Bumped Mbed FW version to 01.20.0080

Committer:
Vkadaba
Date:
Tue Apr 14 06:43:47 2020 +0000
Revision:
63:2655a04c00f5
Parent:
61:0f16a2e3b58b
Child:
64:e8670e971e22
Code clean up - part 1 working; ADMW1001_config.h; ADMW1001_lut_data; ADMW1001_sensors_types.h;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
Vkadaba 55:215da406282b 55 #include "inc/mbedVersion.h"
ADIJake 0:85855ecd3257 56 #include "crc16.h"
Vkadaba 13:97cb32670539 57 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 58 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 59
ADIJake 0:85855ecd3257 60 uint32_t getDataCnt = 0;
Vkadaba 32:52445bef314d 61 #define ADMW_VERSION_REG_VAL_SIZE 4u
Vkadaba 32:52445bef314d 62 #define ADMW_FORMATTED_VERSION_SIZE 11u
ADIJake 0:85855ecd3257 63
Vkadaba 32:52445bef314d 64 #define ADMW_SFL_READ_STATUS_SIZE 42u
ADIJake 0:85855ecd3257 65 /*
ADIJake 0:85855ecd3257 66 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 67 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 68 */
ADIJake 0:85855ecd3257 69 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 70
ADIJake 0:85855ecd3257 71 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 72 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 73
ADIJake 0:85855ecd3257 74 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 75 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 76 do { \
Vkadaba 8:2f2775c34640 77 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 78 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 79 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 80 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 81 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 82 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 83 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 84 } \
ADIJake 0:85855ecd3257 85 } while(false)
ADIJake 0:85855ecd3257 86
ADIJake 0:85855ecd3257 87 /*
ADIJake 0:85855ecd3257 88 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 89 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 90 */
ADIJake 0:85855ecd3257 91 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 92 do { \
Vkadaba 8:2f2775c34640 93 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 94 _type _regval = _val; \
Vkadaba 8:2f2775c34640 95 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 96 REG_##_name, \
ADIJake 0:85855ecd3257 97 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 98 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 99 return _res; \
ADIJake 0:85855ecd3257 100 } while(false)
ADIJake 0:85855ecd3257 101
ADIJake 0:85855ecd3257 102 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 103 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 104 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 105 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 106 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 107 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 108 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 109 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 110 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 111 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 112 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 113 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 114
ADIJake 0:85855ecd3257 115 /*
ADIJake 0:85855ecd3257 116 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 117 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 118 */
ADIJake 0:85855ecd3257 119 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 120 do { \
Vkadaba 8:2f2775c34640 121 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 122 _type _regval; \
Vkadaba 8:2f2775c34640 123 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 124 REG_##_name, \
ADIJake 0:85855ecd3257 125 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 126 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 127 return _res; \
ADIJake 0:85855ecd3257 128 _val = _regval; \
ADIJake 0:85855ecd3257 129 } while(false)
ADIJake 0:85855ecd3257 130
ADIJake 0:85855ecd3257 131 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 132 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 133 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 134 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 135 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 136 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 137 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 138 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 139 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 140 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 141 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 142 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 143
ADIJake 0:85855ecd3257 144 /*
ADIJake 0:85855ecd3257 145 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 146 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 147 */
Vkadaba 8:2f2775c34640 148 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 149 do { \
Vkadaba 8:2f2775c34640 150 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 151 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 152 REG_##_name, \
Vkadaba 6:9d393a9677f4 153 _arr, _len); \
Vkadaba 8:2f2775c34640 154 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 155 return _res; \
ADIJake 0:85855ecd3257 156 } while(false)
ADIJake 0:85855ecd3257 157
ADIJake 0:85855ecd3257 158 /*
ADIJake 0:85855ecd3257 159 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 160 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 161 */
Vkadaba 6:9d393a9677f4 162 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 163 do { \
Vkadaba 8:2f2775c34640 164 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 165 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 166 REG##_name, \
Vkadaba 6:9d393a9677f4 167 _arr, _len); \
Vkadaba 8:2f2775c34640 168 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 169 return _res; \
ADIJake 0:85855ecd3257 170 } while(false)
ADIJake 0:85855ecd3257 171
Vkadaba 8:2f2775c34640 172 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 173 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 174
Vkadaba 8:2f2775c34640 175 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 176 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 177
Vkadaba 8:2f2775c34640 178 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 179 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 180
Vkadaba 8:2f2775c34640 181 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 182 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 183
Vkadaba 8:2f2775c34640 184 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 185 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 186
ADIJake 0:85855ecd3257 187
Vkadaba 32:52445bef314d 188 //typedef struct {
Vkadaba 32:52445bef314d 189 // unsigned nDeviceIndex;
Vkadaba 32:52445bef314d 190 // ADMW_SPI_HANDLE hSpi;
Vkadaba 32:52445bef314d 191 // ADMW_GPIO_HANDLE hGpio;
Vkadaba 32:52445bef314d 192 //
Vkadaba 32:52445bef314d 193 //} ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 194
Vkadaba 5:0728bde67bdb 195 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 196
ADIJake 0:85855ecd3257 197 /*
Vkadaba 5:0728bde67bdb 198 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 199 */
Vkadaba 5:0728bde67bdb 200 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 201 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 202 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 203 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 204 {
Vkadaba 5:0728bde67bdb 205 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 206 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 207
Vkadaba 5:0728bde67bdb 208 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 209 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 210
ADIJake 0:85855ecd3257 211 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 212 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 213
Vkadaba 5:0728bde67bdb 214 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 215 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 216 return eRet;
ADIJake 0:85855ecd3257 217
Vkadaba 5:0728bde67bdb 218 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 219 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 220 return eRet;
ADIJake 0:85855ecd3257 221
Vkadaba 5:0728bde67bdb 222 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 223 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 224 return eRet;
ADIJake 0:85855ecd3257 225
ADIJake 0:85855ecd3257 226 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 227 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 228 }
ADIJake 0:85855ecd3257 229
ADIJake 0:85855ecd3257 230 /*
ADIJake 0:85855ecd3257 231 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 232 */
Vkadaba 5:0728bde67bdb 233 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 234 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 235 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 236 bool * const pbAsserted)
ADIJake 0:85855ecd3257 237 {
Vkadaba 5:0728bde67bdb 238 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 239
Vkadaba 5:0728bde67bdb 240 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 241 }
ADIJake 0:85855ecd3257 242
ADIJake 0:85855ecd3257 243 /*
ADIJake 0:85855ecd3257 244 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 245 */
Vkadaba 5:0728bde67bdb 246 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 247 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 248 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 249 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 250 void * const pCallbackParam)
ADIJake 0:85855ecd3257 251 {
Vkadaba 5:0728bde67bdb 252 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 253
Vkadaba 23:bb685f35b08b 254 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 255 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 256 pCallbackParam);
Vkadaba 23:bb685f35b08b 257 } else {
Vkadaba 5:0728bde67bdb 258 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 259 }
ADIJake 0:85855ecd3257 260 }
ADIJake 0:85855ecd3257 261
Vkadaba 8:2f2775c34640 262 /*!
Vkadaba 8:2f2775c34640 263 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 264 *
Vkadaba 8:2f2775c34640 265 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 266 *
Vkadaba 8:2f2775c34640 267 * @return Status
Vkadaba 8:2f2775c34640 268 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 269 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 270 *
Vkadaba 23:bb685f35b08b 271 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 272 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 273 *
ADIJake 0:85855ecd3257 274 */
Vkadaba 8:2f2775c34640 275 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 276 {
Vkadaba 5:0728bde67bdb 277 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 278 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 279
ADIJake 0:85855ecd3257 280 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 281 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 282 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 283 return eRet;
ADIJake 0:85855ecd3257 284
Vkadaba 5:0728bde67bdb 285 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 286
Vkadaba 5:0728bde67bdb 287 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 288 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 289 return eRet;
ADIJake 0:85855ecd3257 290
Vkadaba 5:0728bde67bdb 291 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 292 }
ADIJake 0:85855ecd3257 293
ADIJake 0:85855ecd3257 294 /*!
Vkadaba 8:2f2775c34640 295 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 296 *
ADIJake 0:85855ecd3257 297 * @param[in]
ADIJake 0:85855ecd3257 298 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 299 *
ADIJake 0:85855ecd3257 300 * @return Status
Vkadaba 5:0728bde67bdb 301 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 302 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 303 *
Vkadaba 8:2f2775c34640 304 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 305 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 306 * and command running.
