pDiagnosticsConfig->osdFrequency) + { + case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_DISABLED: + diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_OFF; + break; + case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_CYCLE: + diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1_CYCLE; + break; + case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_100_CYCLES: + diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_100_CYCLES; + break; + case ADMW1001_OPEN_SENSOR_DIAGNOSTICS_PER_1000_CYCLES: + diagnosticsControlReg.Diag_OSD_Freq = CORE_DIAGNOSTICS_CONTROL_OCD_PER_1000_CYCLES; + break; + default: + ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified", + pDiagnosticsConfig->osdFrequency); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, diagnosticsControlReg.VALUE16, CORE_DIAGNOSTICS_CONTROL); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetFftConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_FFT_CONFIG *pFftConfig, + ADMW1001_CHANNEL_CONFIG *pChannels) +{ + CORE_FFT_Config_t fftConfigReg; + CORE_Mode_t modeReg; + uint32_t numFftChannels = 0; + + fftConfigReg.VALUE32 = REG_RESET_VAL(CORE_FFT_CONFIG); + + for (ADMW1001_CHANNEL_ID id = ADMW1001_CHANNEL_ID_CJC_0; + id < ADMW1001_MAX_CHANNELS; + id++) + { + if (pChannels[id].enableFFT) + { + if (numFftChannels >= 4) /* TODO - temporary limit */ + { + ADMW_LOG_ERROR("Maximum limit of 4 FFT channels exceeded"); + return ADMW_INVALID_PARAM; + } + + numFftChannels++; + } + } + + if (numFftChannels > 0) + { + fftConfigReg.FFT_Num_Channels = numFftChannels - 1; + + switch (pFftConfig->size) + { + case ADMW1001_FFT_SIZE_256: + fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_256; + break; + case ADMW1001_FFT_SIZE_512: + fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_512; + break; + case ADMW1001_FFT_SIZE_1024: + fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_1024; + break; + case ADMW1001_FFT_SIZE_2048: + fftConfigReg.FFT_Num_Bins = CORE_FFT_CONFIG_FFT_BINS_2048; + break; + default: + ADMW_LOG_ERROR("Invalid FFT size option %d specified", + pFftConfig->size); + return ADMW_INVALID_PARAM; + } + + switch (pFftConfig->window) + { + case ADMW1001_FFT_WINDOW_NONE: + fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_NONE; + break; + case ADMW1001_FFT_WINDOW_HANN: + fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_HANN; + break; + case ADMW1001_FFT_WINDOW_BLACKMAN_HARRIS: + fftConfigReg.FFT_Window = CORE_FFT_CONFIG_FFT_WINDOW_BLACKMANN_HARRIS; + break; + default: + ADMW_LOG_ERROR("Invalid FFT window option %d specified", + pFftConfig->window); + return ADMW_INVALID_PARAM; + } + + switch (pFftConfig->output) + { + case ADMW1001_FFT_OUTPUT_FULL: + fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_FULL; + break; + case ADMW1001_FFT_OUTPUT_MAX16: + fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_MAX16; + break; + case ADMW1001_FFT_OUTPUT_FULL_WITH_RAW: + fftConfigReg.FFT_Output = CORE_FFT_CONFIG_FFT_OUTPUT_FULL_WITH_RAW; + break; + default: + ADMW_LOG_ERROR("Invalid FFT output format option %d specified", + pFftConfig->output); + return ADMW_INVALID_PARAM; + } + } + WRITE_REG_U32(hDevice, fftConfigReg.VALUE32, CORE_FFT_CONFIG); + + if (numFftChannels > 0) + { + READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); + + if (pFftConfig->mode == ADMW1001_FFT_MODE_SINGLE) + { + modeReg.FFT_Mode = CORE_MODE_FFT_MODE_SINGLE; + } + else if (pFftConfig->mode == ADMW1001_FFT_MODE_CONTINUOUS) + { + modeReg.FFT_Mode = CORE_MODE_FFT_MODE_CONTINUOUS; + } + else + { + ADMW_LOG_ERROR("Invalid FFT mode %d specified", + pFftConfig->mode); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE); + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetChannelCount( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + uint32_t nMeasurementsPerCycle) +{ + CORE_Channel_Count_t channelCountReg; + + channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn); + + if (nMeasurementsPerCycle > 0) + { + nMeasurementsPerCycle -= 1; + + CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT, + nMeasurementsPerCycle); + + channelCountReg.Channel_Enable = 1; + channelCountReg.Channel_Count = nMeasurementsPerCycle; + } + else + { + channelCountReg.Channel_Enable = 0; + } + + WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetChannelOptions( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_PRIORITY ePriority, + bool bEnableFft) +{ + CORE_Channel_Options_t channelOptionsReg; + + channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn); + + CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority); + channelOptionsReg.Channel_Priority = ePriority; + channelOptionsReg.FFT_Enable_Ch = bEnableFft ? 1 : 0; + + WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetChannelSkipCount( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + uint32_t nCycleSkipCount) +{ + CORE_Channel_Skip_t channelSkipReg; + + channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn); + + CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount); + + channelSkipReg.Channel_Skip = nCycleSkipCount; + + WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelAdcSensorType( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_ADC_SENSOR_TYPE sensorType) +{ + CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J_DEF_L1: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K_DEF_L1: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T_DEF_L1: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J_ADV_L1: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K_ADV_L1: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T_ADV_L1: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_2_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_3_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMOCOUPLE_4_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_2_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_3_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE_4_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4_DEF_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_2_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_3_ADV_L2: + case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE_4_ADV_L2: + if (! ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId)) + { + ADMW_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADMW_INVALID_PARAM; + } + break; + case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100_DEF_L1: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_DEF_L1: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_3_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_4_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100_ADV_L1: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_ADV_L1: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_2_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_3_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_2WIRE_4_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100_DEF_L1: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_DEF_L1: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_3_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_4_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100_ADV_L1: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_ADV_L1: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_2_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_3_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_3WIRE_4_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100_DEF_L1: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_DEF_L1: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_3_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_4_DEF_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100_ADV_L1: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_ADV_L1: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_2_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_3_ADV_L2: + case ADMW1001_ADC_SENSOR_RTD_4WIRE_4_ADV_L2: + if (!ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId)) + { + ADMW_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADMW_INVALID_PARAM; + } + break; + case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA_DEF_L1: + case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA_DEF_L1: + case ADMW1001_ADC_SENSOR_DIODE_2C_1_DEF_L2: + case ADMW1001_ADC_SENSOR_DIODE_3C_1_DEF_L2: + case ADMW1001_ADC_SENSOR_DIODE_2C_TYPEA_ADV_L1: + case ADMW1001_ADC_SENSOR_DIODE_3C_TYPEA_ADV_L1: + case ADMW1001_ADC_SENSOR_DIODE_2C_1_ADV_L2: + case ADMW1001_ADC_SENSOR_DIODE_3C_1_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K_DEF_L1: + case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K_DEF_L1: + case ADMW1001_ADC_SENSOR_THERMISTOR_1_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_2_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_3_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_4_DEF_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_A_10K_ADV_L1: + case ADMW1001_ADC_SENSOR_THERMISTOR_B_10K_ADV_L1: + case ADMW1001_ADC_SENSOR_THERMISTOR_1_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_2_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_3_ADV_L2: + case ADMW1001_ADC_SENSOR_THERMISTOR_4_ADV_L2: + if (! (ADMW1001_CHANNEL_IS_ADC_SENSOR(eChannelId) || + ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId))) + { + ADMW_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADMW_INVALID_PARAM; + } + break; + case ADMW1001_ADC_SENSOR_VOLTAGE: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A_DEF_L1: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B_DEF_L1: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_A_ADV_L1: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_B_ADV_L1: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_VOLTAGE_PRESSURE_2_ADV_L2: + if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) + { + ADMW_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADMW_INVALID_PARAM; + } + break; + case ADMW1001_ADC_SENSOR_CURRENT: + case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A_DEF_L1: + case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1_DEF_L2: + case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2_DEF_L2: + case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_A_ADV_L1: + case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_1_ADV_L2: + case ADMW1001_ADC_SENSOR_CURRENT_PRESSURE_2_ADV_L2: + if (! ADMW1001_CHANNEL_IS_ADC_CURRENT(eChannelId)) + { + ADMW_LOG_ERROR( + "Invalid ADC sensor type %d specified for channel %d", + sensorType, eChannelId); + return ADMW_INVALID_PARAM; + } + break; + default: + ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified", + sensorType); + return ADMW_INVALID_PARAM; + } + + sensorTypeReg.Sensor_Type = sensorType; + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelAdcSensorDetails( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +/* + * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers + * General details: + * - Measurement_Units + * - Compensation_Channel + * - CJC_Publish (if "CJC" was removed from the name) + * ADC-specific details: + * - PGA_Gain + * - Reference_Select + * - Reference_Buffer_Disable + * - Vbias + */ +{ + ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig; + ADMW1001_ADC_REFERENCE_CONFIG *pRefConfig = &pAdcChannelConfig->reference; + CORE_Sensor_Details_t sensorDetailsReg; + + sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn); + + switch(pChannelConfig->measurementUnit) + { + case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT: + sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF; + break; + case ADMW1001_MEASUREMENT_UNIT_CELSIUS: + sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC; + break; + case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED: + sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED; + break; + default: + ADMW_LOG_ERROR("Invalid measurement unit %d specified", + pChannelConfig->measurementUnit); + return ADMW_INVALID_PARAM; + } + + if (pChannelConfig->compensationChannel == ADMW1001_CHANNEL_ID_NONE) + { + sensorDetailsReg.Compensation_Disable = 1; + sensorDetailsReg.Compensation_Channel = 0; + } + else + { + sensorDetailsReg.Compensation_Disable = 0; + sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel; + } + + switch(pRefConfig->type) + { + case ADMW1001_ADC_REFERENCE_RESISTOR_INTERNAL_1: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT1; + break; + case