Removed unwanted enums and unused functions

Committer:
Vkadaba
Date:
Tue Mar 31 04:50:37 2020 +0000
Revision:
61:0f16a2e3b58b
Parent:
58:aa9cd5072f66
Child:
63:6d048b2f3f32
removed crc support for LUT

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
Vkadaba 55:215da406282b 55 #include "inc/mbedVersion.h"
ADIJake 0:85855ecd3257 56 #include "crc16.h"
Vkadaba 13:97cb32670539 57 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 58 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 59
ADIJake 0:85855ecd3257 60 uint32_t getDataCnt = 0;
Vkadaba 32:52445bef314d 61 #define ADMW_VERSION_REG_VAL_SIZE 4u
Vkadaba 32:52445bef314d 62 #define ADMW_FORMATTED_VERSION_SIZE 11u
ADIJake 0:85855ecd3257 63
Vkadaba 32:52445bef314d 64 #define ADMW_SFL_READ_STATUS_SIZE 42u
ADIJake 0:85855ecd3257 65 /*
ADIJake 0:85855ecd3257 66 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 67 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 68 */
ADIJake 0:85855ecd3257 69 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 70
ADIJake 0:85855ecd3257 71 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 72 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 73
ADIJake 0:85855ecd3257 74 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 75 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 76 do { \
Vkadaba 8:2f2775c34640 77 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 78 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 79 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 80 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 81 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 82 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 83 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 84 } \
ADIJake 0:85855ecd3257 85 } while(false)
ADIJake 0:85855ecd3257 86
ADIJake 0:85855ecd3257 87 /*
ADIJake 0:85855ecd3257 88 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 89 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 90 */
ADIJake 0:85855ecd3257 91 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 92 do { \
Vkadaba 8:2f2775c34640 93 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 94 _type _regval = _val; \
Vkadaba 8:2f2775c34640 95 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 96 REG_##_name, \
ADIJake 0:85855ecd3257 97 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 98 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 99 return _res; \
ADIJake 0:85855ecd3257 100 } while(false)
ADIJake 0:85855ecd3257 101
ADIJake 0:85855ecd3257 102 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 103 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 104 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 105 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 106 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 107 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 108 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 109 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 110 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 111 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 112 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 113 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 114
ADIJake 0:85855ecd3257 115 /*
ADIJake 0:85855ecd3257 116 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 117 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 118 */
ADIJake 0:85855ecd3257 119 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 120 do { \
Vkadaba 8:2f2775c34640 121 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 122 _type _regval; \
Vkadaba 8:2f2775c34640 123 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 124 REG_##_name, \
ADIJake 0:85855ecd3257 125 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 126 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 127 return _res; \
ADIJake 0:85855ecd3257 128 _val = _regval; \
ADIJake 0:85855ecd3257 129 } while(false)
ADIJake 0:85855ecd3257 130
ADIJake 0:85855ecd3257 131 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 132 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 133 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 134 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 135 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 136 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 137 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 138 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 139 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 140 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 141 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 142 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 143
ADIJake 0:85855ecd3257 144 /*
ADIJake 0:85855ecd3257 145 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 146 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 147 */
Vkadaba 8:2f2775c34640 148 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 149 do { \
Vkadaba 8:2f2775c34640 150 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 151 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 152 REG_##_name, \
Vkadaba 6:9d393a9677f4 153 _arr, _len); \
Vkadaba 8:2f2775c34640 154 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 155 return _res; \
ADIJake 0:85855ecd3257 156 } while(false)
ADIJake 0:85855ecd3257 157
ADIJake 0:85855ecd3257 158 /*
ADIJake 0:85855ecd3257 159 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 160 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 161 */
Vkadaba 6:9d393a9677f4 162 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 163 do { \
Vkadaba 8:2f2775c34640 164 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 165 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 166 REG##_name, \
Vkadaba 6:9d393a9677f4 167 _arr, _len); \
Vkadaba 8:2f2775c34640 168 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 169 return _res; \
ADIJake 0:85855ecd3257 170 } while(false)
ADIJake 0:85855ecd3257 171
Vkadaba 8:2f2775c34640 172 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 173 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 174
Vkadaba 8:2f2775c34640 175 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 176 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 177
Vkadaba 8:2f2775c34640 178 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 179 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 180
Vkadaba 8:2f2775c34640 181 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 182 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 183
Vkadaba 8:2f2775c34640 184 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 185 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 186
Vkadaba 8:2f2775c34640 187 #define ADMW1001_CHANNEL_IS_VIRTUAL(c) \
Vkadaba 8:2f2775c34640 188 ((c) == ADMW1001_CH_ID_DIG_SPI_1 || (c) == ADMW1001_CH_ID_DIG_SPI_2)
ADIJake 0:85855ecd3257 189
Vkadaba 32:52445bef314d 190 //typedef struct {
Vkadaba 32:52445bef314d 191 // unsigned nDeviceIndex;
Vkadaba 32:52445bef314d 192 // ADMW_SPI_HANDLE hSpi;
Vkadaba 32:52445bef314d 193 // ADMW_GPIO_HANDLE hGpio;
Vkadaba 32:52445bef314d 194 //
Vkadaba 32:52445bef314d 195 //} ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 196
Vkadaba 5:0728bde67bdb 197 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 198
ADIJake 0:85855ecd3257 199 /*
Vkadaba 5:0728bde67bdb 200 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 201 */
Vkadaba 5:0728bde67bdb 202 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 203 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 204 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 205 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 206 {
Vkadaba 5:0728bde67bdb 207 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 208 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 209
Vkadaba 5:0728bde67bdb 210 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 211 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 212
ADIJake 0:85855ecd3257 213 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 214 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 215
Vkadaba 5:0728bde67bdb 216 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 217 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 218 return eRet;
ADIJake 0:85855ecd3257 219
Vkadaba 5:0728bde67bdb 220 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 221 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 222 return eRet;
ADIJake 0:85855ecd3257 223
Vkadaba 5:0728bde67bdb 224 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 225 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 226 return eRet;
ADIJake 0:85855ecd3257 227
ADIJake 0:85855ecd3257 228 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 229 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 230 }
ADIJake 0:85855ecd3257 231
ADIJake 0:85855ecd3257 232 /*
ADIJake 0:85855ecd3257 233 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 234 */
Vkadaba 5:0728bde67bdb 235 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 236 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 237 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 238 bool * const pbAsserted)
ADIJake 0:85855ecd3257 239 {
Vkadaba 5:0728bde67bdb 240 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 241
Vkadaba 5:0728bde67bdb 242 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 243 }
ADIJake 0:85855ecd3257 244
ADIJake 0:85855ecd3257 245 /*
ADIJake 0:85855ecd3257 246 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 247 */
Vkadaba 5:0728bde67bdb 248 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 249 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 250 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 251 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 252 void * const pCallbackParam)
ADIJake 0:85855ecd3257 253 {
Vkadaba 5:0728bde67bdb 254 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 255
Vkadaba 23:bb685f35b08b 256 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 257 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 258 pCallbackParam);
Vkadaba 23:bb685f35b08b 259 } else {
Vkadaba 5:0728bde67bdb 260 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 261 }
ADIJake 0:85855ecd3257 262 }
ADIJake 0:85855ecd3257 263
Vkadaba 8:2f2775c34640 264 /*!
Vkadaba 8:2f2775c34640 265 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 266 *
Vkadaba 8:2f2775c34640 267 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 268 *
Vkadaba 8:2f2775c34640 269 * @return Status
Vkadaba 8:2f2775c34640 270 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 271 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 272 *
Vkadaba 23:bb685f35b08b 273 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 274 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 275 *
ADIJake 0:85855ecd3257 276 */
Vkadaba 8:2f2775c34640 277 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 278 {
Vkadaba 5:0728bde67bdb 279 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 280 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 281
ADIJake 0:85855ecd3257 282 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 283 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 284 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 285 return eRet;
ADIJake 0:85855ecd3257 286
Vkadaba 5:0728bde67bdb 287 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 288
Vkadaba 5:0728bde67bdb 289 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 290 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 291 return eRet;
ADIJake 0:85855ecd3257 292
Vkadaba 5:0728bde67bdb 293 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 294 }
ADIJake 0:85855ecd3257 295
ADIJake 0:85855ecd3257 296 /*!
Vkadaba 8:2f2775c34640 297 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 298 *
ADIJake 0:85855ecd3257 299 * @param[in]
ADIJake 0:85855ecd3257 300 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 301 *
ADIJake 0:85855ecd3257 302 * @return Status
Vkadaba 5:0728bde67bdb 303 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 304 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 305 *
Vkadaba 8:2f2775c34640 306 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 307 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 308 * and command running.