ADIJake 0:85855ecd3257 307 *
ADIJake 0:85855ecd3257 308 */
Vkadaba 5:0728bde67bdb 309 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 310 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 311 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 312 {
Vkadaba 8:2f2775c34640 313 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 314 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 315
ADIJake 0:85855ecd3257 316 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 317
ADIJake 0:85855ecd3257 318 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 319 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 320 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 321 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 322 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 323 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 324 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 325 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 326
Vkadaba 8:2f2775c34640 327 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 328 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 329 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 330
Vkadaba 23:bb685f35b08b 331 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 332 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 333 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 334 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 335 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 336
Vkadaba 32:52445bef314d 337 if (alertDetailReg.ADC_Near_Overrange)
Vkadaba 32:52445bef314d 338 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_NEAR_OVERRANGE;
Vkadaba 32:52445bef314d 339 if (alertDetailReg.Sensor_UnderRange)
Vkadaba 32:52445bef314d 340 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_UNDERRANGE;
Vkadaba 32:52445bef314d 341 if (alertDetailReg.Sensor_OverRange)
Vkadaba 32:52445bef314d 342 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_OVERRANGE ;
Vkadaba 32:52445bef314d 343 if (alertDetailReg.CJ_Soft_Fault)
Vkadaba 32:52445bef314d 344 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_SOFT_FAULT ;
Vkadaba 32:52445bef314d 345 if (alertDetailReg.CJ_Hard_Fault)
Vkadaba 32:52445bef314d 346 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_HARD_FAULT;
Vkadaba 32:52445bef314d 347 if (alertDetailReg.ADC_Input_OverRange)
Vkadaba 32:52445bef314d 348 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_INPUT_OVERRANGE ;
Vkadaba 32:52445bef314d 349 if (alertDetailReg.Sensor_HardFault)
Vkadaba 32:52445bef314d 350 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_HARDFAULT;
Vkadaba 32:52445bef314d 351
ADIJake 0:85855ecd3257 352 }
ADIJake 0:85855ecd3257 353 }
ADIJake 0:85855ecd3257 354
Vkadaba 32:52445bef314d 355 if (statusReg.Configuration_Error)
Vkadaba 5:0728bde67bdb 356 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
Vkadaba 32:52445bef314d 357 if (statusReg.LUT_Error)
Vkadaba 5:0728bde67bdb 358 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 359 }
ADIJake 0:85855ecd3257 360
Vkadaba 23:bb685f35b08b 361 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 362 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 363
Vkadaba 8:2f2775c34640 364 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 365 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 366 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 367
ADIJake 0:85855ecd3257 368 }
Vkadaba 5:0728bde67bdb 369 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 370 }
ADIJake 0:85855ecd3257 371
Vkadaba 5:0728bde67bdb 372 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 373 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 374 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 375 {
Vkadaba 8:2f2775c34640 376 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 377
ADIJake 0:85855ecd3257 378 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 379
ADIJake 0:85855ecd3257 380 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 381 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 382 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 383
ADIJake 0:85855ecd3257 384 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 385
Vkadaba 5:0728bde67bdb 386 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 387 }
ADIJake 0:85855ecd3257 388
Vkadaba 50:d84305e5e1c0 389 ADMW_RESULT admw_deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 32:52445bef314d 390 {
Vkadaba 32:52445bef314d 391 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 32:52445bef314d 392 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 32:52445bef314d 393 ADMW_RESULT res;
Vkadaba 32:52445bef314d 394 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 32:52445bef314d 395 if(res != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 396 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 32:52445bef314d 397 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 32:52445bef314d 398 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 399 } else {
Vkadaba 32:52445bef314d 400 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 32:52445bef314d 401 strcat(nData, buffer);
Vkadaba 42:c9c5a22e539e 402 ADMW_LOG_INFO("Firmware Version Id is %X.%X.%X",nData[3],nData[2],nData[0]);
Vkadaba 32:52445bef314d 403 }
Vkadaba 32:52445bef314d 404 return ADMW_SUCCESS;
Vkadaba 32:52445bef314d 405 }
Vkadaba 55:215da406282b 406
Vkadaba 5:0728bde67bdb 407 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 408 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 409 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 410 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 411 {
Vkadaba 8:2f2775c34640 412 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 413 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 414 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 415
ADIJake 0:85855ecd3257 416 /*
ADIJake 0:85855ecd3257 417 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 418 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 419 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 420 */
Vkadaba 23:bb685f35b08b 421 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 422 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 423 if (eRet)
ADIJake 0:85855ecd3257 424 return eRet;
ADIJake 0:85855ecd3257 425
ADIJake 0:85855ecd3257 426 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 427 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 428 }
ADIJake 0:85855ecd3257 429
ADIJake 0:85855ecd3257 430 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 431 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 432
Vkadaba 23:bb685f35b08b 433 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 434 do {
Vkadaba 50:d84305e5e1c0 435 /* Allow a minimum 100usec delay for status update before checking */
Vkadaba 50:d84305e5e1c0 436 admw_TimeDelayUsec(100);
Vkadaba 5:0728bde67bdb 437
Vkadaba 5:0728bde67bdb 438 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 439 if (eRet)
ADIJake 0:85855ecd3257 440 return eRet;
ADIJake 0:85855ecd3257 441 } while (bCommandRunning);
ADIJake 0:85855ecd3257 442 }
ADIJake 0:85855ecd3257 443
Vkadaba 5:0728bde67bdb 444 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 445 }
ADIJake 0:85855ecd3257 446
Vkadaba 5:0728bde67bdb 447 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 448 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 449 {
Vkadaba 5:0728bde67bdb 450 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 451 }
ADIJake 0:85855ecd3257 452
ADIJake 0:85855ecd3257 453 /*!
ADIJake 0:85855ecd3257 454 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 455 *
ADIJake 0:85855ecd3257 456 * @param[out]
ADIJake 0:85855ecd3257 457 *
ADIJake 0:85855ecd3257 458 * @return Status
Vkadaba 5:0728bde67bdb 459 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 460 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 461 *
ADIJake 0:85855ecd3257 462 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 463 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 464 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 465 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 466 *
ADIJake 0:85855ecd3257 467 */
Vkadaba 5:0728bde67bdb 468 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 469 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 470 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 471 {
Vkadaba 23:bb685f35b08b 472 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 473 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 474 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 475 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 476 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 477 default:
Vkadaba 23:bb685f35b08b 478 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 479 eMeasurementMode);
Vkadaba 23:bb685f35b08b 480 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 481 }
ADIJake 0:85855ecd3257 482 }
ADIJake 0:85855ecd3257 483
ADIJake 0:85855ecd3257 484 /*
ADIJake 0:85855ecd3257 485 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 486 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 487 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 488 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 489 */
Vkadaba 5:0728bde67bdb 490 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 491 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 492 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 493 {
Vkadaba 23:bb685f35b08b 494 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 495 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 496 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 497 default:
Vkadaba 5:0728bde67bdb 498 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 499 eSlotId);
Vkadaba 5:0728bde67bdb 500 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 501 }
ADIJake 0:85855ecd3257 502 }
ADIJake 0:85855ecd3257 503
ADIJake 0:85855ecd3257 504 /*
ADIJake 0:85855ecd3257 505 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 506 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 507 */
Vkadaba 5:0728bde67bdb 508 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 509 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 510 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 511 {
Vkadaba 23:bb685f35b08b 512 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 513 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 514 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 515 default:
Vkadaba 5:0728bde67bdb 516 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 517 eSlotId);
Vkadaba 5:0728bde67bdb 518 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 519 }
ADIJake 0:85855ecd3257 520 }
ADIJake 0:85855ecd3257 521
ADIJake 0:85855ecd3257 522 /*
ADIJake 0:85855ecd3257 523 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 524 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 525 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 526 */
Vkadaba 5:0728bde67bdb 527 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 528 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 529 {
Vkadaba 5:0728bde67bdb 530 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 531 }
ADIJake 0:85855ecd3257 532
ADIJake 0:85855ecd3257 533 /*
ADIJake 0:85855ecd3257 534 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 535 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 536 */
Vkadaba 5:0728bde67bdb 537 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 538 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 539 {
Vkadaba 5:0728bde67bdb 540 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 541 }
ADIJake 0:85855ecd3257 542
ADIJake 0:85855ecd3257 543 /*
ADIJake 0:85855ecd3257 544 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 545 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 546 */
Vkadaba 5:0728bde67bdb 547 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 548 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 549 {
Vkadaba 5:0728bde67bdb 550 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 551 }
ADIJake 0:85855ecd3257 552
ADIJake 0:85855ecd3257 553 /*
Vkadaba 32:52445bef314d 554 *
Vkadaba 32:52445bef314d 555 */
Vkadaba 32:52445bef314d 556 ADMW_RESULT admw1001_sendRun( ADMW_DEVICE_HANDLE const hDevice)
Vkadaba 32:52445bef314d 557 {
Vkadaba 32:52445bef314d 558 bool bitCommand;
Vkadaba 32:52445bef314d 559 ADMW_RESULT eRet;
Vkadaba 32:52445bef314d 560 uint8_t pinreg = 0x1;
Vkadaba 32:52445bef314d 561
Vkadaba 32:52445bef314d 562 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 32:52445bef314d 563 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 32:52445bef314d 564 uint16_t nSize;
Vkadaba 32:52445bef314d 565
Vkadaba 32:52445bef314d 566 //Construct Read Status command
Vkadaba 32:52445bef314d 567 DataBuffer[0] = 0x07;
Vkadaba 32:52445bef314d 568 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 32:52445bef314d 569
Vkadaba 32:52445bef314d 570 DataBuffer[2] = 0x00;
Vkadaba 32:52445bef314d 571 DataBuffer[3] = 0x00; //Data words
Vkadaba 32:52445bef314d 572
Vkadaba 32:52445bef314d 573 DataBuffer[4] = 0x45;
Vkadaba 32:52445bef314d 574 DataBuffer[5] = 0x00; //Command ID
Vkadaba 32:52445bef314d 575
Vkadaba 32:52445bef314d 576 DataBuffer[6] = 0x00;
Vkadaba 32:52445bef314d 577 DataBuffer[7] = 0x50;
Vkadaba 32:52445bef314d 578 DataBuffer[8] = 0x00;
Vkadaba 32:52445bef314d 579 DataBuffer[9] = 0x00; //Address
Vkadaba 32:52445bef314d 580
Vkadaba 32:52445bef314d 581 DataBuffer[10] = 0x95;
Vkadaba 32:52445bef314d 582 DataBuffer[11] = 0x00;
Vkadaba 32:52445bef314d 583 DataBuffer[12] = 0x00;
Vkadaba 32:52445bef314d 584 DataBuffer[13] = 0x00; //Checksum
Vkadaba 32:52445bef314d 585
Vkadaba 32:52445bef314d 586 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 32:52445bef314d 587
Vkadaba 32:52445bef314d 588 do {
Vkadaba 32:52445bef314d 589 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 32:52445bef314d 590 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 32:52445bef314d 591 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 32:52445bef314d 592 if( eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 593 return eRet;
Vkadaba 32:52445bef314d 594 }
Vkadaba 32:52445bef314d 595
Vkadaba 32:52445bef314d 596 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 32:52445bef314d 597 // pinreg == '0x00' - Error occured in SFL
Vkadaba 32:52445bef314d 598 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 32:52445bef314d 599 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 32:52445bef314d 600 // pinreg == '0x03' - SFL not booted
Vkadaba 32:52445bef314d 601
Vkadaba 32:52445bef314d 602 pinreg = (bitCommand);
Vkadaba 32:52445bef314d 603
Vkadaba 32:52445bef314d 604 } while(pinreg != 0x0u);
Vkadaba 32:52445bef314d 605
Vkadaba 32:52445bef314d 606 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 32:52445bef314d 607 nSize, false);
Vkadaba 32:52445bef314d 608
Vkadaba 32:52445bef314d 609 return eRet;
Vkadaba 32:52445bef314d 610 }
Vkadaba 32:52445bef314d 611
Vkadaba 32:52445bef314d 612 /*
ADIJake 0:85855ecd3257 613 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 614 * This may be called at any time.