ADMW1001_ADC_REFERENCE_RESISTOR_INTERNAL_2: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT2; + break; + case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; + break; + case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD; + break; + case ADMW1001_ADC_REFERENCE_RESISTOR_EXTERNAL_1: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_REXT1; + break; + case ADMW1001_ADC_REFERENCE_RESISTOR_EXTERNAL_2: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_REXT2; + break; + case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1; + break; + case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_2: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT2; + break; + case ADMW1001_ADC_REFERENCE_BRIDGE_EXCITATION: + sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_EXC; + break; + default: + ADMW_LOG_ERROR("Invalid ADC reference type %d specified", + pRefConfig->type); + return ADMW_INVALID_PARAM; + } + + switch(pAdcChannelConfig->gain) + { + case ADMW1001_ADC_GAIN_1X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1; + break; + case ADMW1001_ADC_GAIN_2X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2; + break; + case ADMW1001_ADC_GAIN_4X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4; + break; + case ADMW1001_ADC_GAIN_8X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8; + break; + case ADMW1001_ADC_GAIN_16X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16; + break; + case ADMW1001_ADC_GAIN_32X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32; + break; + case ADMW1001_ADC_GAIN_64X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64; + break; + case ADMW1001_ADC_GAIN_128X: + sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128; + break; + default: + ADMW_LOG_ERROR("Invalid ADC gain %d specified", + pAdcChannelConfig->gain); + return ADMW_INVALID_PARAM; + } + + if (pAdcChannelConfig->enableVbias) + sensorDetailsReg.Vbias = 1; + else + sensorDetailsReg.Vbias = 0; + + if (pAdcChannelConfig->reference.disableBuffer) + sensorDetailsReg.Reference_Buffer_Disable = 1; + else + sensorDetailsReg.Reference_Buffer_Disable = 0; + + if (pChannelConfig->disablePublishing) + sensorDetailsReg.Do_Not_Publish = 1; + else + sensorDetailsReg.Do_Not_Publish = 0; + + if (pChannelConfig->enableUnityLut) + sensorDetailsReg.Unity_LUT_Select = 1; + else + sensorDetailsReg.Unity_LUT_Select = 0; + + WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelAdcFilter( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_ADC_FILTER_CONFIG *pFilterConfig) +{ + CORE_Filter_Select_t filterSelectReg; + + filterSelectReg.VALUE32 = REG_RESET_VAL(CORE_FILTER_SELECTn); + + if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) + { + filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_SINC4; + filterSelectReg.ADC_FS = pFilterConfig->fs; + } + else if (pFilterConfig->type == ADMW1001_ADC_FILTER_FIR_20SPS) + { + filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_FIR_20SPS; + } + else if (pFilterConfig->type == ADMW1001_ADC_FILTER_FIR_25SPS) + { + filterSelectReg.ADC_Filter_Type = CORE_FILTER_SELECT_FILTER_FIR_25SPS; + } + else + { + ADMW_LOG_ERROR("Invalid ADC filter type %d specified", + pFilterConfig->type); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U32(hDevice, filterSelectReg.VALUE32, CORE_FILTER_SELECTn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelAdcCurrentConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig) +{ + CORE_Channel_Excitation_t channelExcitationReg; + + channelExcitationReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn); + + if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_NONE) + { + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_OFF; + } + else + { + if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA) + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA; + else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA) + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA; + else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA) + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA; + else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA) + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA; + else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_750uA) + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_750UA; + else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA) + channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA; + else + { + ADMW_LOG_ERROR("Invalid ADC excitation current %d specified", + pCurrentConfig->outputLevel); + return ADMW_INVALID_PARAM; + } + } + + if (pCurrentConfig->diodeRatio == ADMW1001_ADC_EXC_CURRENT_IOUT_DIODE_DEFAULT) + { + channelExcitationReg.IOUT_Diode_Ratio = 0; + } + else + { + channelExcitationReg.IOUT_Diode_Ratio = 1; + } + + WRITE_REG_U8(hDevice, channelExcitationReg.VALUE8, CORE_CHANNEL_EXCITATIONn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_SetAdcChannelConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +{ + ADMW_RESULT eRet; + ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = + &pChannelConfig->adcChannelConfig; + + eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId, + pAdcChannelConfig->sensor); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId, + pChannelConfig); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelAdcFilter(hDevice, eChannelId, + &pAdcChannelConfig->filter); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set ADC filter for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId, + &pAdcChannelConfig->current); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set ADC current for channel %d", + eChannelId); + return eRet; + } + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelDigitalSensorDetails( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +{ + CORE_Sensor_Details_t sensorDetailsReg; + + sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn); + + if (pChannelConfig->compensationChannel == ADMW1001_CHANNEL_ID_NONE) + { + sensorDetailsReg.Compensation_Disable = 1; + sensorDetailsReg.Compensation_Channel = 0; + } + else + { + ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor"); + return ADMW_INVALID_PARAM; + } + + if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) + { + sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED; + } + else + { + ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel"); + return ADMW_INVALID_PARAM; + } + + if (pChannelConfig->disablePublishing) + sensorDetailsReg.Do_Not_Publish = 1; + else + sensorDetailsReg.Do_Not_Publish = 0; + + if (pChannelConfig->enableUnityLut) + sensorDetailsReg.Unity_LUT_Select = 1; + else + sensorDetailsReg.Unity_LUT_Select = 0; + + sensorDetailsReg.Vbias = 0; + sensorDetailsReg.Reference_Buffer_Disable = 1; + + WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetDigitalSensorCommands( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_DIGITAL_SENSOR_COMMAND *pConfigCommand, + ADMW1001_DIGITAL_SENSOR_COMMAND *pDataRequestCommand) +{ + CORE_Digital_Sensor_Num_Cmds_t numCmdsReg; + + numCmdsReg.VALUE8 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_NUM_CMDSn); + + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_CFG_CMDS, + pConfigCommand->commandLength); + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_NUM_CMDS_DIGITAL_SENSOR_NUM_READ_CMDS, + pDataRequestCommand->commandLength); + + numCmdsReg.Digital_Sensor_Num_Cfg_Cmds = pConfigCommand->commandLength; + numCmdsReg.Digital_Sensor_Num_Read_Cmds = pDataRequestCommand->commandLength; + + WRITE_REG_U8(hDevice, numCmdsReg.VALUE8, + CORE_DIGITAL_SENSOR_NUM_CMDSn(eChannelId)); + + /* + * NOTE - the fall-through cases in the switch statement below are + * intentional, so temporarily disable related compiler warnings which may + * be produced here by GCC + */ +#ifndef __CC_ARM +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wimplicit-fallthrough" +#endif + + switch (pConfigCommand->commandLength) + { + case 7: + WRITE_REG_U8(hDevice, pConfigCommand->command[6], + CORE_DIGITAL_SENSOR_COMMAND7n(eChannelId)); + case 6: + WRITE_REG_U8(hDevice, pConfigCommand->command[5], + CORE_DIGITAL_SENSOR_COMMAND6n(eChannelId)); + case 5: + WRITE_REG_U8(hDevice, pConfigCommand->command[4], + CORE_DIGITAL_SENSOR_COMMAND5n(eChannelId)); + case 4: + WRITE_REG_U8(hDevice, pConfigCommand->command[3], + CORE_DIGITAL_SENSOR_COMMAND4n(eChannelId)); + case 3: + WRITE_REG_U8(hDevice, pConfigCommand->command[2], + CORE_DIGITAL_SENSOR_COMMAND3n(eChannelId)); + case 2: + WRITE_REG_U8(hDevice, pConfigCommand->command[1], + CORE_DIGITAL_SENSOR_COMMAND2n(eChannelId)); + case 1: + WRITE_REG_U8(hDevice, pConfigCommand->command[0], + CORE_DIGITAL_SENSOR_COMMAND1n(eChannelId)); + case 0: + default: + break; + }; + + switch (pDataRequestCommand->commandLength) + { + case 7: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[6], + CORE_DIGITAL_SENSOR_READ_CMD7n(eChannelId)); + case 6: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[5], + CORE_DIGITAL_SENSOR_READ_CMD6n(eChannelId)); + case 5: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[4], + CORE_DIGITAL_SENSOR_READ_CMD5n(eChannelId)); + case 4: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[3], + CORE_DIGITAL_SENSOR_READ_CMD4n(eChannelId)); + case 3: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[2], + CORE_DIGITAL_SENSOR_READ_CMD3n(eChannelId)); + case 2: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[1], + CORE_DIGITAL_SENSOR_READ_CMD2n(eChannelId)); + case 1: + WRITE_REG_U8(hDevice, pDataRequestCommand->command[0], + CORE_DIGITAL_SENSOR_READ_CMD1n(eChannelId)); + case 0: + default: + break; + }; + + /* Re-enable the implicit-fallthrough warning */ +#ifndef __CC_ARM +#pragma GCC diagnostic pop +#endif + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetDigitalSensorFormat( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat) +{ + CORE_Digital_Sensor_Config_t sensorConfigReg; + + sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn); + + if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) + { + if (pDataFormat->frameLength == 0) + { + ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format"); + return ADMW_INVALID_PARAM; + } + if (pDataFormat->numDataBits == 0) + { + ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format"); + return ADMW_INVALID_PARAM; + } + + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES, + pDataFormat->frameLength - 1); + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS, + pDataFormat->numDataBits - 1); + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET, + pDataFormat->bitOffset); + + sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1; + sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1; + sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset; + sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0; + sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0; + + switch (pDataFormat->coding) + { + case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR: + sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR; + break; + case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT: + sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL; + break; + case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY: + sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY; + break; + default: + ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format"); + return ADMW_INVALID_PARAM; + } + } + else + { + sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE; + } + + WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16, + CORE_DIGITAL_SENSOR_CONFIGn(eChannelId)); + + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetDigitalCalibrationParam( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam) +{ + CORE_Calibration_Parameter_t calibrationParamReg; + + calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn); + + if (pCalibrationParam->enableCalibrationParam == false) + calibrationParamReg.Calibration_Parameter_Enable = 0; + else + calibrationParamReg.Calibration_Parameter_Enable = 1; + + CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER, + pCalibrationParam->calibrationParam); + + calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam; + + WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32, + CORE_CALIBRATION_PARAMETERn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelI2cSensorType( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_I2C_SENSOR_TYPE sensorType) +{ + CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADMW1001_I2C_SENSOR_HUMIDITY_A_DEF_L1: + case ADMW1001_I2C_SENSOR_HUMIDITY_B_DEF_L1: + case ADMW1001_I2C_SENSOR_HUMIDITY_A_DEF_L2: + case ADMW1001_I2C_SENSOR_HUMIDITY_B_DEF_L2: + case ADMW1001_I2C_SENSOR_HUMIDITY_A_ADV_L1: + case ADMW1001_I2C_SENSOR_HUMIDITY_B_ADV_L1: + case ADMW1001_I2C_SENSOR_HUMIDITY_A_ADV_L2: + case ADMW1001_I2C_SENSOR_HUMIDITY_B_ADV_L2: + case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_DEF_L1: + case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_DEF_L2: + case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_ADV_L1: + case ADMW1001_I2C_SENSOR_AMBIENTLIGHT_A_ADV_L2: + sensorTypeReg.Sensor_Type = sensorType; + break; + default: + ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelI2cSensorAddress( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + uint32_t deviceAddress) +{ + CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress); + WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId)); + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetDigitalChannelComms( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms) +{ + CORE_Digital_Sensor_Comms_t digitalSensorComms; + + digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn); + + if(pDigitalComms->useCustomCommsConfig) + { + digitalSensorComms.Digital_Sensor_Comms_En = 1; + + if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) + { + digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K; + } + else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) + { + digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K; + } + else + { + ADMW_LOG_ERROR("Invalid I2C clock speed %d specified", + pDigitalComms->i2cClockSpeed); + return ADMW_INVALID_PARAM; + } + + if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) + { + digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0; + } + else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) + { + digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1; + } + else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) + { + digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2; + } + else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) + { + digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3; + } + else + { + ADMW_LOG_ERROR("Invalid SPI mode %d specified", + pDigitalComms->spiMode); + return ADMW_INVALID_PARAM; + } + + switch (pDigitalComms->spiClock) + { + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_13MHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_13MHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_6_5MHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_6_5MHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3_25MHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3_25MHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1_625MHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1_625MHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_812KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_812KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_406KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_406KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_203KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_203KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_101KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_101KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_50KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_50KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_25KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_25KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_12KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_12KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_6KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_6KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1_5KHZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1_5KHZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_793HZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_793HZ; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_396HZ: + digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_396HZ; + break; + default: + ADMW_LOG_ERROR("Invalid SPI clock %d specified", + pDigitalComms->spiClock); + return ADMW_INVALID_PARAM; + } + + switch (pDigitalComms->uartLineConfig) + { + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N1: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N1; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N2: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N2; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8N3: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8N3; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E1: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E1; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E2: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E2; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8E3: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8E3; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O1: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O1; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O2: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O2; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_LINE_CONFIG_8O3: + digitalSensorComms.Uart_Mode = CORE_DIGITAL_SENSOR_COMMS_LINECONTROL_8O3; + break; + default: + ADMW_LOG_ERROR("Invalid UART mode %d specified", + pDigitalComms->uartLineConfig); + return ADMW_INVALID_PARAM; + } + + switch (pDigitalComms->uartBaudRate) + { + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_115200: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_115200; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_57600: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_57600; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_38400: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_38400; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_19200: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_19200; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_9600: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_9600; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_4800: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_4800; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_2400: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_2400; + break; + case