ADIJake 0:85855ecd3257 309 *
ADIJake 0:85855ecd3257 310 */
Vkadaba 5:0728bde67bdb 311 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 312 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 313 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 314 {
Vkadaba 8:2f2775c34640 315 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 316 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 317
ADIJake 0:85855ecd3257 318 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 319
ADIJake 0:85855ecd3257 320 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 321 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 322 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 323 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 324 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 325 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 326 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 327 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 328
Vkadaba 8:2f2775c34640 329 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 330 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 331 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 332
Vkadaba 23:bb685f35b08b 333 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 334 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 335 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 336 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 337 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 338
Vkadaba 32:52445bef314d 339 if (alertDetailReg.ADC_Near_Overrange)
Vkadaba 32:52445bef314d 340 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_NEAR_OVERRANGE;
Vkadaba 32:52445bef314d 341 if (alertDetailReg.Sensor_UnderRange)
Vkadaba 32:52445bef314d 342 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_UNDERRANGE;
Vkadaba 32:52445bef314d 343 if (alertDetailReg.Sensor_OverRange)
Vkadaba 32:52445bef314d 344 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_OVERRANGE ;
Vkadaba 32:52445bef314d 345 if (alertDetailReg.CJ_Soft_Fault)
Vkadaba 32:52445bef314d 346 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_SOFT_FAULT ;
Vkadaba 32:52445bef314d 347 if (alertDetailReg.CJ_Hard_Fault)
Vkadaba 32:52445bef314d 348 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_HARD_FAULT;
Vkadaba 32:52445bef314d 349 if (alertDetailReg.ADC_Input_OverRange)
Vkadaba 32:52445bef314d 350 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_INPUT_OVERRANGE ;
Vkadaba 32:52445bef314d 351 if (alertDetailReg.Sensor_HardFault)
Vkadaba 32:52445bef314d 352 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_HARDFAULT;
Vkadaba 32:52445bef314d 353
ADIJake 0:85855ecd3257 354 }
ADIJake 0:85855ecd3257 355 }
ADIJake 0:85855ecd3257 356
Vkadaba 32:52445bef314d 357 if (statusReg.Configuration_Error)
Vkadaba 5:0728bde67bdb 358 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
Vkadaba 32:52445bef314d 359 if (statusReg.LUT_Error)
Vkadaba 5:0728bde67bdb 360 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 361 }
ADIJake 0:85855ecd3257 362
Vkadaba 23:bb685f35b08b 363 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 364 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 365
Vkadaba 8:2f2775c34640 366 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 367 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 368 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 369
ADIJake 0:85855ecd3257 370 }
Vkadaba 5:0728bde67bdb 371 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 372 }
ADIJake 0:85855ecd3257 373
Vkadaba 5:0728bde67bdb 374 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 375 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 376 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 377 {
Vkadaba 8:2f2775c34640 378 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 379
ADIJake 0:85855ecd3257 380 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 381
ADIJake 0:85855ecd3257 382 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 383 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 384 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 385
ADIJake 0:85855ecd3257 386 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 387
Vkadaba 5:0728bde67bdb 388 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 389 }
ADIJake 0:85855ecd3257 390
Vkadaba 50:d84305e5e1c0 391 ADMW_RESULT admw_deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 32:52445bef314d 392 {
Vkadaba 32:52445bef314d 393 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 32:52445bef314d 394 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 32:52445bef314d 395 ADMW_RESULT res;
Vkadaba 32:52445bef314d 396 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 32:52445bef314d 397 if(res != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 398 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 32:52445bef314d 399 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 32:52445bef314d 400 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 401 } else {
Vkadaba 32:52445bef314d 402 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 32:52445bef314d 403 strcat(nData, buffer);
Vkadaba 42:c9c5a22e539e 404 ADMW_LOG_INFO("Firmware Version Id is %X.%X.%X",nData[3],nData[2],nData[0]);
Vkadaba 32:52445bef314d 405 }
Vkadaba 32:52445bef314d 406 return ADMW_SUCCESS;
Vkadaba 32:52445bef314d 407 }
Vkadaba 55:215da406282b 408
Vkadaba 5:0728bde67bdb 409 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 410 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 411 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 412 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 413 {
Vkadaba 8:2f2775c34640 414 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 415 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 416 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 417
ADIJake 0:85855ecd3257 418 /*
ADIJake 0:85855ecd3257 419 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 420 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 421 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 422 */
Vkadaba 23:bb685f35b08b 423 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 424 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 425 if (eRet)
ADIJake 0:85855ecd3257 426 return eRet;
ADIJake 0:85855ecd3257 427
ADIJake 0:85855ecd3257 428 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 429 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 430 }
ADIJake 0:85855ecd3257 431
ADIJake 0:85855ecd3257 432 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 433 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 434
Vkadaba 23:bb685f35b08b 435 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 436 do {
Vkadaba 50:d84305e5e1c0 437 /* Allow a minimum 100usec delay for status update before checking */
Vkadaba 50:d84305e5e1c0 438 admw_TimeDelayUsec(100);
Vkadaba 5:0728bde67bdb 439
Vkadaba 5:0728bde67bdb 440 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 441 if (eRet)
ADIJake 0:85855ecd3257 442 return eRet;
ADIJake 0:85855ecd3257 443 } while (bCommandRunning);
ADIJake 0:85855ecd3257 444 }
ADIJake 0:85855ecd3257 445
Vkadaba 5:0728bde67bdb 446 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 447 }
ADIJake 0:85855ecd3257 448
Vkadaba 5:0728bde67bdb 449 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 450 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 451 {
Vkadaba 5:0728bde67bdb 452 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 453 }
ADIJake 0:85855ecd3257 454
ADIJake 0:85855ecd3257 455 /*!
ADIJake 0:85855ecd3257 456 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 457 *
ADIJake 0:85855ecd3257 458 * @param[out]
ADIJake 0:85855ecd3257 459 *
ADIJake 0:85855ecd3257 460 * @return Status
Vkadaba 5:0728bde67bdb 461 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 462 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 463 *
ADIJake 0:85855ecd3257 464 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 465 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 466 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 467 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 468 *
ADIJake 0:85855ecd3257 469 */
Vkadaba 5:0728bde67bdb 470 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 471 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 472 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 473 {
Vkadaba 23:bb685f35b08b 474 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 475 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 476 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 477 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 478 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 479 default:
Vkadaba 23:bb685f35b08b 480 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 481 eMeasurementMode);
Vkadaba 23:bb685f35b08b 482 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 483 }
ADIJake 0:85855ecd3257 484 }
ADIJake 0:85855ecd3257 485
ADIJake 0:85855ecd3257 486 /*
ADIJake 0:85855ecd3257 487 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 488 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 489 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 490 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 491 */
Vkadaba 5:0728bde67bdb 492 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 493 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 494 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 495 {
Vkadaba 23:bb685f35b08b 496 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 497 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 498 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 499 default:
Vkadaba 5:0728bde67bdb 500 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 501 eSlotId);
Vkadaba 5:0728bde67bdb 502 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 503 }
ADIJake 0:85855ecd3257 504 }
ADIJake 0:85855ecd3257 505
ADIJake 0:85855ecd3257 506 /*
ADIJake 0:85855ecd3257 507 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 508 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 509 */
Vkadaba 5:0728bde67bdb 510 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 511 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 512 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 513 {
Vkadaba 23:bb685f35b08b 514 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 515 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 516 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 517 default:
Vkadaba 5:0728bde67bdb 518 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 519 eSlotId);
Vkadaba 5:0728bde67bdb 520 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 521 }
ADIJake 0:85855ecd3257 522 }
ADIJake 0:85855ecd3257 523
ADIJake 0:85855ecd3257 524 /*
ADIJake 0:85855ecd3257 525 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 526 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 527 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 528 */
Vkadaba 5:0728bde67bdb 529 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 530 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 531 {
Vkadaba 5:0728bde67bdb 532 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 533 }
ADIJake 0:85855ecd3257 534
ADIJake 0:85855ecd3257 535 /*
ADIJake 0:85855ecd3257 536 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 537 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 538 */
Vkadaba 5:0728bde67bdb 539 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 540 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 541 {
Vkadaba 5:0728bde67bdb 542 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 543 }
ADIJake 0:85855ecd3257 544
ADIJake 0:85855ecd3257 545 /*
ADIJake 0:85855ecd3257 546 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 547 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 548 */
Vkadaba 5:0728bde67bdb 549 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 550 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 551 {
Vkadaba 5:0728bde67bdb 552 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 553 }
ADIJake 0:85855ecd3257 554
ADIJake 0:85855ecd3257 555 /*
Vkadaba 32:52445bef314d 556 *
Vkadaba 32:52445bef314d 557 */
Vkadaba 32:52445bef314d 558 ADMW_RESULT admw1001_sendRun( ADMW_DEVICE_HANDLE const hDevice)
Vkadaba 32:52445bef314d 559 {
Vkadaba 32:52445bef314d 560 bool bitCommand;
Vkadaba 32:52445bef314d 561 ADMW_RESULT eRet;
Vkadaba 32:52445bef314d 562 uint8_t pinreg = 0x1;
Vkadaba 32:52445bef314d 563
Vkadaba 32:52445bef314d 564 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 32:52445bef314d 565 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 32:52445bef314d 566 uint16_t nSize;
Vkadaba 32:52445bef314d 567
Vkadaba 32:52445bef314d 568 //Construct Read Status command
Vkadaba 32:52445bef314d 569 DataBuffer[0] = 0x07;
Vkadaba 32:52445bef314d 570 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 32:52445bef314d 571
Vkadaba 32:52445bef314d 572 DataBuffer[2] = 0x00;
Vkadaba 32:52445bef314d 573 DataBuffer[3] = 0x00; //Data words
Vkadaba 32:52445bef314d 574
Vkadaba 32:52445bef314d 575 DataBuffer[4] = 0x45;
Vkadaba 32:52445bef314d 576 DataBuffer[5] = 0x00; //Command ID
Vkadaba 32:52445bef314d 577
Vkadaba 32:52445bef314d 578 DataBuffer[6] = 0x00;
Vkadaba 32:52445bef314d 579 DataBuffer[7] = 0x50;
Vkadaba 32:52445bef314d 580 DataBuffer[8] = 0x00;
Vkadaba 32:52445bef314d 581 DataBuffer[9] = 0x00; //Address
Vkadaba 32:52445bef314d 582
Vkadaba 32:52445bef314d 583 DataBuffer[10] = 0x95;
Vkadaba 32:52445bef314d 584 DataBuffer[11] = 0x00;
Vkadaba 32:52445bef314d 585 DataBuffer[12] = 0x00;
Vkadaba 32:52445bef314d 586 DataBuffer[13] = 0x00; //Checksum
Vkadaba 32:52445bef314d 587
Vkadaba 32:52445bef314d 588 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 32:52445bef314d 589
Vkadaba 32:52445bef314d 590 do {
Vkadaba 32:52445bef314d 591 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 32:52445bef314d 592 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 32:52445bef314d 593 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 32:52445bef314d 594 if( eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 595 return eRet;
Vkadaba 32:52445bef314d 596 }
Vkadaba 32:52445bef314d 597
Vkadaba 32:52445bef314d 598 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 32:52445bef314d 599 // pinreg == '0x00' - Error occured in SFL
Vkadaba 32:52445bef314d 600 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 32:52445bef314d 601 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 32:52445bef314d 602 // pinreg == '0x03' - SFL not booted
Vkadaba 32:52445bef314d 603
Vkadaba 32:52445bef314d 604 pinreg = (bitCommand);
Vkadaba 32:52445bef314d 605
Vkadaba 32:52445bef314d 606 } while(pinreg != 0x0u);
Vkadaba 32:52445bef314d 607
Vkadaba 32:52445bef314d 608 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 32:52445bef314d 609 nSize, false);
Vkadaba 32:52445bef314d 610
Vkadaba 32:52445bef314d 611 return eRet;
Vkadaba 32:52445bef314d 612 }
Vkadaba 32:52445bef314d 613
Vkadaba 32:52445bef314d 614 /*
ADIJake 0:85855ecd3257 615 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 616 * This may be called at any time.
ADIJake 0:85855ecd3257 617 */
Vkadaba 32:52445bef314d 618
Vkadaba 5:0728bde67bdb 619 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 620 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 621 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 622 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 623 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 624 uint32_t const nRequested,
ADIJake 0:85855ecd3257 625 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 626 {
Vkadaba 5:0728bde67bdb 627 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 628 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 629 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 630 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 631 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 632 command >> 8,
ADIJake 0:85855ecd3257 633 command & 0xFF
ADIJake 0:85855ecd3257 634 };
ADIJake 0:85855ecd3257 635 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 636 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 637 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 638
ADIJake 0:85855ecd3257 639 do {
Vkadaba 5:0728bde67bdb 640 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 641 sizeof(command), false);
Vkadaba 23:bb685f35b08b 642 if (eRet) {
Vkadaba 5:0728bde67bdb 643 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 644 return eRet;
ADIJake 0:85855ecd3257 645 }
Vkadaba 5:0728bde67bdb 646 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 647 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 648 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 50:d84305e5e1c0 649
Vkadaba 23:bb685f35b08b 650 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 651 bool bHoldCs = true;
ADIJake 0:85855ecd3257 652 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 653 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 654 bHoldCs = false;
ADIJake 0:85855ecd3257 655
ADIJake 0:85855ecd3257 656 getDataCnt++;
ADIJake 0:85855ecd3257 657
Vkadaba 5:0728bde67bdb 658 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 659 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 660 if (eRet) {
Vkadaba 5:0728bde67bdb 661 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 662 return eRet;
ADIJake 0:85855ecd3257 663 }
ADIJake 0:85855ecd3257 664
Vkadaba 23:bb685f35b08b 665 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 666 /*
ADIJake 0:85855ecd3257 667 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 668 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 669 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 670 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 671 */
Vkadaba 5:0728bde67bdb 672 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 673 break;
ADIJake 0:85855ecd3257 674 }
ADIJake 0:85855ecd3257 675
Vkadaba 5:0728bde67bdb 676 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 677
Vkadaba 5:0728bde67bdb 678 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 679 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 680 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 681 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 682 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 683
ADIJake 0:85855ecd3257 684 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 685 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 686 else
ADIJake 0:85855ecd3257 687 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 688
ADIJake 0:85855ecd3257 689 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 690 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 691
ADIJake 0:85855ecd3257 692 nValidSamples++;
ADIJake 0:85855ecd3257 693
Vkadaba 50:d84305e5e1c0 694 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 695 }
ADIJake 0:85855ecd3257 696 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 697
ADIJake 0:85855ecd3257 698 return eRet;
ADIJake 0:85855ecd3257 699 }
ADIJake 0:85855ecd3257 700
ADIJake 0:85855ecd3257 701 /*
Vkadaba 5:0728bde67bdb 702 * Close the given ADMW device.