ADIJake 0:85855ecd3257 615 */
Vkadaba 32:52445bef314d 616
Vkadaba 5:0728bde67bdb 617 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 618 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 619 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 620 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 621 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 622 uint32_t const nRequested,
ADIJake 0:85855ecd3257 623 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 624 {
Vkadaba 5:0728bde67bdb 625 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 626 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 627 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 628 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 629 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 630 command >> 8,
ADIJake 0:85855ecd3257 631 command & 0xFF
ADIJake 0:85855ecd3257 632 };
ADIJake 0:85855ecd3257 633 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 634 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 635 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 636
ADIJake 0:85855ecd3257 637 do {
Vkadaba 5:0728bde67bdb 638 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 639 sizeof(command), false);
Vkadaba 23:bb685f35b08b 640 if (eRet) {
Vkadaba 5:0728bde67bdb 641 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 642 return eRet;
ADIJake 0:85855ecd3257 643 }
Vkadaba 5:0728bde67bdb 644 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 645 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 646 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 50:d84305e5e1c0 647
Vkadaba 23:bb685f35b08b 648 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 649 bool bHoldCs = true;
ADIJake 0:85855ecd3257 650 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 651 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 652 bHoldCs = false;
ADIJake 0:85855ecd3257 653
ADIJake 0:85855ecd3257 654 getDataCnt++;
ADIJake 0:85855ecd3257 655
Vkadaba 5:0728bde67bdb 656 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 657 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 658 if (eRet) {
Vkadaba 5:0728bde67bdb 659 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 660 return eRet;
ADIJake 0:85855ecd3257 661 }
ADIJake 0:85855ecd3257 662
Vkadaba 23:bb685f35b08b 663 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 664 /*
ADIJake 0:85855ecd3257 665 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 666 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 667 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 668 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 669 */
Vkadaba 5:0728bde67bdb 670 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 671 break;
ADIJake 0:85855ecd3257 672 }
ADIJake 0:85855ecd3257 673
Vkadaba 5:0728bde67bdb 674 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 675
Vkadaba 5:0728bde67bdb 676 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 677 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 678 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 679 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 680 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 681
ADIJake 0:85855ecd3257 682 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 683 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 684 else
ADIJake 0:85855ecd3257 685 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 686
ADIJake 0:85855ecd3257 687 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 688 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 689
ADIJake 0:85855ecd3257 690 nValidSamples++;
ADIJake 0:85855ecd3257 691
Vkadaba 50:d84305e5e1c0 692 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 693 }
ADIJake 0:85855ecd3257 694 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 695
ADIJake 0:85855ecd3257 696 return eRet;
ADIJake 0:85855ecd3257 697 }
ADIJake 0:85855ecd3257 698
ADIJake 0:85855ecd3257 699 /*
Vkadaba 5:0728bde67bdb 700 * Close the given ADMW device.
ADIJake 0:85855ecd3257 701 */
Vkadaba 5:0728bde67bdb 702 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 703 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 704 {
Vkadaba 5:0728bde67bdb 705 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 706
Vkadaba 5:0728bde67bdb 707 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 708 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 709 admw_LogClose();
Vkadaba 5:0728bde67bdb 710
Vkadaba 5:0728bde67bdb 711 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 712 }
ADIJake 0:85855ecd3257 713
Vkadaba 5:0728bde67bdb 714 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 715 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 716 uint16_t nAddress,
ADIJake 0:85855ecd3257 717 void *pData,
ADIJake 0:85855ecd3257 718 unsigned nLength)
ADIJake 0:85855ecd3257 719 {
Vkadaba 5:0728bde67bdb 720 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 721 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 722 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 723 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 724 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 725 command >> 8,
ADIJake 0:85855ecd3257 726 command & 0xFF
ADIJake 0:85855ecd3257 727 };
ADIJake 0:85855ecd3257 728 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 729
ADIJake 0:85855ecd3257 730 do {
Vkadaba 5:0728bde67bdb 731 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 732 sizeof(command), false);
Vkadaba 23:bb685f35b08b 733 if (eRet) {
Vkadaba 5:0728bde67bdb 734 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 735 nAddress);
ADIJake 0:85855ecd3257 736 return eRet;
ADIJake 0:85855ecd3257 737 }
ADIJake 0:85855ecd3257 738
Vkadaba 5:0728bde67bdb 739 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 740 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 741 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 742
Vkadaba 5:0728bde67bdb 743 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 744 if (eRet) {
Vkadaba 5:0728bde67bdb 745 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 746 nLength, nAddress);
ADIJake 0:85855ecd3257 747 return eRet;
ADIJake 0:85855ecd3257 748 }
ADIJake 0:85855ecd3257 749
Vkadaba 5:0728bde67bdb 750 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 751
Vkadaba 5:0728bde67bdb 752 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 753 }
ADIJake 0:85855ecd3257 754
Vkadaba 6:9d393a9677f4 755 ADMW_RESULT admw1001_Write_Debug_Register(
Vkadaba 6:9d393a9677f4 756 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 757 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 758 void *pData,
Vkadaba 6:9d393a9677f4 759 unsigned nLength)
Vkadaba 6:9d393a9677f4 760 {
Vkadaba 6:9d393a9677f4 761 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 762 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 763 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_WRITE_CMD |
Vkadaba 23:bb685f35b08b 764 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 765 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 766 command >> 8,
Vkadaba 6:9d393a9677f4 767 command & 0xFF
Vkadaba 6:9d393a9677f4 768 };
Vkadaba 6:9d393a9677f4 769 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 770
Vkadaba 6:9d393a9677f4 771 do {
Vkadaba 6:9d393a9677f4 772 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 773 sizeof(command), false);
Vkadaba 23:bb685f35b08b 774 if (eRet) {
Vkadaba 6:9d393a9677f4 775 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 776 nAddress);
Vkadaba 6:9d393a9677f4 777 return eRet;
Vkadaba 6:9d393a9677f4 778 }
Vkadaba 48:5731f1aa2c5a 779 wait_ms(100);
Vkadaba 48:5731f1aa2c5a 780 //admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 781 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 782 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 783
Vkadaba 6:9d393a9677f4 784 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 785 if (eRet) {
Vkadaba 6:9d393a9677f4 786 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 787 nLength, nAddress);
Vkadaba 6:9d393a9677f4 788 return eRet;
Vkadaba 6:9d393a9677f4 789 }
Vkadaba 6:9d393a9677f4 790
Vkadaba 6:9d393a9677f4 791 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 792
Vkadaba 6:9d393a9677f4 793 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 794 }
Vkadaba 5:0728bde67bdb 795 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 796 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 797 uint16_t nAddress,
ADIJake 0:85855ecd3257 798 void *pData,
ADIJake 0:85855ecd3257 799 unsigned nLength)
ADIJake 0:85855ecd3257 800 {
Vkadaba 5:0728bde67bdb 801 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 802 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 803 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 804 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 805 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 806 command >> 8,
ADIJake 0:85855ecd3257 807 command & 0xFF
ADIJake 0:85855ecd3257 808 };
ADIJake 0:85855ecd3257 809 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 810
ADIJake 0:85855ecd3257 811 do {
Vkadaba 5:0728bde67bdb 812 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 813 sizeof(command), false);
Vkadaba 23:bb685f35b08b 814 if (eRet) {
Vkadaba 5:0728bde67bdb 815 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 816 nAddress);
ADIJake 0:85855ecd3257 817 return eRet;
ADIJake 0:85855ecd3257 818 }
ADIJake 0:85855ecd3257 819
Vkadaba 5:0728bde67bdb 820 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 821 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 822 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 823
Vkadaba 5:0728bde67bdb 824 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 825 if (eRet) {
Vkadaba 5:0728bde67bdb 826 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 827 nLength, nAddress);
ADIJake 0:85855ecd3257 828 return eRet;
ADIJake 0:85855ecd3257 829 }
ADIJake 0:85855ecd3257 830
Vkadaba 5:0728bde67bdb 831 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 832
Vkadaba 5:0728bde67bdb 833 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 834 }
ADIJake 0:85855ecd3257 835
Vkadaba 6:9d393a9677f4 836 ADMW_RESULT admw1001_Read_Debug_Register(
Vkadaba 6:9d393a9677f4 837 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 838 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 839 void *pData,
Vkadaba 6:9d393a9677f4 840 unsigned nLength)
Vkadaba 6:9d393a9677f4 841 {
Vkadaba 6:9d393a9677f4 842 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 843 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 844 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_READ_CMD |
Vkadaba 23:bb685f35b08b 845 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 846 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 847 command >> 8,
Vkadaba 6:9d393a9677f4 848 command & 0xFF
Vkadaba 6:9d393a9677f4 849 };
Vkadaba 6:9d393a9677f4 850 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 851
Vkadaba 6:9d393a9677f4 852 do {
Vkadaba 6:9d393a9677f4 853 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 854 sizeof(command), false);
Vkadaba 23:bb685f35b08b 855 if (eRet) {
Vkadaba 6:9d393a9677f4 856 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 857 nAddress);
Vkadaba 6:9d393a9677f4 858 return eRet;
Vkadaba 6:9d393a9677f4 859 }
Vkadaba 6:9d393a9677f4 860
Vkadaba 6:9d393a9677f4 861 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 862 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 863 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 864
Vkadaba 6:9d393a9677f4 865 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 866 if (eRet) {
Vkadaba 6:9d393a9677f4 867 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 868 nLength, nAddress);
Vkadaba 6:9d393a9677f4 869 return eRet;
Vkadaba 6:9d393a9677f4 870 }
Vkadaba 6:9d393a9677f4 871
Vkadaba 6:9d393a9677f4 872 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 873
Vkadaba 6:9d393a9677f4 874 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 875 }
Vkadaba 5:0728bde67bdb 876 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 5:0728bde67bdb 877 ADMW_DEVICE_HANDLE const hDevice,
ADIJake 0:85855ecd3257 878 bool * const bReady)
ADIJake 0:85855ecd3257 879 {
Vkadaba 5:0728bde67bdb 880 ADMW_SPI_Chip_Type_t chipTypeReg;
ADIJake 0:85855ecd3257 881
ADIJake 0:85855ecd3257 882 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
ADIJake 0:85855ecd3257 883 /* If we read this register successfully, assume the device is ready */
Vkadaba 5:0728bde67bdb 884 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 5:0728bde67bdb 885
Vkadaba 5:0728bde67bdb 886 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 887 }
ADIJake 0:85855ecd3257 888
Vkadaba 5:0728bde67bdb 889 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 890 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 891 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 892 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 893 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 894 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 895 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 896 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 897 {
ADIJake 0:85855ecd3257 898 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 899 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 900
Vkadaba 8:2f2775c34640 901 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 902 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 903
Vkadaba 57:c6275de14bc5 904 if (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE)
Vkadaba 50:d84305e5e1c0 905 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
Vkadaba 50:d84305e5e1c0 906 else
Vkadaba 50:d84305e5e1c0 907 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 908
Vkadaba 23:bb685f35b08b 909 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 50:d84305e5e1c0 910 *pnBytesPerSample = 8;
Vkadaba 23:bb685f35b08b 911 } else {
Vkadaba 50:d84305e5e1c0 912 *pnBytesPerSample = 12;