ADMW1001_DIGITAL_SENSOR_COMMS_UART_BAUD_RATE_1200: + digitalSensorComms.Uart_Baud = CORE_DIGITAL_SENSOR_COMMS_UART_1200; + break; + default: + ADMW_LOG_ERROR("Invalid UART baud rate %d specified", + pDigitalComms->uartBaudRate); + return ADMW_INVALID_PARAM; + } + } + else + { + digitalSensorComms.Digital_Sensor_Comms_En = 0; + } + + WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_SetI2cChannelConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +{ + ADMW_RESULT eRet; + ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig = + &pChannelConfig->i2cChannelConfig; + + eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId, + pI2cChannelConfig->sensor); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId, + pI2cChannelConfig->deviceAddress); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId, + pChannelConfig); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId, + &pI2cChannelConfig->configurationCommand, + &pI2cChannelConfig->dataRequestCommand); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C sensor commands for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId, + &pI2cChannelConfig->dataFormat); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId, + &pI2cChannelConfig->digitalCalibrationParam); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalChannelComms(hDevice, eChannelId, + &pI2cChannelConfig->configureComms); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set I2C comms for channel %d", + eChannelId); + return eRet; + } + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelSpiSensorType( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_SPI_SENSOR_TYPE sensorType) +{ + CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADMW1001_SPI_SENSOR_PRESSURE_A_DEF_L1: + case ADMW1001_SPI_SENSOR_PRESSURE_A_DEF_L2: + case ADMW1001_SPI_SENSOR_PRESSURE_A_ADV_L1: + case ADMW1001_SPI_SENSOR_PRESSURE_A_ADV_L2: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_DEF_L1: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_DEF_L1: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_DEF_L2: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_DEF_L2: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_ADV_L1: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_ADV_L1: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_A_ADV_L2: + case ADMW1001_SPI_SENSOR_ACCELEROMETER_B_ADV_L2: + sensorTypeReg.Sensor_Type = sensorType; + break; + default: + ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_SetSpiChannelConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +{ + ADMW_RESULT eRet; + ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig = + &pChannelConfig->spiChannelConfig; + + eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId, + pSpiChannelConfig->sensor); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId, + pChannelConfig); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalSensorCommands(hDevice, eChannelId, + &pSpiChannelConfig->configurationCommand, + &pSpiChannelConfig->dataRequestCommand); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set SPI sensor commands for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId, + &pSpiChannelConfig->dataFormat); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId, + &pSpiChannelConfig->digitalCalibrationParam); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalChannelComms(hDevice, eChannelId, + &pSpiChannelConfig->configureComms); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set SPI comms for channel %d", + eChannelId); + return eRet; + } + + return ADMW_SUCCESS; +} + +static ADMW_RESULT admw_SetChannelUartSensorType( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_UART_SENSOR_TYPE sensorType) +{ + CORE_Sensor_Type_t sensorTypeReg; + + sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn); + + /* Ensure that the sensor type is valid for this channel */ + switch(sensorType) + { + case ADMW1001_UART_SENSOR_UART_CO2_A_DEF_L1: + case ADMW1001_UART_SENSOR_UART_CO2_B_DEF_L1: + case ADMW1001_UART_SENSOR_UART_CO2_A_DEF_L2: + case ADMW1001_UART_SENSOR_UART_CO2_B_DEF_L2: + case ADMW1001_UART_SENSOR_UART_CO2_A_ADV_L1: + case ADMW1001_UART_SENSOR_UART_CO2_B_ADV_L1: + case ADMW1001_UART_SENSOR_UART_CO2_A_ADV_L2: + case ADMW1001_UART_SENSOR_UART_CO2_B_ADV_L2: + sensorTypeReg.Sensor_Type = sensorType; + break; + default: + ADMW_LOG_ERROR("Unsupported UART sensor type %d specified", sensorType); + return ADMW_INVALID_PARAM; + } + + WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_SetUartChannelConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +{ + ADMW_RESULT eRet; + ADMW1001_UART_CHANNEL_CONFIG *pUartChannelConfig = + &pChannelConfig->uartChannelConfig; + + eRet = admw_SetChannelUartSensorType(hDevice, eChannelId, + pUartChannelConfig->sensor); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set UART sensor type for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId, + pChannelConfig); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set UART sensor details for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId, + &pUartChannelConfig->digitalCalibrationParam); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set UART digital calibration param for channel %d", + eChannelId); + return eRet; + } + + eRet = admw_SetDigitalChannelComms(hDevice, eChannelId, + &pUartChannelConfig->configureComms); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set UART comms for channel %d", + eChannelId); + return eRet; + } + + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetChannelThresholdLimits( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + float32_t fHighThresholdLimit, + float32_t fLowThresholdLimit) +{ + /* + * If the low/high limits are *both* set to 0 in memory, or NaNs, assume + * that they are unset, or not required, and use infinity defaults instead + */ + if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) + { + fHighThresholdLimit = INFINITY; + fLowThresholdLimit = -INFINITY; + } + else + { + if (isnan(fHighThresholdLimit)) + fHighThresholdLimit = INFINITY; + if (isnan(fLowThresholdLimit)) + fLowThresholdLimit = -INFINITY; + } + + WRITE_REG_FLOAT(hDevice, fHighThresholdLimit, + CORE_HIGH_THRESHOLD_LIMITn(eChannelId)); + WRITE_REG_FLOAT(hDevice, fLowThresholdLimit, + CORE_LOW_THRESHOLD_LIMITn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetOffsetGain( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + float32_t fOffsetAdjustment, + float32_t fGainAdjustment) +{ + /* Replace with default values if NaNs are specified (or 0.0 for gain) */ + if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f)) + fGainAdjustment = 1.0f; + if (isnan(fOffsetAdjustment)) + fOffsetAdjustment = 0.0f; + + WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId)); + WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetSensorParameter( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + float32_t fSensorParam) +{ + if (fSensorParam == 0.0f) + fSensorParam = NAN; + + WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetChannelSettlingTime( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + uint32_t nSettlingTime) +{ + CORE_Settling_Time_t settlingTimeReg; + + if (nSettlingTime < (1 << 12)) + { + settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MICROSECONDS; + } + else if (nSettlingTime < (1000 * (1 << 12))) + { + settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_MILLISECONDS; + nSettlingTime /= 1000; + } + else + { + settlingTimeReg.Settling_Time_Units = CORE_SETTLING_TIME_SECONDS; + nSettlingTime /= 1000000; + } + + CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime); + settlingTimeReg.Settling_Time = nSettlingTime; + + WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId)); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetChannelConfig( + ADMW_DEVICE_HANDLE hDevice, + ADMW1001_CHANNEL_ID eChannelId, + ADMW1001_CHANNEL_CONFIG *pChannelConfig) +{ + ADMW_RESULT eRet; + + if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) + { + eRet = admw1001_SetChannelCount(hDevice, eChannelId, + pChannelConfig->enableChannel ? + pChannelConfig->measurementsPerCycle : 0); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set measurement count for channel %d", + eChannelId); + return eRet; + } + + eRet = admw1001_SetChannelOptions(hDevice, eChannelId, + pChannelConfig->priority, + pChannelConfig->enableFFT); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set priority for channel %d", + eChannelId); + return eRet; + } + + /* If the channel is not enabled, we can skip the following steps */ + if (pChannelConfig->enableChannel || pChannelConfig->enableFFT) + { + eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId, + pChannelConfig->cycleSkipCount); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d", + eChannelId); + return eRet; + } + + switch (eChannelId) + { + case ADMW1001_CHANNEL_ID_CJC_0: + case ADMW1001_CHANNEL_ID_CJC_1: + case ADMW1001_CHANNEL_ID_SENSOR_0: + case ADMW1001_CHANNEL_ID_SENSOR_1: + case ADMW1001_CHANNEL_ID_SENSOR_2: + case ADMW1001_CHANNEL_ID_SENSOR_3: + case ADMW1001_CHANNEL_ID_VOLTAGE_0: + case ADMW1001_CHANNEL_ID_CURRENT_0: + eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig); + break; + case ADMW1001_CHANNEL_ID_I2C_0: + case ADMW1001_CHANNEL_ID_I2C_1: + eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig); + break; + case ADMW1001_CHANNEL_ID_SPI_0: + eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig); + break; + case ADMW1001_CHANNEL_ID_UART: + eRet = admw_SetUartChannelConfig(hDevice, eChannelId, pChannelConfig); + break; + default: + ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId); + return ADMW_INVALID_PARAM; + } + + eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId, + pChannelConfig->extraSettlingTime); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set settling time for channel %d", + eChannelId); + return eRet; + } + } + } + + if (pChannelConfig->enableChannel || pChannelConfig->enableFFT) + { + /* Threshold limits can be configured individually for virtual channels */ + eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId, + pChannelConfig->highThreshold, + pChannelConfig->lowThreshold); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set threshold limits for channel %d", + eChannelId); + return eRet; + } + + /* Offset and gain can be configured individually for virtual channels */ + eRet = admw1001_SetOffsetGain(hDevice, eChannelId, + pChannelConfig->offsetAdjustment, + pChannelConfig->gainAdjustment); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set offset/gain for channel %d", + eChannelId); + return eRet; + } + + /* Set sensor specific parameter */ + eRet = admw1001_SetSensorParameter(hDevice, eChannelId, + pChannelConfig->sensorParameter); + if (eRet != ADMW_SUCCESS) + { + ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d", + eChannelId); + return eRet; + } + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw_SetConfig( + ADMW_DEVICE_HANDLE const hDevice, + ADMW_CONFIG * const pConfig) +{ + ADMW1001_CONFIG *pDeviceConfig; + ADMW_PRODUCT_ID productId; + ADMW_RESULT eRet; + + if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) + { + ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)", + pConfig->productId, ADMW_PRODUCT_ID_ADMW1001); + return ADMW_INVALID_PARAM; + } + + /* Check that the actual Product ID is a match? */ + eRet = admw_GetProductID(hDevice, &productId); + if (eRet) + { + ADMW_LOG_ERROR("Failed to read device Product ID register"); + return eRet; + } + if (pConfig->productId != productId) + { + ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)", + pConfig->productId, productId); + return ADMW_INVALID_PARAM; + } + + pDeviceConfig = &pConfig->admw1001; + + eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power); + if (eRet) + { + ADMW_LOG_ERROR("Failed to set power configuration"); + return eRet; + } + + eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement); + if (eRet) + { + ADMW_LOG_ERROR("Failed to set measurement configuration"); + return eRet; + } + + eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics); + if (eRet) + { + ADMW_LOG_ERROR("Failed to set diagnostics configuration"); + return eRet; + } + + for (ADMW1001_CHANNEL_ID id = ADMW1001_CHANNEL_ID_CJC_0; + id < ADMW1001_MAX_CHANNELS; + id++) + { + eRet = admw1001_SetChannelConfig(hDevice, id, + &pDeviceConfig->channels[id]); + if (eRet) + { + ADMW_LOG_ERROR("Failed to set channel %d configuration", id); + return eRet; + } + } + + eRet = admw1001_SetFftConfig(hDevice, &pDeviceConfig->fft, + pDeviceConfig->channels); + if (eRet) + { + ADMW_LOG_ERROR("Failed to set FFT configuration"); + return eRet; + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetLutData( + ADMW_DEVICE_HANDLE const hDevice, + ADMW1001_LUT * const pLutData) +{ + ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header; + ADMW1001_LUT_TABLE *pLutTable = pLutData->tables; + unsigned actualLength = 0; + + if (pLutData->header.signature != ADMW_LUT_SIGNATURE) + { + ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)", + ADMW_LUT_SIGNATURE, pLutHeader->signature); + return ADMW_INVALID_SIGNATURE; + } + + for (unsigned i = 0; i < pLutHeader->numTables; i++) + { + ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor; + ADMW1001_LUT_TABLE_DATA *pData = &pLutTable->data; + unsigned short calculatedCrc; + + switch (pDesc->geometry) + { + case ADMW1001_LUT_GEOMETRY_COEFFS: + switch (pDesc->equation) + { + case ADMW1001_LUT_EQUATION_POLYN: + case ADMW1001_LUT_EQUATION_POLYNEXP: + case ADMW1001_LUT_EQUATION_QUADRATIC: + case ADMW1001_LUT_EQUATION_STEINHART: + case ADMW1001_LUT_EQUATION_LOGARITHMIC: + case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN: + break; + default: + ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u", + pDesc->equation, i); + return ADMW_INVALID_PARAM; + } + break; + case ADMW1001_LUT_GEOMETRY_NES_1D: + case ADMW1001_LUT_GEOMETRY_NES_2D: + case ADMW1001_LUT_GEOMETRY_ES_1D: + case ADMW1001_LUT_GEOMETRY_ES_2D: + if (pDesc->equation != ADMW1001_LUT_EQUATION_LUT) { + ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u", + pDesc->equation, i); + return ADMW_INVALID_PARAM; + } + break; + default: + ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u", + pDesc->geometry, i); + return ADMW_INVALID_PARAM; + } + + switch (pDesc->dataType) + { + case ADMW1001_LUT_DATA_TYPE_FLOAT32: + case ADMW1001_LUT_DATA_TYPE_FLOAT64: + break; + default: + ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u", + pDesc->dataType, i); + return ADMW_INVALID_PARAM; + } + + calculatedCrc = admw_crc16_ccitt(pData, pDesc->length); + if (calculatedCrc != pDesc->crc16) + { + ADMW_LOG_ERROR("CRC validation failed on LUT table %u (expected 0x%04X, actual 0x%04X)", + i, pDesc->crc16, calculatedCrc); + return ADMW_CRC_ERROR; + } + + actualLength += sizeof(*pDesc) + pDesc->length; + + /* Move to the next look-up table */ + pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length); + } + + if (actualLength != pLutHeader->totalLength) + { + ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)", + pLutHeader->totalLength, actualLength); + return ADMW_WRONG_SIZE; + } + + if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE) + { + ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded", + ADMW_LUT_MAX_SIZE); + return ADMW_WRONG_SIZE; + } + + /* Write the LUT data to the device */ + unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength; + WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET); + WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA); + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_SetLutDataRaw( + ADMW_DEVICE_HANDLE const hDevice, + ADMW1001_LUT_RAW * const pLutData) +{ + return admw1001_SetLutData(hDevice, + (ADMW1001_LUT *)pLutData); +} + +static ADMW_RESULT getLutTableSize( + ADMW1001_LUT_DESCRIPTOR * const pDesc, + ADMW1001_LUT_TABLE_DATA * const pData, + unsigned *pLength) +{ + switch (pDesc->geometry) + { + case ADMW1001_LUT_GEOMETRY_COEFFS: + if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN) + *pLength = ADMW1001_LUT_2D_POLYN_COEFF_LIST_SIZE(pData->coeffList2d); + else + *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList); + break; + case ADMW1001_LUT_GEOMETRY_NES_1D: + *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes); + break; + case ADMW1001_LUT_GEOMETRY_NES_2D: + *pLength = ADMW1001_LUT_2D_NES_SIZE(pData->lut2dNes); + break; + case ADMW1001_LUT_GEOMETRY_ES_1D: + *pLength = ADMW1001_LUT_1D_ES_SIZE(pData->lut1dEs); + break; + case ADMW1001_LUT_GEOMETRY_ES_2D: + *pLength = ADMW1001_LUT_2D_ES_SIZE(pData->lut2dEs); + break; + default: + ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n", + pDesc->geometry); + return ADMW_INVALID_PARAM; + } + + return ADMW_SUCCESS; +} + +ADMW_RESULT admw1001_AssembleLutData( + ADMW1001_LUT * pLutBuffer, + unsigned nLutBufferSize, + unsigned const nNumTables, + ADMW1001_LUT_DESCRIPTOR * const ppDesc[], + ADMW1001_LUT_TABLE_DATA * const ppData[]) +{ + ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header; + uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr); + + if (sizeof(*pHdr) > nLutBufferSize) + { + ADMW_LOG_ERROR("Insufficient LUT buffer size provided"); + return ADMW_INVALID_PARAM; + } + + /* First initialise the top-level header */ + pHdr->signature = ADMW_LUT_SIGNATURE; + pHdr->version.major = 1; + pHdr->version.minor = 0; + pHdr->numTables = 0; + pHdr->totalLength = 0; + + /* + * Walk through the list of table pointers provided, appending the table + * descriptor+data from each one to the provided LUT buffer + */ + for (unsigned i = 0; i < nNumTables; i++) + { + ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i]; + ADMW1001_LUT_TABLE_DATA * const pData = ppData[i]; + ADMW_RESULT res; + unsigned dataLength = 0; + + /* Calculate the length of the table data */ + res = getLutTableSize(pDesc, pData, &dataLength); + if (res != ADMW_SUCCESS) + return res; + + /* Fill in the table descriptor length and CRC fields */ + pDesc->length = dataLength; + pDesc->crc16 = admw_crc16_ccitt(pData, dataLength); + + if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize) + { + ADMW_LOG_ERROR("Insufficient LUT buffer size provided"); + return ADMW_INVALID_PARAM; + } + + /* Append the table to the LUT buffer (desc + data) */ + memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc)); + pHdr->totalLength += sizeof(*pDesc); + memcpy(pLutTableData + pHdr->totalLength, pData, dataLength); + pHdr->totalLength += dataLength; + + pHdr->numTables++; + } + + return ADMW_SUCCESS; +} +