ADIJake 0:85855ecd3257 703 */
Vkadaba 5:0728bde67bdb 704 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 705 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 706 {
Vkadaba 5:0728bde67bdb 707 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 708
Vkadaba 5:0728bde67bdb 709 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 710 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 711 admw_LogClose();
Vkadaba 5:0728bde67bdb 712
Vkadaba 5:0728bde67bdb 713 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 714 }
ADIJake 0:85855ecd3257 715
Vkadaba 5:0728bde67bdb 716 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 717 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 718 uint16_t nAddress,
ADIJake 0:85855ecd3257 719 void *pData,
ADIJake 0:85855ecd3257 720 unsigned nLength)
ADIJake 0:85855ecd3257 721 {
Vkadaba 5:0728bde67bdb 722 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 723 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 724 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 725 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 726 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 727 command >> 8,
ADIJake 0:85855ecd3257 728 command & 0xFF
ADIJake 0:85855ecd3257 729 };
ADIJake 0:85855ecd3257 730 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 731
ADIJake 0:85855ecd3257 732 do {
Vkadaba 5:0728bde67bdb 733 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 734 sizeof(command), false);
Vkadaba 23:bb685f35b08b 735 if (eRet) {
Vkadaba 5:0728bde67bdb 736 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 737 nAddress);
ADIJake 0:85855ecd3257 738 return eRet;
ADIJake 0:85855ecd3257 739 }
ADIJake 0:85855ecd3257 740
Vkadaba 5:0728bde67bdb 741 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 742 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 743 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 744
Vkadaba 5:0728bde67bdb 745 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 746 if (eRet) {
Vkadaba 5:0728bde67bdb 747 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 748 nLength, nAddress);
ADIJake 0:85855ecd3257 749 return eRet;
ADIJake 0:85855ecd3257 750 }
ADIJake 0:85855ecd3257 751
Vkadaba 5:0728bde67bdb 752 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 753
Vkadaba 5:0728bde67bdb 754 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 755 }
ADIJake 0:85855ecd3257 756
Vkadaba 6:9d393a9677f4 757 ADMW_RESULT admw1001_Write_Debug_Register(
Vkadaba 6:9d393a9677f4 758 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 759 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 760 void *pData,
Vkadaba 6:9d393a9677f4 761 unsigned nLength)
Vkadaba 6:9d393a9677f4 762 {
Vkadaba 6:9d393a9677f4 763 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 764 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 765 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_WRITE_CMD |
Vkadaba 23:bb685f35b08b 766 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 767 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 768 command >> 8,
Vkadaba 6:9d393a9677f4 769 command & 0xFF
Vkadaba 6:9d393a9677f4 770 };
Vkadaba 6:9d393a9677f4 771 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 772
Vkadaba 6:9d393a9677f4 773 do {
Vkadaba 6:9d393a9677f4 774 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 775 sizeof(command), false);
Vkadaba 23:bb685f35b08b 776 if (eRet) {
Vkadaba 6:9d393a9677f4 777 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 778 nAddress);
Vkadaba 6:9d393a9677f4 779 return eRet;
Vkadaba 6:9d393a9677f4 780 }
Vkadaba 48:5731f1aa2c5a 781 wait_ms(100);
Vkadaba 48:5731f1aa2c5a 782 //admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 783 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 784 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 785
Vkadaba 6:9d393a9677f4 786 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 787 if (eRet) {
Vkadaba 6:9d393a9677f4 788 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 789 nLength, nAddress);
Vkadaba 6:9d393a9677f4 790 return eRet;
Vkadaba 6:9d393a9677f4 791 }
Vkadaba 6:9d393a9677f4 792
Vkadaba 6:9d393a9677f4 793 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 794
Vkadaba 6:9d393a9677f4 795 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 796 }
Vkadaba 5:0728bde67bdb 797 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 798 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 799 uint16_t nAddress,
ADIJake 0:85855ecd3257 800 void *pData,
ADIJake 0:85855ecd3257 801 unsigned nLength)
ADIJake 0:85855ecd3257 802 {
Vkadaba 5:0728bde67bdb 803 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 804 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 805 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 806 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 807 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 808 command >> 8,
ADIJake 0:85855ecd3257 809 command & 0xFF
ADIJake 0:85855ecd3257 810 };
ADIJake 0:85855ecd3257 811 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 812
ADIJake 0:85855ecd3257 813 do {
Vkadaba 5:0728bde67bdb 814 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 815 sizeof(command), false);
Vkadaba 23:bb685f35b08b 816 if (eRet) {
Vkadaba 5:0728bde67bdb 817 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 818 nAddress);
ADIJake 0:85855ecd3257 819 return eRet;
ADIJake 0:85855ecd3257 820 }
ADIJake 0:85855ecd3257 821
Vkadaba 5:0728bde67bdb 822 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 823 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 824 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 825
Vkadaba 5:0728bde67bdb 826 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 827 if (eRet) {
Vkadaba 5:0728bde67bdb 828 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 829 nLength, nAddress);
ADIJake 0:85855ecd3257 830 return eRet;
ADIJake 0:85855ecd3257 831 }
ADIJake 0:85855ecd3257 832
Vkadaba 5:0728bde67bdb 833 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 834
Vkadaba 5:0728bde67bdb 835 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 836 }
ADIJake 0:85855ecd3257 837
Vkadaba 6:9d393a9677f4 838 ADMW_RESULT admw1001_Read_Debug_Register(
Vkadaba 6:9d393a9677f4 839 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 840 uint16_t nAddress,
Vkadaba 6:9d393a9677f4 841 void *pData,
Vkadaba 6:9d393a9677f4 842 unsigned nLength)
Vkadaba 6:9d393a9677f4 843 {
Vkadaba 6:9d393a9677f4 844 ADMW_RESULT eRet;
Vkadaba 6:9d393a9677f4 845 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 6:9d393a9677f4 846 uint16_t command = ADMW1001_HOST_COMMS_DEBUG_READ_CMD |
Vkadaba 23:bb685f35b08b 847 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
Vkadaba 6:9d393a9677f4 848 uint8_t commandData[2] = {
Vkadaba 6:9d393a9677f4 849 command >> 8,
Vkadaba 6:9d393a9677f4 850 command & 0xFF
Vkadaba 6:9d393a9677f4 851 };
Vkadaba 6:9d393a9677f4 852 uint8_t commandResponse[2];
Vkadaba 6:9d393a9677f4 853
Vkadaba 6:9d393a9677f4 854 do {
Vkadaba 6:9d393a9677f4 855 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 856 sizeof(command), false);
Vkadaba 23:bb685f35b08b 857 if (eRet) {
Vkadaba 6:9d393a9677f4 858 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 859 nAddress);
Vkadaba 6:9d393a9677f4 860 return eRet;
Vkadaba 6:9d393a9677f4 861 }
Vkadaba 6:9d393a9677f4 862
Vkadaba 6:9d393a9677f4 863 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 864 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 6:9d393a9677f4 865 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 6:9d393a9677f4 866
Vkadaba 6:9d393a9677f4 867 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 868 if (eRet) {
Vkadaba 6:9d393a9677f4 869 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 870 nLength, nAddress);
Vkadaba 6:9d393a9677f4 871 return eRet;
Vkadaba 6:9d393a9677f4 872 }
Vkadaba 6:9d393a9677f4 873
Vkadaba 6:9d393a9677f4 874 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 6:9d393a9677f4 875
Vkadaba 6:9d393a9677f4 876 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 877 }
Vkadaba 5:0728bde67bdb 878 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 5:0728bde67bdb 879 ADMW_DEVICE_HANDLE const hDevice,
ADIJake 0:85855ecd3257 880 bool * const bReady)
ADIJake 0:85855ecd3257 881 {
Vkadaba 5:0728bde67bdb 882 ADMW_SPI_Chip_Type_t chipTypeReg;
ADIJake 0:85855ecd3257 883
ADIJake 0:85855ecd3257 884 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
ADIJake 0:85855ecd3257 885 /* If we read this register successfully, assume the device is ready */
Vkadaba 5:0728bde67bdb 886 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 5:0728bde67bdb 887
Vkadaba 5:0728bde67bdb 888 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 889 }
ADIJake 0:85855ecd3257 890
Vkadaba 5:0728bde67bdb 891 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 892 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 893 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 894 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 895 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 896 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 897 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 898 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 899 {
ADIJake 0:85855ecd3257 900 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 901 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 902
Vkadaba 8:2f2775c34640 903 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 904 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 905
Vkadaba 57:c6275de14bc5 906 if (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE)
Vkadaba 50:d84305e5e1c0 907 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
Vkadaba 50:d84305e5e1c0 908 else
Vkadaba 50:d84305e5e1c0 909 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 910
Vkadaba 23:bb685f35b08b 911 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 50:d84305e5e1c0 912 *pnBytesPerSample = 8;
Vkadaba 23:bb685f35b08b 913 } else {
Vkadaba 50:d84305e5e1c0 914 *pnBytesPerSample = 12;
Vkadaba 6:9d393a9677f4 915 }
Vkadaba 23:bb685f35b08b 916
Vkadaba 8:2f2775c34640 917 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 918 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 919 chId++) {
Vkadaba 8:2f2775c34640 920 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 921 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 922
Vkadaba 8:2f2775c34640 923 if (ADMW1001_CHANNEL_IS_VIRTUAL(chId))
Vkadaba 8:2f2775c34640 924 continue;
Vkadaba 23:bb685f35b08b 925
Vkadaba 8:2f2775c34640 926 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 927 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 928
Vkadaba 41:df78b7d7b675 929 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) {
Vkadaba 8:2f2775c34640 930 unsigned nActualChannels = 1;
Vkadaba 23:bb685f35b08b 931