Vkadaba 6:9d393a9677f4 913 }
Vkadaba 23:bb685f35b08b 914
Vkadaba 8:2f2775c34640 915 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 916 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 917 chId++) {
Vkadaba 8:2f2775c34640 918 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 919 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 920
Vkadaba 23:bb685f35b08b 921
Vkadaba 8:2f2775c34640 922 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 923 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 924
Vkadaba 41:df78b7d7b675 925 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) {
Vkadaba 8:2f2775c34640 926 unsigned nActualChannels = 1;
Vkadaba 63:2655a04c00f5 927
Vkadaba 8:2f2775c34640 928 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 929
Vkadaba 8:2f2775c34640 930 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 931 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 932 }
Vkadaba 6:9d393a9677f4 933 }
Vkadaba 23:bb685f35b08b 934
Vkadaba 23:bb685f35b08b 935 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 936 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 937 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 938 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 939 }
Vkadaba 23:bb685f35b08b 940
Vkadaba 6:9d393a9677f4 941 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 942
Vkadaba 23:bb685f35b08b 943 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 944 *pnSamplesPerDataready = 1;
Vkadaba 50:d84305e5e1c0 945 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 946 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 50:d84305e5e1c0 947 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 948 ADMW_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
Vkadaba 50:d84305e5e1c0 949
Vkadaba 50:d84305e5e1c0 950 READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 951
Vkadaba 50:d84305e5e1c0 952 *pnSamplesPerDataready = nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
Vkadaba 23:bb685f35b08b 953 } else {
Vkadaba 50:d84305e5e1c0 954 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 955 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 956 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 957 }
Vkadaba 23:bb685f35b08b 958
Vkadaba 23:bb685f35b08b 959 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 960 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 50:d84305e5e1c0 961 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 962 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 963 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 964 *peDataReadyMode = ADMW1001_DATAREADY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 965 } else {
Vkadaba 50:d84305e5e1c0 966 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 967 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 968 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 969 }
Vkadaba 23:bb685f35b08b 970
Vkadaba 5:0728bde67bdb 971 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 972 }
ADIJake 0:85855ecd3257 973
Vkadaba 5:0728bde67bdb 974 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 975 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 976 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 977 {
Vkadaba 5:0728bde67bdb 978 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 979 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 980
ADIJake 0:85855ecd3257 981 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 982 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 983
Vkadaba 23:bb685f35b08b 984 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 985 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 986 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 987 }
ADIJake 0:85855ecd3257 988
Vkadaba 5:0728bde67bdb 989 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 990 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 991 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 992 {
Vkadaba 50:d84305e5e1c0 993 ADMW_CORE_Power_Config_t powerConfigReg = { 0 };
Vkadaba 5:0728bde67bdb 994
Vkadaba 23:bb685f35b08b 995 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 996 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 997 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 998 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 999 } else {
Vkadaba 5:0728bde67bdb 1000 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 1001 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1002 }
ADIJake 0:85855ecd3257 1003
ADIJake 0:85855ecd3257 1004 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 1005
Vkadaba 5:0728bde67bdb 1006 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1007 }
ADIJake 0:85855ecd3257 1008
Vkadaba 5:0728bde67bdb 1009 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 1010 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1011 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 1012 {
Vkadaba 5:0728bde67bdb 1013 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1014
Vkadaba 5:0728bde67bdb 1015 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 1016 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1017 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 1018 return eRet;
ADIJake 0:85855ecd3257 1019 }
ADIJake 0:85855ecd3257 1020
Vkadaba 5:0728bde67bdb 1021 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1022 }
ADIJake 0:85855ecd3257 1023
Vkadaba 33:df7a00f1b8e1 1024 static ADMW_RESULT admw_SetRSenseValue(
Vkadaba 33:df7a00f1b8e1 1025 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 33:df7a00f1b8e1 1026 float32_t RSenseValue)
Vkadaba 33:df7a00f1b8e1 1027 {
Vkadaba 41:df78b7d7b675 1028 ADMW_CORE_External_Reference_Resistor_t RefResistorConfigReg;
Vkadaba 41:df78b7d7b675 1029
Vkadaba 41:df78b7d7b675 1030 RefResistorConfigReg.Ext_Refin1_Value = RSenseValue;
Vkadaba 41:df78b7d7b675 1031
Vkadaba 41:df78b7d7b675 1032 WRITE_REG_FLOAT(hDevice, RefResistorConfigReg.VALUE32, CORE_EXTERNAL_REFERENCE_RESISTOR);
Vkadaba 41:df78b7d7b675 1033
Vkadaba 41:df78b7d7b675 1034 return ADMW_SUCCESS;
Vkadaba 33:df7a00f1b8e1 1035
Vkadaba 33:df7a00f1b8e1 1036 }
Vkadaba 5:0728bde67bdb 1037 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 1038 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1039 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 1040 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 1041 {
Vkadaba 8:2f2775c34640 1042 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 1043
ADIJake 0:85855ecd3257 1044 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 1045
Vkadaba 23:bb685f35b08b 1046 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 1047 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 1048 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 1049 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 1050 } else {
Vkadaba 5:0728bde67bdb 1051 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 1052 eOperatingMode);
Vkadaba 5:0728bde67bdb 1053 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1054 }
ADIJake 0:85855ecd3257 1055
Vkadaba 23:bb685f35b08b 1056 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 1057 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 1058 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 1059 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 1060 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 1061 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 1062 } else {
Vkadaba 5:0728bde67bdb 1063 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 1064 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1065 }
ADIJake 0:85855ecd3257 1066
ADIJake 0:85855ecd3257 1067 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 1068
Vkadaba 5:0728bde67bdb 1069 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1070 }
ADIJake 0:85855ecd3257 1071
Vkadaba 8:2f2775c34640 1072 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1073 uint32_t nCycleInterval,
Vkadaba 50:d84305e5e1c0 1074 bool vBiasEnable,
Vkadaba 43:e1789b7214cf 1075 bool vPostExecCurrentState,
Vkadaba 43:e1789b7214cf 1076 bool vGroundSwitch)
ADIJake 0:85855ecd3257 1077 {
Vkadaba 8:2f2775c34640 1078 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 1079
ADIJake 0:85855ecd3257 1080 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1081
Vkadaba 43:e1789b7214cf 1082 if (nCycleInterval < (1 << 12)) {
Vkadaba 43:e1789b7214cf 1083 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
Vkadaba 23:bb685f35b08b 1084 } else {
Vkadaba 43:e1789b7214cf 1085 ADMW_LOG_ERROR("Invalid nCycleInterval %d specified", nCycleInterval);
Vkadaba 50:d84305e5e1c0 1086 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1087 }
ADIJake 0:85855ecd3257 1088
Vkadaba 23:bb685f35b08b 1089 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1090 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1091 }
ADIJake 0:85855ecd3257 1092 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1093 cycleControlReg.Cycle_Time = nCycleInterval;
Vkadaba 50:d84305e5e1c0 1094
Vkadaba 50:d84305e5e1c0 1095 switch(vPostExecCurrentState) {
Vkadaba 50:d84305e5e1c0 1096 case ADMW1001_ADC_EXC_STATE_CYCLE_POWER:
Vkadaba 50:d84305e5e1c0 1097 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_POWERCYCLE;
Vkadaba 50:d84305e5e1c0 1098 break;
Vkadaba 50:d84305e5e1c0 1099 case ADMW1001_ADC_EXC_STATE_ALWAYS_ON:
Vkadaba 50:d84305e5e1c0 1100 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_ALWAYSON;
Vkadaba 50:d84305e5e1c0 1101 break;
Vkadaba 50:d84305e5e1c0 1102 default:
Vkadaba 50:d84305e5e1c0 1103 ADMW_LOG_ERROR("Invalid Post measurement Excitation Current state %d specified",
Vkadaba 50:d84305e5e1c0 1104 vPostExecCurrentState);
Vkadaba 50:d84305e5e1c0 1105 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1106 }
Vkadaba 50:d84305e5e1c0 1107
Vkadaba 50:d84305e5e1c0 1108 switch(vGroundSwitch) {
Vkadaba 50:d84305e5e1c0 1109 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 50:d84305e5e1c0 1110 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_OPEN_SW;
Vkadaba 50:d84305e5e1c0 1111 break;
Vkadaba 50:d84305e5e1c0 1112 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 50:d84305e5e1c0 1113 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_CLOSE_SW;
Vkadaba 50:d84305e5e1c0 1114 break;
Vkadaba 50:d84305e5e1c0 1115 default:
Vkadaba 50:d84305e5e1c0 1116 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 50:d84305e5e1c0 1117 vGroundSwitch);
Vkadaba 50:d84305e5e1c0 1118 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1119 }
Vkadaba 50:d84305e5e1c0 1120
ADIJake 0:85855ecd3257 1121 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1122
Vkadaba 5:0728bde67bdb 1123 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1124 }
Vkadaba 36:54e2418e7620 1125 static ADMW_RESULT admw_SetExternalReferenceVoltage(
Vkadaba 36:54e2418e7620 1126 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1127 float32_t externalRefVoltage)
Vkadaba 36:54e2418e7620 1128 {
Vkadaba 36:54e2418e7620 1129 WRITE_REG_FLOAT(hDevice, externalRefVoltage, CORE_EXTERNAL_VOLTAGE_REFERENCE);
Vkadaba 36:54e2418e7620 1130
Vkadaba 36:54e2418e7620 1131 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1132 }
Vkadaba 50:d84305e5e1c0 1133 static ADMW_RESULT admw_SetFifoNumCycles(
Vkadaba 50:d84305e5e1c0 1134 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1135 uint8_t fifoNumCycles)
Vkadaba 50:d84305e5e1c0 1136 {
Vkadaba 50:d84305e5e1c0 1137 WRITE_REG_U8(hDevice, fifoNumCycles, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 1138
Vkadaba 50:d84305e5e1c0 1139 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1140 }
ADIJake 0:85855ecd3257 1141
Vkadaba 5:0728bde67bdb 1142 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1143 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1144 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1145 {
Vkadaba 6:9d393a9677f4 1146 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1147
Vkadaba 5:0728bde67bdb 1148 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1149 }
Vkadaba 45:f5f553b8c0d5 1150 static ADMW_RESULT admw_SetAVDDVoltage(
Vkadaba 50:d84305e5e1c0 1151 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1152 float32_t AVDDVoltage)
Vkadaba 50:d84305e5e1c0 1153 {
Vkadaba 45:f5f553b8c0d5 1154
Vkadaba 50:d84305e5e1c0 1155 WRITE_REG_FLOAT(hDevice, AVDDVoltage, CORE_AVDD_VOLTAGE);
Vkadaba 45:f5f553b8c0d5 1156
Vkadaba 50:d84305e5e1c0 1157 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1158 }
ADIJake 0:85855ecd3257 1159
Vkadaba 5:0728bde67bdb 1160 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1161 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1162 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1163 {
Vkadaba 5:0728bde67bdb 1164 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1165
Vkadaba 5:0728bde67bdb 1166 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1167 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1168 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1169 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1170 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1171 return eRet;
ADIJake 0:85855ecd3257 1172 }
ADIJake 0:85855ecd3257 1173
Vkadaba 8:2f2775c34640 1174 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 43:e1789b7214cf 1175 pMeasConfig->vBiasEnable,
Vkadaba 43:e1789b7214cf 1176 pMeasConfig->excitationState,
Vkadaba 43:e1789b7214cf 1177 pMeasConfig->groundSwitch );
Vkadaba 23:bb685f35b08b 1178 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1179 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1180 return eRet;
ADIJake 0:85855ecd3257 1181 }
ADIJake 0:85855ecd3257 1182
Vkadaba 50:d84305e5e1c0 1183 if (pMeasConfig->fifoNumCycles > 0) {
Vkadaba 50:d84305e5e1c0 1184 eRet = admw_SetFifoNumCycles(hDevice,
Vkadaba 50:d84305e5e1c0 1185 pMeasConfig->fifoNumCycles);
Vkadaba 50:d84305e5e1c0 1186 }
Vkadaba 50:d84305e5e1c0 1187
Vkadaba 50:d84305e5e1c0 1188 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1189 ADMW_LOG_ERROR("Failed to set the FIFO number of cycles.");
Vkadaba 50:d84305e5e1c0 1190 return eRet;
Vkadaba 50:d84305e5e1c0 1191 }
Vkadaba 50:d84305e5e1c0 1192
Vkadaba 43:e1789b7214cf 1193 if(pMeasConfig->externalRef1Value > 0) {
Vkadaba 8:2f2775c34640 1194 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1195 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1196 }
Vkadaba 50:d84305e5e1c0 1197
Vkadaba 50:d84305e5e1c0 1198 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1199 ADMW_LOG_ERROR("Failed to set external reference values");
Vkadaba 50:d84305e5e1c0 1200 return eRet;
Vkadaba 50:d84305e5e1c0 1201 }
Vkadaba 50:d84305e5e1c0 1202
Vkadaba 50:d84305e5e1c0 1203 if((pMeasConfig->AVDDVoltage >= 3.0) && (pMeasConfig->AVDDVoltage <= 3.6)) {
Vkadaba 45:f5f553b8c0d5 1204 eRet = admw_SetAVDDVoltage(hDevice,
Vkadaba 45:f5f553b8c0d5 1205 pMeasConfig->AVDDVoltage);
Vkadaba 45:f5f553b8c0d5 1206 }
Vkadaba 50:d84305e5e1c0 1207
Vkadaba 23:bb685f35b08b 1208 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1209 ADMW_LOG_ERROR("Failed to set AVDD Voltge");
ADIJake 0:85855ecd3257 1210 return eRet;
ADIJake 0:85855ecd3257 1211 }
ADIJake 0:85855ecd3257 1212
Vkadaba 33:df7a00f1b8e1 1213 eRet = admw_SetRSenseValue(hDevice, pMeasConfig->RSenseValue);
Vkadaba 41:df78b7d7b675 1214 if (eRet != ADMW_SUCCESS) {
Vkadaba 33:df7a00f1b8e1 1215 ADMW_LOG_ERROR("Failed to set RSenseValue");
Vkadaba 33:df7a00f1b8e1 1216 return eRet;
Vkadaba 33:df7a00f1b8e1 1217 }
Vkadaba 41:df78b7d7b675 1218
Vkadaba 36:54e2418e7620 1219 eRet = admw_SetExternalReferenceVoltage(hDevice, pMeasConfig->externalRefVoltage);
Vkadaba 41:df78b7d7b675 1220 if (eRet != ADMW_SUCCESS) {
Vkadaba 36:54e2418e7620 1221 ADMW_LOG_ERROR("Failed to set External reference Voltage");
Vkadaba 36:54e2418e7620 1222 return eRet;
Vkadaba 41:df78b7d7b675 1223 }
Vkadaba 41:df78b7d7b675 1224
Vkadaba 5:0728bde67bdb 1225 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1226 }
Vkadaba 36:54e2418e7620 1227 ADMW_RESULT admw1001_SetDiagnosticsConfig(
Vkadaba 36:54e2418e7620 1228 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1229 ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
Vkadaba 36:54e2418e7620 1230 {
Vkadaba 36:54e2418e7620 1231 ADMW_CORE_Diagnostics_Control_t diagnosticsControlReg;
ADIJake 0:85855ecd3257 1232
Vkadaba 36:54e2418e7620 1233 diagnosticsControlReg.VALUE8 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1234
Vkadaba 36:54e2418e7620 1235 if (pDiagnosticsConfig->disableMeasurementDiag)
Vkadaba 36:54e2418e7620 1236 diagnosticsControlReg.Diag_Meas_En = 0;
Vkadaba 36:54e2418e7620 1237 else
Vkadaba 36:54e2418e7620 1238 diagnosticsControlReg.Diag_Meas_En = 1;
Vkadaba 36:54e2418e7620 1239
Vkadaba 55:215da406282b 1240 if(pDiagnosticsConfig->osdFrequency <= 0x7F) {
Vkadaba 55:215da406282b 1241 diagnosticsControlReg.Diag_OSD_Freq = pDiagnosticsConfig->osdFrequency;
Vkadaba 55:215da406282b 1242 } else {
Vkadaba 44:94bdfaefddac 1243 ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
Vkadaba 55:215da406282b 1244 pDiagnosticsConfig->osdFrequency);
Vkadaba 44:94bdfaefddac 1245 return ADMW_INVALID_PARAM;
Vkadaba 44:94bdfaefddac 1246 }
Vkadaba 36:54e2418e7620 1247 WRITE_REG_U8(hDevice, diagnosticsControlReg.VALUE8, CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1248
Vkadaba 36:54e2418e7620 1249 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1250 }
ADIJake 0:85855ecd3257 1251
Vkadaba 5:0728bde67bdb 1252 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1253 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1254 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1255 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1256 {
Vkadaba 8:2f2775c34640 1257 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1258
ADIJake 0:85855ecd3257 1259 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1260
Vkadaba 23:bb685f35b08b 1261 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1262 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1263
ADIJake 0:85855ecd3257 1264 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1265 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1266
ADIJake 0:85855ecd3257 1267 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1268 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1269 } else {
ADIJake 0:85855ecd3257 1270 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1271 }
ADIJake 0:85855ecd3257 1272
ADIJake 0:85855ecd3257 1273 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1274
Vkadaba 5:0728bde67bdb 1275 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1276 }
ADIJake 0:85855ecd3257 1277
Vkadaba 5:0728bde67bdb 1278 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1279 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1280 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1281 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1282 {
Vkadaba 8:2f2775c34640 1283 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1284
ADIJake 0:85855ecd3257 1285 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1286
ADIJake 0:85855ecd3257 1287 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1288 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1289
ADIJake 0:85855ecd3257 1290 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1291
Vkadaba 5:0728bde67bdb 1292 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1293 }
ADIJake 0:85855ecd3257 1294
Vkadaba 5:0728bde67bdb 1295 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1296 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1297 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1298 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1299 {
Vkadaba 8:2f2775c34640 1300 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1301
ADIJake 0:85855ecd3257 1302 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1303
ADIJake 0:85855ecd3257 1304 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1305
ADIJake 0:85855ecd3257 1306 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1307
ADIJake 0:85855ecd3257 1308 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1309
Vkadaba 5:0728bde67bdb 1310 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1311 }
ADIJake 0:85855ecd3257 1312
Vkadaba 5:0728bde67bdb 1313 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1314 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1315 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1316 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1317 {
Vkadaba 8:2f2775c34640 1318 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1319
ADIJake 0:85855ecd3257 1320 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1321
ADIJake 0:85855ecd3257 1322 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1323 switch(sensorType) {
Vkadaba 50:d84305e5e1c0 1324 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1325
Vkadaba 50:d84305e5e1c0 1326 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1327 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1328 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1329 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1330 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1331 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1332 case ADMW1001_ADC_SENSOR_RTD_2WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1333 case ADMW1001_ADC_SENSOR_RTD_2WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1334 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1335
Vkadaba 50:d84305e5e1c0 1336 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1337 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1338 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1339 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1340 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1341 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1342 case ADMW1001_ADC_SENSOR_RTD_4WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1343 case ADMW1001_ADC_SENSOR_RTD_4WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1344 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1345
Vkadaba 50:d84305e5e1c0 1346 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT50:
Vkadaba 8:2f2775c34640 1347 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1348 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1349 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT500:
Vkadaba 8:2f2775c34640 1350 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1351 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_0P00375 :
Vkadaba 50:d84305e5e1c0 1352
Vkadaba 50:d84305e5e1c0 1353 case ADMW1001_ADC_SENSOR_RTD_3WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1354 case ADMW1001_ADC_SENSOR_RTD_3WIRE_CUSTOM:
Vkadaba 58:aa9cd5072f66 1355 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE:
Vkadaba 58:aa9cd5072f66 1356 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE:
Vkadaba 50:d84305e5e1c0 1357 case ADMW1001_ADC_SENSOR_DIODE:
Vkadaba 50:d84305e5e1c0 1358 case ADMW1001_ADC_SENSOR_THERMISTOR_44004_44033_2P252K_AT_25C:
Vkadaba 50:d84305e5e1c0 1359 case ADMW1001_ADC_SENSOR_THERMISTOR_44005_44030_3K_AT_25C:
Vkadaba 50:d84305e5e1c0 1360 case ADMW1001_ADC_SENSOR_THERMISTOR_44007_44034_5K_AT_25C:
Vkadaba 50:d84305e5e1c0 1361 case ADMW1001_ADC_SENSOR_THERMISTOR_44006_44031_10K_AT_25C:
Vkadaba 50:d84305e5e1c0 1362 case ADMW1001_ADC_SENSOR_THERMISTOR_44008_44032_30K_AT_25C:
Vkadaba 50:d84305e5e1c0 1363 case ADMW1001_ADC_SENSOR_THERMISTOR_YSI_400:
Vkadaba 50:d84305e5e1c0 1364 case ADMW1001_ADC_SENSOR_THERMISTOR_SPECTRUM_1003K_1K:
Vkadaba 50:d84305e5e1c0 1365 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_STEINHART_HART:
Vkadaba 50:d84305e5e1c0 1366 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_TABLE:
Vkadaba 36:54e2418e7620 1367 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_ABSOLUTE:
Vkadaba 36:54e2418e7620 1368 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_ABSOLUTE:
Vkadaba 36:54e2418e7620 1369 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_RATIO:
Vkadaba 36:54e2418e7620 1370 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_RATIO:
Vkadaba 50:d84305e5e1c0 1371
Vkadaba 50:d84305e5e1c0 1372 if (! (ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId) ||
Vkadaba 50:d84305e5e1c0 1373 ADMW1001_CHANNEL_IS_ADC(eChannelId) )) {
Vkadaba 6:9d393a9677f4 1374 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1375 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1376 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1377 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1378 }
Vkadaba 6:9d393a9677f4 1379 break;
Vkadaba 8:2f2775c34640 1380 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1381 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1382 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 50:d84305e5e1c0 1383 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_E:
Vkadaba 50:d84305e5e1c0 1384 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_N:
Vkadaba 50:d84305e5e1c0 1385 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_R:
Vkadaba 50:d84305e5e1c0 1386 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_S:
Vkadaba 50:d84305e5e1c0 1387 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_B:
Vkadaba 50:d84305e5e1c0 1388 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_CUSTOM:
Vkadaba 23:bb685f35b08b 1389 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1390 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1391 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1392 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1393 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1394 }
Vkadaba 6:9d393a9677f4 1395 break;
Vkadaba 6:9d393a9677f4 1396 default:
Vkadaba 6:9d393a9677f4 1397 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1398 sensorType);
Vkadaba 5:0728bde67bdb 1399 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1400 }
ADIJake 0:85855ecd3257 1401
ADIJake 0:85855ecd3257 1402 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1403
ADIJake 0:85855ecd3257 1404 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1405
Vkadaba 5:0728bde67bdb 1406 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1407 }
ADIJake 0:85855ecd3257 1408
Vkadaba 5:0728bde67bdb 1409 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1410 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1411 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1412 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1413 /*
ADIJake 0:85855ecd3257 1414 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1415 * General details:
ADIJake 0:85855ecd3257 1416 * - Measurement_Units
ADIJake 0:85855ecd3257 1417 * - Compensation_Channel
ADIJake 0:85855ecd3257 1418 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1419 * ADC-specific details:
ADIJake 0:85855ecd3257 1420 * - PGA_Gain
ADIJake 0:85855ecd3257 1421 * - Reference_Select
ADIJake 0:85855ecd3257 1422 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1423 */
ADIJake 0:85855ecd3257 1424 {
Vkadaba 5:0728bde67bdb 1425 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1426 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1427 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1428
ADIJake 0:85855ecd3257 1429 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1430
Vkadaba 23:bb685f35b08b 1431 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1432 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1433 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1434 break;
Vkadaba 8:2f2775c34640 1435 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1436 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1437 break;
Vkadaba 8:2f2775c34640 1438 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1439 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1440 break;
Vkadaba 8:2f2775c34640 1441 default:
Vkadaba 8:2f2775c34640 1442 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1443 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1444 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1445 }
ADIJake 0:85855ecd3257 1446