Vkadaba 41:df78b7d7b675 932 if (chId == ADMW1001_CH_ID_DIG_SPI_0) {
Vkadaba 23:bb685f35b08b 933 /* Some sensors automatically generate samples on additional
Vkadaba 23:bb685f35b08b 934 * "virtual" channels so these channels must be counted as
Vkadaba 23:bb685f35b08b 935 * active when those sensors are selected and we use the count
Vkadaba 23:bb685f35b08b 936 * from the corresponding "physical" channel
Vkadaba 8:2f2775c34640 937 */
Vkadaba 50:d84305e5e1c0 938 #if 0 /* SPI sensors arent supported at present to be added back once there is
Vkadaba 32:52445bef314d 939 * support for these sensors
Vkadaba 32:52445bef314d 940 */
Vkadaba 36:54e2418e7620 941 ADMW_CORE_Sensor_Type_t sensorTypeReg;
Vkadaba 36:54e2418e7620 942
Vkadaba 36:54e2418e7620 943 READ_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(chId));
Vkadaba 41:df78b7d7b675 944
Vkadaba 8:2f2775c34640 945 if ((sensorTypeReg.Sensor_Type >=
Vkadaba 41:df78b7d7b675 946 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_A) &&
Vkadaba 41:df78b7d7b675 947 (sensorTypeReg.Sensor_Type <=
Vkadaba 41:df78b7d7b675 948 CORE_SENSOR_TYPE_SPI_ACCELEROMETER_B)) {
Vkadaba 8:2f2775c34640 949 nActualChannels += 2;
Vkadaba 8:2f2775c34640 950 }
Vkadaba 32:52445bef314d 951 #endif
Vkadaba 8:2f2775c34640 952 }
Vkadaba 23:bb685f35b08b 953
Vkadaba 8:2f2775c34640 954 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 955
Vkadaba 8:2f2775c34640 956 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 957 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 958 }
Vkadaba 6:9d393a9677f4 959 }
Vkadaba 23:bb685f35b08b 960
Vkadaba 23:bb685f35b08b 961 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 962 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 963 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 964 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 965 }
Vkadaba 23:bb685f35b08b 966
Vkadaba 6:9d393a9677f4 967 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 968
Vkadaba 23:bb685f35b08b 969 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 970 *pnSamplesPerDataready = 1;
Vkadaba 50:d84305e5e1c0 971 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 972 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 50:d84305e5e1c0 973 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 974 ADMW_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
Vkadaba 50:d84305e5e1c0 975
Vkadaba 50:d84305e5e1c0 976 READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 977
Vkadaba 50:d84305e5e1c0 978 *pnSamplesPerDataready = nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
Vkadaba 23:bb685f35b08b 979 } else {
Vkadaba 50:d84305e5e1c0 980 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 981 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 982 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 983 }
Vkadaba 23:bb685f35b08b 984
Vkadaba 23:bb685f35b08b 985 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 986 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 50:d84305e5e1c0 987 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 988 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 989 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 990 *peDataReadyMode = ADMW1001_DATAREADY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 991 } else {
Vkadaba 50:d84305e5e1c0 992 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 993 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 994 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 995 }
Vkadaba 23:bb685f35b08b 996
Vkadaba 5:0728bde67bdb 997 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 998 }
ADIJake 0:85855ecd3257 999
Vkadaba 5:0728bde67bdb 1000 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 1001 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1002 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 1003 {
Vkadaba 5:0728bde67bdb 1004 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 1005 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 1006
ADIJake 0:85855ecd3257 1007 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 1008 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 1009
Vkadaba 23:bb685f35b08b 1010 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 1011 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 1012 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1013 }
ADIJake 0:85855ecd3257 1014
Vkadaba 5:0728bde67bdb 1015 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 1016 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1017 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 1018 {
Vkadaba 50:d84305e5e1c0 1019 ADMW_CORE_Power_Config_t powerConfigReg = { 0 };
Vkadaba 5:0728bde67bdb 1020
Vkadaba 23:bb685f35b08b 1021 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 1022 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 1023 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 1024 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 1025 } else {
Vkadaba 5:0728bde67bdb 1026 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 1027 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1028 }
ADIJake 0:85855ecd3257 1029
ADIJake 0:85855ecd3257 1030 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 1031
Vkadaba 5:0728bde67bdb 1032 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1033 }
ADIJake 0:85855ecd3257 1034
Vkadaba 5:0728bde67bdb 1035 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 1036 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1037 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 1038 {
Vkadaba 5:0728bde67bdb 1039 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1040
Vkadaba 5:0728bde67bdb 1041 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 1042 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1043 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 1044 return eRet;
ADIJake 0:85855ecd3257 1045 }
ADIJake 0:85855ecd3257 1046
Vkadaba 5:0728bde67bdb 1047 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1048 }
ADIJake 0:85855ecd3257 1049
Vkadaba 33:df7a00f1b8e1 1050 static ADMW_RESULT admw_SetRSenseValue(
Vkadaba 33:df7a00f1b8e1 1051 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 33:df7a00f1b8e1 1052 float32_t RSenseValue)
Vkadaba 33:df7a00f1b8e1 1053 {
Vkadaba 41:df78b7d7b675 1054 ADMW_CORE_External_Reference_Resistor_t RefResistorConfigReg;
Vkadaba 41:df78b7d7b675 1055
Vkadaba 41:df78b7d7b675 1056 RefResistorConfigReg.Ext_Refin1_Value = RSenseValue;
Vkadaba 41:df78b7d7b675 1057
Vkadaba 41:df78b7d7b675 1058 WRITE_REG_FLOAT(hDevice, RefResistorConfigReg.VALUE32, CORE_EXTERNAL_REFERENCE_RESISTOR);
Vkadaba 41:df78b7d7b675 1059
Vkadaba 41:df78b7d7b675 1060 return ADMW_SUCCESS;
Vkadaba 33:df7a00f1b8e1 1061
Vkadaba 33:df7a00f1b8e1 1062 }
Vkadaba 5:0728bde67bdb 1063 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 1064 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1065 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 1066 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 1067 {
Vkadaba 8:2f2775c34640 1068 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 1069
ADIJake 0:85855ecd3257 1070 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 1071
Vkadaba 23:bb685f35b08b 1072 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 1073 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 1074 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 1075 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 1076 } else {
Vkadaba 5:0728bde67bdb 1077 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 1078 eOperatingMode);
Vkadaba 5:0728bde67bdb 1079 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1080 }
ADIJake 0:85855ecd3257 1081
Vkadaba 23:bb685f35b08b 1082 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 1083 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 1084 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 1085 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 1086 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 1087 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 1088 } else {
Vkadaba 5:0728bde67bdb 1089 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 1090 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1091 }
ADIJake 0:85855ecd3257 1092
ADIJake 0:85855ecd3257 1093 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 1094
Vkadaba 5:0728bde67bdb 1095 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1096 }
ADIJake 0:85855ecd3257 1097
Vkadaba 8:2f2775c34640 1098 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1099 uint32_t nCycleInterval,
Vkadaba 50:d84305e5e1c0 1100 bool vBiasEnable,
Vkadaba 43:e1789b7214cf 1101 bool vPostExecCurrentState,
Vkadaba 43:e1789b7214cf 1102 bool vGroundSwitch)
ADIJake 0:85855ecd3257 1103 {
Vkadaba 8:2f2775c34640 1104 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 1105
ADIJake 0:85855ecd3257 1106 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1107
Vkadaba 43:e1789b7214cf 1108 if (nCycleInterval < (1 << 12)) {
Vkadaba 43:e1789b7214cf 1109 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
Vkadaba 23:bb685f35b08b 1110 } else {
Vkadaba 43:e1789b7214cf 1111 ADMW_LOG_ERROR("Invalid nCycleInterval %d specified", nCycleInterval);
Vkadaba 50:d84305e5e1c0 1112 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1113 }
ADIJake 0:85855ecd3257 1114
Vkadaba 23:bb685f35b08b 1115 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1116 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1117 }
ADIJake 0:85855ecd3257 1118 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1119 cycleControlReg.Cycle_Time = nCycleInterval;
Vkadaba 50:d84305e5e1c0 1120
Vkadaba 50:d84305e5e1c0 1121 switch(vPostExecCurrentState) {
Vkadaba 50:d84305e5e1c0 1122 case ADMW1001_ADC_EXC_STATE_CYCLE_POWER:
Vkadaba 50:d84305e5e1c0 1123 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_POWERCYCLE;
Vkadaba 50:d84305e5e1c0 1124 break;
Vkadaba 50:d84305e5e1c0 1125 case ADMW1001_ADC_EXC_STATE_ALWAYS_ON:
Vkadaba 50:d84305e5e1c0 1126 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_ALWAYSON;
Vkadaba 50:d84305e5e1c0 1127 break;
Vkadaba 50:d84305e5e1c0 1128 default:
Vkadaba 50:d84305e5e1c0 1129 ADMW_LOG_ERROR("Invalid Post measurement Excitation Current state %d specified",
Vkadaba 50:d84305e5e1c0 1130 vPostExecCurrentState);
Vkadaba 50:d84305e5e1c0 1131 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1132 }
Vkadaba 50:d84305e5e1c0 1133
Vkadaba 50:d84305e5e1c0 1134 switch(vGroundSwitch) {
Vkadaba 50:d84305e5e1c0 1135 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 50:d84305e5e1c0 1136 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_OPEN_SW;
Vkadaba 50:d84305e5e1c0 1137 break;
Vkadaba 50:d84305e5e1c0 1138 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 50:d84305e5e1c0 1139 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_CLOSE_SW;
Vkadaba 50:d84305e5e1c0 1140 break;