Vkadaba 23:bb685f35b08b 1447 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1448 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1449 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1450 } else {
ADIJake 0:85855ecd3257 1451 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1452 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1453 }
ADIJake 0:85855ecd3257 1454
Vkadaba 23:bb685f35b08b 1455 switch(refType) {
Vkadaba 8:2f2775c34640 1456 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1457 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1458 break;
Vkadaba 8:2f2775c34640 1459 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1460 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1461 break;
Vkadaba 8:2f2775c34640 1462 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1463 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1464 break;
Vkadaba 8:2f2775c34640 1465 default:
Vkadaba 8:2f2775c34640 1466 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1467 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1468 }
Vkadaba 23:bb685f35b08b 1469
Vkadaba 23:bb685f35b08b 1470 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1471 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1472 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1473 break;
Vkadaba 8:2f2775c34640 1474 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1475 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1476 break;
Vkadaba 8:2f2775c34640 1477 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1478 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1479 break;
Vkadaba 8:2f2775c34640 1480 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1481 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1482 break;
Vkadaba 8:2f2775c34640 1483 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1484 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1485 break;
Vkadaba 8:2f2775c34640 1486 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1487 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1488 break;
Vkadaba 8:2f2775c34640 1489 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1490 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1491 break;
Vkadaba 8:2f2775c34640 1492 default:
Vkadaba 8:2f2775c34640 1493 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1494 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1495 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1496 }
ADIJake 0:85855ecd3257 1497
Vkadaba 23:bb685f35b08b 1498 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1499 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1500 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1501 break;
Vkadaba 8:2f2775c34640 1502 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1503 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1504 break;
Vkadaba 8:2f2775c34640 1505 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1506 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1507 break;
Vkadaba 8:2f2775c34640 1508 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1509 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1510 break;
Vkadaba 8:2f2775c34640 1511 default:
Vkadaba 8:2f2775c34640 1512 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1513 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1514 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1515 }
Vkadaba 6:9d393a9677f4 1516
Vkadaba 23:bb685f35b08b 1517 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1518 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1519 } else {
ADIJake 0:85855ecd3257 1520 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1521 }
Vkadaba 23:bb685f35b08b 1522
Vkadaba 23:bb685f35b08b 1523 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1524 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1525 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1526 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1527 break;
Vkadaba 8:2f2775c34640 1528 default:
Vkadaba 8:2f2775c34640 1529 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1530 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1531 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1532 }
Vkadaba 23:bb685f35b08b 1533
ADIJake 0:85855ecd3257 1534 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1535
Vkadaba 5:0728bde67bdb 1536 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1537 }
ADIJake 0:85855ecd3257 1538
Vkadaba 33:df7a00f1b8e1 1539 static ADMW_RESULT admw_SetChannelAdcMeasurementSetup(
Vkadaba 5:0728bde67bdb 1540 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1541 ADMW1001_CH_ID eChannelId,
Vkadaba 33:df7a00f1b8e1 1542 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig)
ADIJake 0:85855ecd3257 1543 {
Vkadaba 8:2f2775c34640 1544 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 33:df7a00f1b8e1 1545 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig = &pAdcChannelConfig->filter;
Vkadaba 6:9d393a9677f4 1546 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
Vkadaba 33:df7a00f1b8e1 1547 MeasSetupReg.Buffer_Bypass = pAdcChannelConfig->bufferBypass;
Vkadaba 41:df78b7d7b675 1548
Vkadaba 23:bb685f35b08b 1549 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1550 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1551 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1552 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1553 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1554 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1555 } else {
Vkadaba 5:0728bde67bdb 1556 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1557 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1558 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1559 }
Vkadaba 23:bb685f35b08b 1560
Vkadaba 8:2f2775c34640 1561 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1562 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1563
Vkadaba 6:9d393a9677f4 1564 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1565 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1566 else
Vkadaba 6:9d393a9677f4 1567 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1568
Vkadaba 6:9d393a9677f4 1569 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1570
Vkadaba 5:0728bde67bdb 1571 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1572 }
ADIJake 0:85855ecd3257 1573
Vkadaba 5:0728bde67bdb 1574 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1575 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1576 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1577 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1578 {
Vkadaba 8:2f2775c34640 1579 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1580
Vkadaba 6:9d393a9677f4 1581 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1582
Vkadaba 18:cbf514cce921 1583 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1584 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1585 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1586 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1587 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1588 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1589 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1590 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1591 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1592 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1593 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1594 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1595 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1596 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1597 else {
Vkadaba 6:9d393a9677f4 1598 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1599 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1600 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1601 }
ADIJake 0:85855ecd3257 1602
Vkadaba 6:9d393a9677f4 1603 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1604
Vkadaba 5:0728bde67bdb 1605 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1606 }
ADIJake 0:85855ecd3257 1607
Vkadaba 5:0728bde67bdb 1608 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1609 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1610 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1611 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1612 {
Vkadaba 5:0728bde67bdb 1613 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1614 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1615 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1616
Vkadaba 5:0728bde67bdb 1617 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1618 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1619 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1620 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1621 eChannelId);
ADIJake 0:85855ecd3257 1622 return eRet;
ADIJake 0:85855ecd3257 1623 }
ADIJake 0:85855ecd3257 1624
Vkadaba 5:0728bde67bdb 1625 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1626 pChannelConfig);
Vkadaba 23:bb685f35b08b 1627 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1628 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1629 eChannelId);
ADIJake 0:85855ecd3257 1630 return eRet;
ADIJake 0:85855ecd3257 1631 }
ADIJake 0:85855ecd3257 1632
Vkadaba 33:df7a00f1b8e1 1633 eRet = admw_SetChannelAdcMeasurementSetup(hDevice, eChannelId,
Vkadaba 41:df78b7d7b675 1634 pAdcChannelConfig);
Vkadaba 23:bb685f35b08b 1635 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1636 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1637 eChannelId);
ADIJake 0:85855ecd3257 1638 return eRet;
ADIJake 0:85855ecd3257 1639 }
ADIJake 0:85855ecd3257 1640
Vkadaba 5:0728bde67bdb 1641 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1642 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1643 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1644 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1645 eChannelId);
ADIJake 0:85855ecd3257 1646 return eRet;
ADIJake 0:85855ecd3257 1647 }
ADIJake 0:85855ecd3257 1648
Vkadaba 5:0728bde67bdb 1649 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1650 }
ADIJake 0:85855ecd3257 1651
Vkadaba 5:0728bde67bdb 1652 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1653 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1654 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1655 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1656 {
Vkadaba 8:2f2775c34640 1657 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1658
ADIJake 0:85855ecd3257 1659 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1660
Vkadaba 23:bb685f35b08b 1661 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1662 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1663 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1664 } else {
Vkadaba 5:0728bde67bdb 1665 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1666 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1667 }
ADIJake 0:85855ecd3257 1668
Vkadaba 23:bb685f35b08b 1669 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1670 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1671 } else {
Vkadaba 5:0728bde67bdb 1672 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1673 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1674 }
ADIJake 0:85855ecd3257 1675
ADIJake 0:85855ecd3257 1676 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1677 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1678 else
ADIJake 0:85855ecd3257 1679 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1680
ADIJake 0:85855ecd3257 1681 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1682
Vkadaba 5:0728bde67bdb 1683 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1684 }
ADIJake 0:85855ecd3257 1685
Vkadaba 5:0728bde67bdb 1686 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1687 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1688 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1689 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1690 {
Vkadaba 8:2f2775c34640 1691 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1692
ADIJake 0:85855ecd3257 1693 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1694
Vkadaba 23:bb685f35b08b 1695 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1696 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1697 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1698 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1699 }
Vkadaba 23:bb685f35b08b 1700 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1701 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1702 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1703 }
ADIJake 0:85855ecd3257 1704
ADIJake 0:85855ecd3257 1705 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1706 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1707 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1708 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1709 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1710 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1711
ADIJake 0:85855ecd3257 1712 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1713 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1714 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1715 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1716 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1717
Vkadaba 23:bb685f35b08b 1718 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1719 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1720 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1721 break;
Vkadaba 23:bb685f35b08b 1722 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1723 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1724 break;
Vkadaba 23:bb685f35b08b 1725 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1726 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1727 break;
Vkadaba 23:bb685f35b08b 1728 default:
Vkadaba 23:bb685f35b08b 1729 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1730 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1731 }
Vkadaba 23:bb685f35b08b 1732 } else {
Vkadaba 5:0728bde67bdb 1733 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1734 }
ADIJake 0:85855ecd3257 1735
ADIJake 0:85855ecd3257 1736 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1737 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1738
ADIJake 0:85855ecd3257 1739
Vkadaba 5:0728bde67bdb 1740 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1741 }
ADIJake 0:85855ecd3257 1742
ADIJake 0:85855ecd3257 1743
Vkadaba 5:0728bde67bdb 1744 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1745 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1746 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1747 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1748 {
Vkadaba 8:2f2775c34640 1749 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1750
ADIJake 0:85855ecd3257 1751 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1752
ADIJake 0:85855ecd3257 1753 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1754 switch(sensorType) {
Vkadaba 58:aa9cd5072f66 1755 case ADMW1001_I2C_SENSOR_HUMIDITY:
Vkadaba 50:d84305e5e1c0 1756 case ADMW1001_I2C_SENSOR_TEMPERATURE_ADT742X:
Vkadaba 8:2f2775c34640 1757 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1758 break;
Vkadaba 8:2f2775c34640 1759 default:
Vkadaba 8:2f2775c34640 1760 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1761 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1762 }
ADIJake 0:85855ecd3257 1763
ADIJake 0:85855ecd3257 1764 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1765
Vkadaba 5:0728bde67bdb 1766 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1767 }
ADIJake 0:85855ecd3257 1768
Vkadaba 5:0728bde67bdb 1769 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1770 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1771 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1772 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1773 {
ADIJake 0:85855ecd3257 1774 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1775 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1776
Vkadaba 5:0728bde67bdb 1777 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1778 }
ADIJake 0:85855ecd3257 1779
Vkadaba 5:0728bde67bdb 1780 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1781 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1782 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1783 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1784 {
Vkadaba 8:2f2775c34640 1785 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1786
ADIJake 0:85855ecd3257 1787 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1788
Vkadaba 23:bb685f35b08b 1789 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1790
Vkadaba 23:bb685f35b08b 1791 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1792 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1793 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1794 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1795 } else {
Vkadaba 5:0728bde67bdb 1796 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1797 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1798 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1799 }
Vkadaba 63:2655a04c00f5 1800 }
ADIJake 0:85855ecd3257 1801 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1802
Vkadaba 5:0728bde67bdb 1803 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1804 }
ADIJake 0:85855ecd3257 1805
Vkadaba 5:0728bde67bdb 1806 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1807 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1808 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1809 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1810 {
Vkadaba 5:0728bde67bdb 1811 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1812 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1813 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1814
Vkadaba 5:0728bde67bdb 1815 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1816 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1817 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1818 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1819 eChannelId);
ADIJake 0:85855ecd3257 1820 return eRet;
ADIJake 0:85855ecd3257 1821 }
ADIJake 0:85855ecd3257 1822
Vkadaba 5:0728bde67bdb 1823 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1824 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1825 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1826 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1827 eChannelId);
ADIJake 0:85855ecd3257 1828 return eRet;
ADIJake 0:85855ecd3257 1829 }
ADIJake 0:85855ecd3257 1830
Vkadaba 5:0728bde67bdb 1831 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1832 pChannelConfig);
Vkadaba 23:bb685f35b08b 1833 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1834 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1835 eChannelId);
ADIJake 0:85855ecd3257 1836 return eRet;
ADIJake 0:85855ecd3257 1837 }
ADIJake 0:85855ecd3257 1838
Vkadaba 5:0728bde67bdb 1839 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1840 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1841 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1842 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1843 eChannelId);
ADIJake 0:85855ecd3257 1844 return eRet;
ADIJake 0:85855ecd3257 1845 }
ADIJake 0:85855ecd3257 1846
ADIJake 0:85855ecd3257 1847
Vkadaba 5:0728bde67bdb 1848 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1849 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1850 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1851 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 1852 eChannelId);
ADIJake 0:85855ecd3257 1853 return eRet;
ADIJake 0:85855ecd3257 1854 }
ADIJake 0:85855ecd3257 1855
Vkadaba 5:0728bde67bdb 1856 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1857 }
ADIJake 0:85855ecd3257 1858
Vkadaba 5:0728bde67bdb 1859 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 1860 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1861 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1862 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1863 {
Vkadaba 8:2f2775c34640 1864 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1865
ADIJake 0:85855ecd3257 1866 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1867
ADIJake 0:85855ecd3257 1868 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1869 switch(sensorType) {
Vkadaba 58:aa9cd5072f66 1870 case ADMW1001_SPI_SENSOR:
Vkadaba 23:bb685f35b08b 1871
Vkadaba 23:bb685f35b08b 1872 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 1873 break;
Vkadaba 23:bb685f35b08b 1874 default:
Vkadaba 23:bb685f35b08b 1875 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 1876 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1877 }
ADIJake 0:85855ecd3257 1878
ADIJake 0:85855ecd3257 1879 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1880
Vkadaba 5:0728bde67bdb 1881 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1882 }
ADIJake 0:85855ecd3257 1883
ADIJake 0:85855ecd3257 1884
Vkadaba 5:0728bde67bdb 1885 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 1886 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1887 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1888 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 1889 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 1890 {
ADIJake 0:85855ecd3257 1891 /*
ADIJake 0:85855ecd3257 1892 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 1893 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 1894 */
Vkadaba 23:bb685f35b08b 1895 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 1896 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 1897 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 1898 } else {
ADIJake 0:85855ecd3257 1899 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 1900 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 1901 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 1902 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 1903 }
ADIJake 0:85855ecd3257 1904
ADIJake 0:85855ecd3257 1905 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 1906 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 1907 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 1908 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 1909
Vkadaba 5:0728bde67bdb 1910 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1911 }
ADIJake 0:85855ecd3257 1912
Vkadaba 5:0728bde67bdb 1913 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 1914 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1915 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1916 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 1917 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 1918 {
ADIJake 0:85855ecd3257 1919 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 1920 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 1921 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 1922 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 1923 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 1924
ADIJake 0:85855ecd3257 1925 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 1926 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 1927
Vkadaba 5:0728bde67bdb 1928 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1929 }
ADIJake 0:85855ecd3257 1930
Vkadaba 5:0728bde67bdb 1931 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 1932 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1933 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1934 float32_t fSensorParam)
ADIJake 0:85855ecd3257 1935 {
ADIJake 0:85855ecd3257 1936 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 1937 fSensorParam = NAN;
ADIJake 0:85855ecd3257 1938
Vkadaba 32:52445bef314d 1939 //WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 1940
Vkadaba 5:0728bde67bdb 1941 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1942 }
ADIJake 0:85855ecd3257 1943
Vkadaba 5:0728bde67bdb 1944 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 1945 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1946 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1947 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 1948 {
Vkadaba 8:2f2775c34640 1949 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 1950
ADIJake 0:85855ecd3257 1951 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 1952 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 1953
ADIJake 0:85855ecd3257 1954 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 1955
Vkadaba 5:0728bde67bdb 1956 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1957 }
ADIJake 0:85855ecd3257 1958
Vkadaba 5:0728bde67bdb 1959 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 1960 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1961 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1962 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1963 {
Vkadaba 5:0728bde67bdb 1964 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1965
Vkadaba 5:0728bde67bdb 1966 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1967 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 1968 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 1969 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1970 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 1971 eChannelId);
ADIJake 0:85855ecd3257 1972 return eRet;
ADIJake 0:85855ecd3257 1973 }
ADIJake 0:85855ecd3257 1974
Vkadaba 5:0728bde67bdb 1975 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1976 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 1977 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1978 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 1979 eChannelId);
ADIJake 0:85855ecd3257 1980 return eRet;
ADIJake 0:85855ecd3257 1981 }
ADIJake 0:85855ecd3257 1982
ADIJake 0:85855ecd3257 1983 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 1984 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 1985 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1986 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 1987 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1988 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 1989 eChannelId);
ADIJake 0:85855ecd3257 1990 return eRet;
ADIJake 0:85855ecd3257 1991 }
ADIJake 0:85855ecd3257 1992
Vkadaba 23:bb685f35b08b 1993 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 1994 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 1995 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 1996 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 1997 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 1998 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 1999 break;
Vkadaba 23:bb685f35b08b 2000 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 2001 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 2002 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2003 break;
Vkadaba 23:bb685f35b08b 2004 default:
Vkadaba 23:bb685f35b08b 2005 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 32:52445bef314d 2006 eRet = ADMW_INVALID_PARAM;
Vkadaba 32:52445bef314d 2007 #if 0
Vkadaba 32:52445bef314d 2008 /* when using i2c sensors there is an error ( dataformat->length=0)
Vkadaba 32:52445bef314d 2009 the code below catches this error and this causes further problems.*/
Vkadaba 32:52445bef314d 2010 break;
Vkadaba 32:52445bef314d 2011 }
Vkadaba 32:52445bef314d 2012 if (eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 2013 ADMW_LOG_ERROR("Failed to set config for channel %d",
Vkadaba 32:52445bef314d 2014 eChannelId);
Vkadaba 32:52445bef314d 2015 return eRet;
Vkadaba 32:52445bef314d 2016 #endif
ADIJake 0:85855ecd3257 2017 }
ADIJake 0:85855ecd3257 2018
Vkadaba 5:0728bde67bdb 2019 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2020 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 2021 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2022 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 2023 eChannelId);