Vkadaba 50:d84305e5e1c0 1141 default:
Vkadaba 50:d84305e5e1c0 1142 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 50:d84305e5e1c0 1143 vGroundSwitch);
Vkadaba 50:d84305e5e1c0 1144 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1145 }
Vkadaba 50:d84305e5e1c0 1146
ADIJake 0:85855ecd3257 1147 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1148
Vkadaba 5:0728bde67bdb 1149 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1150 }
Vkadaba 36:54e2418e7620 1151 static ADMW_RESULT admw_SetExternalReferenceVoltage(
Vkadaba 36:54e2418e7620 1152 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1153 float32_t externalRefVoltage)
Vkadaba 36:54e2418e7620 1154 {
Vkadaba 36:54e2418e7620 1155 WRITE_REG_FLOAT(hDevice, externalRefVoltage, CORE_EXTERNAL_VOLTAGE_REFERENCE);
Vkadaba 36:54e2418e7620 1156
Vkadaba 36:54e2418e7620 1157 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1158 }
Vkadaba 50:d84305e5e1c0 1159 static ADMW_RESULT admw_SetFifoNumCycles(
Vkadaba 50:d84305e5e1c0 1160 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1161 uint8_t fifoNumCycles)
Vkadaba 50:d84305e5e1c0 1162 {
Vkadaba 50:d84305e5e1c0 1163 WRITE_REG_U8(hDevice, fifoNumCycles, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 1164
Vkadaba 50:d84305e5e1c0 1165 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1166 }
ADIJake 0:85855ecd3257 1167
Vkadaba 5:0728bde67bdb 1168 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1169 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1170 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1171 {
Vkadaba 6:9d393a9677f4 1172 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1173
Vkadaba 5:0728bde67bdb 1174 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1175 }
Vkadaba 45:f5f553b8c0d5 1176 static ADMW_RESULT admw_SetAVDDVoltage(
Vkadaba 50:d84305e5e1c0 1177 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1178 float32_t AVDDVoltage)
Vkadaba 50:d84305e5e1c0 1179 {
Vkadaba 45:f5f553b8c0d5 1180
Vkadaba 50:d84305e5e1c0 1181 WRITE_REG_FLOAT(hDevice, AVDDVoltage, CORE_AVDD_VOLTAGE);
Vkadaba 45:f5f553b8c0d5 1182
Vkadaba 50:d84305e5e1c0 1183 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1184 }
ADIJake 0:85855ecd3257 1185
Vkadaba 5:0728bde67bdb 1186 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1187 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1188 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1189 {
Vkadaba 5:0728bde67bdb 1190 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1191
Vkadaba 5:0728bde67bdb 1192 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1193 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1194 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1195 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1196 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1197 return eRet;
ADIJake 0:85855ecd3257 1198 }
ADIJake 0:85855ecd3257 1199
Vkadaba 8:2f2775c34640 1200 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 43:e1789b7214cf 1201 pMeasConfig->vBiasEnable,
Vkadaba 43:e1789b7214cf 1202 pMeasConfig->excitationState,
Vkadaba 43:e1789b7214cf 1203 pMeasConfig->groundSwitch );
Vkadaba 23:bb685f35b08b 1204 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1205 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1206 return eRet;
ADIJake 0:85855ecd3257 1207 }
ADIJake 0:85855ecd3257 1208
Vkadaba 50:d84305e5e1c0 1209 if (pMeasConfig->fifoNumCycles > 0) {
Vkadaba 50:d84305e5e1c0 1210 eRet = admw_SetFifoNumCycles(hDevice,
Vkadaba 50:d84305e5e1c0 1211 pMeasConfig->fifoNumCycles);
Vkadaba 50:d84305e5e1c0 1212 }
Vkadaba 50:d84305e5e1c0 1213
Vkadaba 50:d84305e5e1c0 1214 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1215 ADMW_LOG_ERROR("Failed to set the FIFO number of cycles.");
Vkadaba 50:d84305e5e1c0 1216 return eRet;
Vkadaba 50:d84305e5e1c0 1217 }
Vkadaba 50:d84305e5e1c0 1218
Vkadaba 43:e1789b7214cf 1219 if(pMeasConfig->externalRef1Value > 0) {
Vkadaba 8:2f2775c34640 1220 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1221 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1222 }
Vkadaba 50:d84305e5e1c0 1223
Vkadaba 50:d84305e5e1c0 1224 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1225 ADMW_LOG_ERROR("Failed to set external reference values");
Vkadaba 50:d84305e5e1c0 1226 return eRet;
Vkadaba 50:d84305e5e1c0 1227 }
Vkadaba 50:d84305e5e1c0 1228
Vkadaba 50:d84305e5e1c0 1229 if((pMeasConfig->AVDDVoltage >= 3.0) && (pMeasConfig->AVDDVoltage <= 3.6)) {
Vkadaba 45:f5f553b8c0d5 1230 eRet = admw_SetAVDDVoltage(hDevice,
Vkadaba 45:f5f553b8c0d5 1231 pMeasConfig->AVDDVoltage);
Vkadaba 45:f5f553b8c0d5 1232 }
Vkadaba 50:d84305e5e1c0 1233
Vkadaba 23:bb685f35b08b 1234 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1235 ADMW_LOG_ERROR("Failed to set AVDD Voltge");
ADIJake 0:85855ecd3257 1236 return eRet;
ADIJake 0:85855ecd3257 1237 }
ADIJake 0:85855ecd3257 1238
Vkadaba 33:df7a00f1b8e1 1239 eRet = admw_SetRSenseValue(hDevice, pMeasConfig->RSenseValue);
Vkadaba 41:df78b7d7b675 1240 if (eRet != ADMW_SUCCESS) {
Vkadaba 33:df7a00f1b8e1 1241 ADMW_LOG_ERROR("Failed to set RSenseValue");
Vkadaba 33:df7a00f1b8e1 1242 return eRet;
Vkadaba 33:df7a00f1b8e1 1243 }
Vkadaba 41:df78b7d7b675 1244
Vkadaba 36:54e2418e7620 1245 eRet = admw_SetExternalReferenceVoltage(hDevice, pMeasConfig->externalRefVoltage);
Vkadaba 41:df78b7d7b675 1246 if (eRet != ADMW_SUCCESS) {
Vkadaba 36:54e2418e7620 1247 ADMW_LOG_ERROR("Failed to set External reference Voltage");
Vkadaba 36:54e2418e7620 1248 return eRet;
Vkadaba 41:df78b7d7b675 1249 }
Vkadaba 41:df78b7d7b675 1250
Vkadaba 5:0728bde67bdb 1251 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1252 }
Vkadaba 36:54e2418e7620 1253 ADMW_RESULT admw1001_SetDiagnosticsConfig(
Vkadaba 36:54e2418e7620 1254 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1255 ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
Vkadaba 36:54e2418e7620 1256 {
Vkadaba 36:54e2418e7620 1257 ADMW_CORE_Diagnostics_Control_t diagnosticsControlReg;
ADIJake 0:85855ecd3257 1258
Vkadaba 36:54e2418e7620 1259 diagnosticsControlReg.VALUE8 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1260
Vkadaba 36:54e2418e7620 1261 if (pDiagnosticsConfig->disableMeasurementDiag)
Vkadaba 36:54e2418e7620 1262 diagnosticsControlReg.Diag_Meas_En = 0;
Vkadaba 36:54e2418e7620 1263 else
Vkadaba 36:54e2418e7620 1264 diagnosticsControlReg.Diag_Meas_En = 1;
Vkadaba 36:54e2418e7620 1265
Vkadaba 55:215da406282b 1266 if(pDiagnosticsConfig->osdFrequency <= 0x7F) {
Vkadaba 55:215da406282b 1267 diagnosticsControlReg.Diag_OSD_Freq = pDiagnosticsConfig->osdFrequency;
Vkadaba 55:215da406282b 1268 } else {
Vkadaba 44:94bdfaefddac 1269 ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
Vkadaba 55:215da406282b 1270 pDiagnosticsConfig->osdFrequency);
Vkadaba 44:94bdfaefddac 1271 return ADMW_INVALID_PARAM;
Vkadaba 44:94bdfaefddac 1272 }
Vkadaba 36:54e2418e7620 1273 WRITE_REG_U8(hDevice, diagnosticsControlReg.VALUE8, CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1274
Vkadaba 36:54e2418e7620 1275 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1276 }
ADIJake 0:85855ecd3257 1277
Vkadaba 5:0728bde67bdb 1278 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1279 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1280 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1281 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1282 {
Vkadaba 8:2f2775c34640 1283 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1284
ADIJake 0:85855ecd3257 1285 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1286
Vkadaba 23:bb685f35b08b 1287 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1288 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1289
ADIJake 0:85855ecd3257 1290 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1291 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1292
ADIJake 0:85855ecd3257 1293 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1294 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1295 } else {
ADIJake 0:85855ecd3257 1296 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1297 }
ADIJake 0:85855ecd3257 1298
ADIJake 0:85855ecd3257 1299 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1300
Vkadaba 5:0728bde67bdb 1301 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1302 }
ADIJake 0:85855ecd3257 1303
Vkadaba 5:0728bde67bdb 1304 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1305 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1306 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1307 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1308 {
Vkadaba 8:2f2775c34640 1309 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1310
ADIJake 0:85855ecd3257 1311 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1312
ADIJake 0:85855ecd3257 1313 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1314 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1315
ADIJake 0:85855ecd3257 1316 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1317
Vkadaba 5:0728bde67bdb 1318 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1319 }
ADIJake 0:85855ecd3257 1320
Vkadaba 5:0728bde67bdb 1321 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1322 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1323 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1324 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1325 {
Vkadaba 8:2f2775c34640 1326 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1327
ADIJake 0:85855ecd3257 1328 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1329
ADIJake 0:85855ecd3257 1330 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1331
ADIJake 0:85855ecd3257 1332 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1333
ADIJake 0:85855ecd3257 1334 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1335
Vkadaba 5:0728bde67bdb 1336 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1337 }
ADIJake 0:85855ecd3257 1338
Vkadaba 5:0728bde67bdb 1339 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1340 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1341 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1342 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1343 {
Vkadaba 8:2f2775c34640 1344 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1345
ADIJake 0:85855ecd3257 1346 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1347
ADIJake 0:85855ecd3257 1348 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1349 switch(sensorType) {
Vkadaba 50:d84305e5e1c0 1350 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1351
Vkadaba 50:d84305e5e1c0 1352 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1353 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1354 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1355 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1356 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1357 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1358 case ADMW1001_ADC_SENSOR_RTD_2WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1359 case ADMW1001_ADC_SENSOR_RTD_2WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1360 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1361