ADIJake 0:85855ecd3257 2024 return eRet;
ADIJake 0:85855ecd3257 2025 }
ADIJake 0:85855ecd3257 2026 }
ADIJake 0:85855ecd3257 2027
Vkadaba 23:bb685f35b08b 2028 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 2029 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2030 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2031 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 2032 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 2033 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2034 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 2035 eChannelId);
ADIJake 0:85855ecd3257 2036 return eRet;
ADIJake 0:85855ecd3257 2037 }
ADIJake 0:85855ecd3257 2038
ADIJake 0:85855ecd3257 2039 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2040 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2041 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 2042 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 2043 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2044 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 2045 eChannelId);
ADIJake 0:85855ecd3257 2046 return eRet;
ADIJake 0:85855ecd3257 2047 }
ADIJake 0:85855ecd3257 2048
ADIJake 0:85855ecd3257 2049 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 2050 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2051 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 2052 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2053 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 2054 eChannelId);
ADIJake 0:85855ecd3257 2055 return eRet;
ADIJake 0:85855ecd3257 2056 }
ADIJake 0:85855ecd3257 2057 }
ADIJake 0:85855ecd3257 2058
Vkadaba 5:0728bde67bdb 2059 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2060 }
ADIJake 0:85855ecd3257 2061
Vkadaba 5:0728bde67bdb 2062 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 2063 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2064 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 2065 {
Vkadaba 5:0728bde67bdb 2066 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 2067 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 2068 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2069
Vkadaba 23:bb685f35b08b 2070 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 2071 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 2072 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 2073 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2074 }
Vkadaba 23:bb685f35b08b 2075
Vkadaba 23:bb685f35b08b 2076 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 2077 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 2078 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 2079 pConfig->versionId);
Vkadaba 6:9d393a9677f4 2080 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2081 }
Vkadaba 23:bb685f35b08b 2082
Vkadaba 23:bb685f35b08b 2083
ADIJake 0:85855ecd3257 2084 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2085 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2086 if (eRet) {
Vkadaba 5:0728bde67bdb 2087 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2088 return eRet;
ADIJake 0:85855ecd3257 2089 }
Vkadaba 23:bb685f35b08b 2090 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2091 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2092 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2093 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2094 }
ADIJake 0:85855ecd3257 2095
Vkadaba 5:0728bde67bdb 2096 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2097
Vkadaba 5:0728bde67bdb 2098 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2099 if (eRet) {
Vkadaba 5:0728bde67bdb 2100 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2101 return eRet;
ADIJake 0:85855ecd3257 2102 }
ADIJake 0:85855ecd3257 2103
Vkadaba 5:0728bde67bdb 2104 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2105 if (eRet) {
Vkadaba 5:0728bde67bdb 2106 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2107 return eRet;
ADIJake 0:85855ecd3257 2108 }
ADIJake 0:85855ecd3257 2109
Vkadaba 36:54e2418e7620 2110 eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 41:df78b7d7b675 2111 if (eRet) {
Vkadaba 36:54e2418e7620 2112 ADMW_LOG_ERROR("Failed to set diagnostics configuration");
Vkadaba 36:54e2418e7620 2113 return eRet;
Vkadaba 36:54e2418e7620 2114 }
ADIJake 0:85855ecd3257 2115
Vkadaba 8:2f2775c34640 2116 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2117 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2118 id++) {
Vkadaba 5:0728bde67bdb 2119 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2120 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2121 if (eRet) {
Vkadaba 5:0728bde67bdb 2122 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2123 return eRet;
ADIJake 0:85855ecd3257 2124 }
ADIJake 0:85855ecd3257 2125 }
ADIJake 0:85855ecd3257 2126
Vkadaba 5:0728bde67bdb 2127 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2128 }
ADIJake 0:85855ecd3257 2129
Vkadaba 50:d84305e5e1c0 2130
Vkadaba 5:0728bde67bdb 2131 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2132 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2133 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2134 {
Vkadaba 5:0728bde67bdb 2135 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2136 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2137 }
ADIJake 0:85855ecd3257 2138
Vkadaba 5:0728bde67bdb 2139 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2140 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2141 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2142 unsigned *pLength)
ADIJake 0:85855ecd3257 2143 {
Vkadaba 23:bb685f35b08b 2144 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2145 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2146 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2147 break;
Vkadaba 23:bb685f35b08b 2148 default:
Vkadaba 23:bb685f35b08b 2149 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2150 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2151 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2152 }
ADIJake 0:85855ecd3257 2153
Vkadaba 5:0728bde67bdb 2154 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2155 }
ADIJake 0:85855ecd3257 2156
Vkadaba 5:0728bde67bdb 2157 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2158 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2159 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2160 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2161 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2162 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2163 {
Vkadaba 5:0728bde67bdb 2164 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2165 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2166
Vkadaba 61:0f16a2e3b58b 2167 if (sizeof(*pHdr) > nLutBufferSize)
Vkadaba 61:0f16a2e3b58b 2168 {
Vkadaba 5:0728bde67bdb 2169 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2170 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2171 }
ADIJake 0:85855ecd3257 2172
ADIJake 0:85855ecd3257 2173 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2174 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2175 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2176 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2177 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2178 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2179
ADIJake 0:85855ecd3257 2180 /*
ADIJake 0:85855ecd3257 2181 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2182 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2183 */
Vkadaba 61:0f16a2e3b58b 2184 for (unsigned i = 0; i < nNumTables; i++)
Vkadaba 61:0f16a2e3b58b 2185 {
Vkadaba 5:0728bde67bdb 2186 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2187 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2188 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2189 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2190
ADIJake 0:85855ecd3257 2191 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2192 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2193 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2194 return res;
ADIJake 0:85855ecd3257 2195
ADIJake 0:85855ecd3257 2196 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2197 pDesc->length = dataLength;
ADIJake 0:85855ecd3257 2198
Vkadaba 61:0f16a2e3b58b 2199 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize)
Vkadaba 61:0f16a2e3b58b 2200 {
Vkadaba 5:0728bde67bdb 2201 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2202 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2203 }
ADIJake 0:85855ecd3257 2204
ADIJake 0:85855ecd3257 2205 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2206 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2207 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2208 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2209 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2210
ADIJake 0:85855ecd3257 2211 pHdr->numTables++;
ADIJake 0:85855ecd3257 2212 }
ADIJake 0:85855ecd3257 2213
Vkadaba 5:0728bde67bdb 2214 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2215 }
Vkadaba 54:31921ad29828 2216 ADMW_RESULT admw1001_SetLutData(
Vkadaba 54:31921ad29828 2217 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 54:31921ad29828 2218 ADMW1001_LUT * const pLutData)
Vkadaba 54:31921ad29828 2219 {
Vkadaba 61:0f16a2e3b58b 2220 #pragma diag_suppress=Pa039
Vkadaba 54:31921ad29828 2221 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 54:31921ad29828 2222 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
Vkadaba 54:31921ad29828 2223
Vkadaba 54:31921ad29828 2224 unsigned actualLength = 0;
Vkadaba 54:31921ad29828 2225
Vkadaba 61:0f16a2e3b58b 2226 if (pLutData->header.signature != ADMW_LUT_SIGNATURE)
Vkadaba 61:0f16a2e3b58b 2227 {
Vkadaba 54:31921ad29828 2228 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 61:0f16a2e3b58b 2229 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 54:31921ad29828 2230 return ADMW_INVALID_SIGNATURE;
Vkadaba 54:31921ad29828 2231 }
Vkadaba 54:31921ad29828 2232 if ((pLutData->tables->descriptor.geometry!= ADMW1001_LUT_GEOMETRY_NES_1D) &&
Vkadaba 61:0f16a2e3b58b 2233 (pLutData->tables->data.lut1dNes.nElements > MAX_LUT_NUM_ENTRIES))
Vkadaba 61:0f16a2e3b58b 2234 {
Vkadaba 54:31921ad29828 2235 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2236 }
Vkadaba 61:0f16a2e3b58b 2237 for (unsigned i = 0; i < pLutHeader->numTables; i++)
Vkadaba 61:0f16a2e3b58b 2238 {
Vkadaba 54:31921ad29828 2239 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 54:31921ad29828 2240
Vkadaba 61:0f16a2e3b58b 2241 switch (pDesc->geometry)
Vkadaba 61:0f16a2e3b58b 2242 {
Vkadaba 61:0f16a2e3b58b 2243 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 61:0f16a2e3b58b 2244 switch (pDesc->equation)
Vkadaba 61:0f16a2e3b58b 2245 {
Vkadaba 61:0f16a2e3b58b 2246 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 61:0f16a2e3b58b 2247 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 61:0f16a2e3b58b 2248 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 61:0f16a2e3b58b 2249 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 61:0f16a2e3b58b 2250 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 61:0f16a2e3b58b 2251 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 61:0f16a2e3b58b 2252 break;
Vkadaba 61:0f16a2e3b58b 2253 default:
Vkadaba 61:0f16a2e3b58b 2254 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2255 pDesc->equation, i);
Vkadaba 61:0f16a2e3b58b 2256 return ADMW_INVALID_PARAM;
Vkadaba 55:215da406282b 2257 }
Vkadaba 61:0f16a2e3b58b 2258 break;
Vkadaba 61:0f16a2e3b58b 2259 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 61:0f16a2e3b58b 2260 break;
Vkadaba 61:0f16a2e3b58b 2261 default:
Vkadaba 61:0f16a2e3b58b 2262 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2263 pDesc->geometry, i);
Vkadaba 61:0f16a2e3b58b 2264 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2265 }
Vkadaba 54:31921ad29828 2266
Vkadaba 61:0f16a2e3b58b 2267 switch (pDesc->dataType)
Vkadaba 61:0f16a2e3b58b 2268 {
Vkadaba 61:0f16a2e3b58b 2269 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 61:0f16a2e3b58b 2270 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 61:0f16a2e3b58b 2271 break;
Vkadaba 61:0f16a2e3b58b 2272 default:
Vkadaba 61:0f16a2e3b58b 2273 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2274 pDesc->dataType, i);
Vkadaba 61:0f16a2e3b58b 2275 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2276 }
Vkadaba 54:31921ad29828 2277
Vkadaba 54:31921ad29828 2278
Vkadaba 54:31921ad29828 2279 actualLength += sizeof(*pDesc) + pDesc->length;
Vkadaba 54:31921ad29828 2280
Vkadaba 54:31921ad29828 2281 /* Move to the next look-up table */
Vkadaba 54:31921ad29828 2282 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
Vkadaba 54:31921ad29828 2283 }
Vkadaba 54:31921ad29828 2284
Vkadaba 61:0f16a2e3b58b 2285 if (actualLength != pLutHeader->totalLength)
Vkadaba 61:0f16a2e3b58b 2286 {
Vkadaba 54:31921ad29828 2287 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 61:0f16a2e3b58b 2288 pLutHeader->totalLength, actualLength);
Vkadaba 54:31921ad29828 2289 return ADMW_WRONG_SIZE;
Vkadaba 54:31921ad29828 2290 }
Vkadaba 54:31921ad29828 2291
Vkadaba 61:0f16a2e3b58b 2292 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE)
Vkadaba 61:0f16a2e3b58b 2293 {
Vkadaba 54:31921ad29828 2294 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 61:0f16a2e3b58b 2295 ADMW_LUT_MAX_SIZE);
Vkadaba 54:31921ad29828 2296 return ADMW_WRONG_SIZE;
Vkadaba 54:31921ad29828 2297 }
Vkadaba 54:31921ad29828 2298
Vkadaba 54:31921ad29828 2299 /* Write the LUT data to the device */
Vkadaba 54:31921ad29828 2300 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
Vkadaba 54:31921ad29828 2301 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
Vkadaba 54:31921ad29828 2302 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
Vkadaba 54:31921ad29828 2303
Vkadaba 54:31921ad29828 2304 return ADMW_SUCCESS;
Vkadaba 54:31921ad29828 2305 }