Vkadaba 50:d84305e5e1c0 1362 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1363 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1364 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1365 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1366 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1367 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1368 case ADMW1001_ADC_SENSOR_RTD_4WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1369 case ADMW1001_ADC_SENSOR_RTD_4WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1370 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1371
Vkadaba 50:d84305e5e1c0 1372 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT50:
Vkadaba 8:2f2775c34640 1373 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1374 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1375 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT500:
Vkadaba 8:2f2775c34640 1376 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1377 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_0P00375 :
Vkadaba 50:d84305e5e1c0 1378
Vkadaba 50:d84305e5e1c0 1379 case ADMW1001_ADC_SENSOR_RTD_3WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1380 case ADMW1001_ADC_SENSOR_RTD_3WIRE_CUSTOM:
Vkadaba 58:aa9cd5072f66 1381 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE:
Vkadaba 58:aa9cd5072f66 1382 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE:
Vkadaba 50:d84305e5e1c0 1383 case ADMW1001_ADC_SENSOR_DIODE:
Vkadaba 50:d84305e5e1c0 1384 case ADMW1001_ADC_SENSOR_THERMISTOR_44004_44033_2P252K_AT_25C:
Vkadaba 50:d84305e5e1c0 1385 case ADMW1001_ADC_SENSOR_THERMISTOR_44005_44030_3K_AT_25C:
Vkadaba 50:d84305e5e1c0 1386 case ADMW1001_ADC_SENSOR_THERMISTOR_44007_44034_5K_AT_25C:
Vkadaba 50:d84305e5e1c0 1387 case ADMW1001_ADC_SENSOR_THERMISTOR_44006_44031_10K_AT_25C:
Vkadaba 50:d84305e5e1c0 1388 case ADMW1001_ADC_SENSOR_THERMISTOR_44008_44032_30K_AT_25C:
Vkadaba 50:d84305e5e1c0 1389 case ADMW1001_ADC_SENSOR_THERMISTOR_YSI_400:
Vkadaba 50:d84305e5e1c0 1390 case ADMW1001_ADC_SENSOR_THERMISTOR_SPECTRUM_1003K_1K:
Vkadaba 50:d84305e5e1c0 1391 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_STEINHART_HART:
Vkadaba 50:d84305e5e1c0 1392 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_TABLE:
Vkadaba 36:54e2418e7620 1393 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_ABSOLUTE:
Vkadaba 36:54e2418e7620 1394 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_ABSOLUTE:
Vkadaba 36:54e2418e7620 1395 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_RATIO:
Vkadaba 36:54e2418e7620 1396 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_RATIO:
Vkadaba 50:d84305e5e1c0 1397
Vkadaba 50:d84305e5e1c0 1398 if (! (ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId) ||
Vkadaba 50:d84305e5e1c0 1399 ADMW1001_CHANNEL_IS_ADC(eChannelId) )) {
Vkadaba 6:9d393a9677f4 1400 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1401 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1402 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1403 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1404 }
Vkadaba 6:9d393a9677f4 1405 break;
Vkadaba 8:2f2775c34640 1406 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1407 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1408 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 50:d84305e5e1c0 1409 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_E:
Vkadaba 50:d84305e5e1c0 1410 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_N:
Vkadaba 50:d84305e5e1c0 1411 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_R:
Vkadaba 50:d84305e5e1c0 1412 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_S:
Vkadaba 50:d84305e5e1c0 1413 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_B:
Vkadaba 50:d84305e5e1c0 1414 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_CUSTOM:
Vkadaba 23:bb685f35b08b 1415 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1416 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1417 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1418 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1419 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1420 }
Vkadaba 6:9d393a9677f4 1421 break;
Vkadaba 6:9d393a9677f4 1422 default:
Vkadaba 6:9d393a9677f4 1423 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1424 sensorType);
Vkadaba 5:0728bde67bdb 1425 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1426 }
ADIJake 0:85855ecd3257 1427
ADIJake 0:85855ecd3257 1428 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1429
ADIJake 0:85855ecd3257 1430 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1431
Vkadaba 5:0728bde67bdb 1432 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1433 }
ADIJake 0:85855ecd3257 1434
Vkadaba 5:0728bde67bdb 1435 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1436 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1437 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1438 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1439 /*
ADIJake 0:85855ecd3257 1440 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1441 * General details:
ADIJake 0:85855ecd3257 1442 * - Measurement_Units
ADIJake 0:85855ecd3257 1443 * - Compensation_Channel
ADIJake 0:85855ecd3257 1444 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1445 * ADC-specific details:
ADIJake 0:85855ecd3257 1446 * - PGA_Gain
ADIJake 0:85855ecd3257 1447 * - Reference_Select
ADIJake 0:85855ecd3257 1448 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1449 */
ADIJake 0:85855ecd3257 1450 {
Vkadaba 5:0728bde67bdb 1451 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1452 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1453 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1454
ADIJake 0:85855ecd3257 1455 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1456
Vkadaba 23:bb685f35b08b 1457 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1458 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1459 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1460 break;
Vkadaba 8:2f2775c34640 1461 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1462 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1463 break;
Vkadaba 8:2f2775c34640 1464 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1465 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1466 break;
Vkadaba 8:2f2775c34640 1467 default:
Vkadaba 8:2f2775c34640 1468 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1469 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1470 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1471 }
ADIJake 0:85855ecd3257 1472
Vkadaba 23:bb685f35b08b 1473 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1474 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1475 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1476 } else {
ADIJake 0:85855ecd3257 1477 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1478 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1479 }
ADIJake 0:85855ecd3257 1480
Vkadaba 23:bb685f35b08b 1481 switch(refType) {
Vkadaba 8:2f2775c34640 1482 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1483 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1484 break;
Vkadaba 8:2f2775c34640 1485 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1486 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1487 break;
Vkadaba 8:2f2775c34640 1488 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1489 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1490 break;
Vkadaba 8:2f2775c34640 1491 default:
Vkadaba 8:2f2775c34640 1492 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1493 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1494 }
Vkadaba 23:bb685f35b08b 1495
Vkadaba 23:bb685f35b08b 1496 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1497 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1498 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1499 break;
Vkadaba 8:2f2775c34640 1500 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1501 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1502 break;
Vkadaba 8:2f2775c34640 1503 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1504 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1505 break;
Vkadaba 8:2f2775c34640 1506 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1507 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1508 break;
Vkadaba 8:2f2775c34640 1509 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1510 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1511 break;
Vkadaba 8:2f2775c34640 1512 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1513 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1514 break;
Vkadaba 8:2f2775c34640 1515 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1516 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1517 break;
Vkadaba 8:2f2775c34640 1518 case ADMW1001_ADC_GAIN_128X:
Vkadaba 8:2f2775c34640 1519 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_128;
Vkadaba 8:2f2775c34640 1520 break;
Vkadaba 8:2f2775c34640 1521 default:
Vkadaba 8:2f2775c34640 1522 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1523 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1524 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1525 }
ADIJake 0:85855ecd3257 1526
Vkadaba 23:bb685f35b08b 1527 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1528 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1529 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1530 break;
Vkadaba 8:2f2775c34640 1531 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1532 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1533 break;
Vkadaba 8:2f2775c34640 1534 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1535 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1536 break;
Vkadaba 8:2f2775c34640 1537 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1538 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1539 break;
Vkadaba 8:2f2775c34640 1540 default:
Vkadaba 8:2f2775c34640 1541 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1542 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1543 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1544 }
Vkadaba 6:9d393a9677f4 1545
Vkadaba 23:bb685f35b08b 1546 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1547 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1548 } else {
ADIJake 0:85855ecd3257 1549 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1550 }
Vkadaba 23:bb685f35b08b 1551
Vkadaba 23:bb685f35b08b 1552 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1553 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1554 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1555 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1556 break;
Vkadaba 8:2f2775c34640 1557 default:
Vkadaba 8:2f2775c34640 1558 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1559 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1560 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1561 }
Vkadaba 23:bb685f35b08b 1562
ADIJake 0:85855ecd3257 1563 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1564
Vkadaba 5:0728bde67bdb 1565 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1566 }
ADIJake 0:85855ecd3257 1567
Vkadaba 33:df7a00f1b8e1 1568 static ADMW_RESULT admw_SetChannelAdcMeasurementSetup(
Vkadaba 5:0728bde67bdb 1569 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1570 ADMW1001_CH_ID eChannelId,
Vkadaba 33:df7a00f1b8e1 1571 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig)
ADIJake 0:85855ecd3257 1572 {
Vkadaba 8:2f2775c34640 1573 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 33:df7a00f1b8e1 1574 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig = &pAdcChannelConfig->filter;
Vkadaba 6:9d393a9677f4 1575 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
Vkadaba 33:df7a00f1b8e1 1576 MeasSetupReg.Buffer_Bypass = pAdcChannelConfig->bufferBypass;
Vkadaba 41:df78b7d7b675 1577
Vkadaba 23:bb685f35b08b 1578 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1579 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1580 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1581 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1582 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1583 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1584 } else {
Vkadaba 5:0728bde67bdb 1585 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1586 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1587 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1588 }
Vkadaba 23:bb685f35b08b 1589
Vkadaba 8:2f2775c34640 1590 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1591 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1592
Vkadaba 6:9d393a9677f4 1593 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1594 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1595 else
Vkadaba 6:9d393a9677f4 1596 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1597
Vkadaba 6:9d393a9677f4 1598 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1599
Vkadaba 5:0728bde67bdb 1600 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1601 }
ADIJake 0:85855ecd3257 1602
Vkadaba 5:0728bde67bdb 1603 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1604 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1605 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1606 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1607 {
Vkadaba 8:2f2775c34640 1608 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1609
Vkadaba 6:9d393a9677f4 1610 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1611
Vkadaba 18:cbf514cce921 1612 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1613 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1614 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1615 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1616 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1617 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1618 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1619 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1620 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1621 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1622 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1623 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1624 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1625 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1626 else {
Vkadaba 6:9d393a9677f4 1627 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1628 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1629 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1630 }
ADIJake 0:85855ecd3257 1631
Vkadaba 6:9d393a9677f4 1632 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1633
Vkadaba 5:0728bde67bdb 1634 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1635 }
ADIJake 0:85855ecd3257 1636
Vkadaba 5:0728bde67bdb 1637 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1638 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1639 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1640 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1641 {
Vkadaba 5:0728bde67bdb 1642 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1643 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1644 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1645
Vkadaba 5:0728bde67bdb 1646 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1647 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1648 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1649 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1650 eChannelId);
ADIJake 0:85855ecd3257 1651 return eRet;
ADIJake 0:85855ecd3257 1652 }
ADIJake 0:85855ecd3257 1653
Vkadaba 5:0728bde67bdb 1654 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1655 pChannelConfig);
Vkadaba 23:bb685f35b08b 1656 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1657 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1658 eChannelId);
ADIJake 0:85855ecd3257 1659 return eRet;
ADIJake 0:85855ecd3257 1660 }
ADIJake 0:85855ecd3257 1661
Vkadaba 33:df7a00f1b8e1 1662 eRet = admw_SetChannelAdcMeasurementSetup(hDevice, eChannelId,
Vkadaba 41:df78b7d7b675 1663 pAdcChannelConfig);
Vkadaba 23:bb685f35b08b 1664 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1665 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1666 eChannelId);
ADIJake 0:85855ecd3257 1667 return eRet;
ADIJake 0:85855ecd3257 1668 }
ADIJake 0:85855ecd3257 1669
Vkadaba 5:0728bde67bdb 1670 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1671 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1672 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1673 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1674 eChannelId);
ADIJake 0:85855ecd3257 1675 return eRet;
ADIJake 0:85855ecd3257 1676 }
ADIJake 0:85855ecd3257 1677
Vkadaba 5:0728bde67bdb 1678 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1679 }
ADIJake 0:85855ecd3257 1680
Vkadaba 5:0728bde67bdb 1681 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1682 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1683 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1684 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1685 {
Vkadaba 8:2f2775c34640 1686 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1687
ADIJake 0:85855ecd3257 1688 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1689
Vkadaba 23:bb685f35b08b 1690 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1691 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1692 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1693 } else {
Vkadaba 5:0728bde67bdb 1694 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1695 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1696 }
ADIJake 0:85855ecd3257 1697
Vkadaba 23:bb685f35b08b 1698 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1699 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1700 } else {
Vkadaba 5:0728bde67bdb 1701 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1702 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1703 }
ADIJake 0:85855ecd3257 1704
ADIJake 0:85855ecd3257 1705 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1706 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1707 else
ADIJake 0:85855ecd3257 1708 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1709
ADIJake 0:85855ecd3257 1710 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1711
Vkadaba 5:0728bde67bdb 1712 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1713 }
ADIJake 0:85855ecd3257 1714
Vkadaba 5:0728bde67bdb 1715 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1716 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1717 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1718 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1719 {
Vkadaba 8:2f2775c34640 1720 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1721
ADIJake 0:85855ecd3257 1722 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1723
Vkadaba 23:bb685f35b08b 1724 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1725 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1726 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1727 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1728 }
Vkadaba 23:bb685f35b08b 1729 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1730 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1731 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1732 }
ADIJake 0:85855ecd3257 1733
ADIJake 0:85855ecd3257 1734 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1735 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1736 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1737 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1738 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1739 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1740
ADIJake 0:85855ecd3257 1741 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1742 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1743 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1744 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1745 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1746
Vkadaba 23:bb685f35b08b 1747 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1748 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1749 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1750 break;
Vkadaba 23:bb685f35b08b 1751 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1752 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1753 break;
Vkadaba 23:bb685f35b08b 1754 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1755 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1756 break;
Vkadaba 23:bb685f35b08b 1757 default:
Vkadaba 23:bb685f35b08b 1758 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1759 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1760 }
Vkadaba 23:bb685f35b08b 1761 } else {
Vkadaba 5:0728bde67bdb 1762 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1763 }
ADIJake 0:85855ecd3257 1764
ADIJake 0:85855ecd3257 1765 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1766 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1767
ADIJake 0:85855ecd3257 1768
Vkadaba 5:0728bde67bdb 1769 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1770 }
ADIJake 0:85855ecd3257 1771
Vkadaba 5:0728bde67bdb 1772 static ADMW_RESULT admw_SetDigitalCalibrationParam(
Vkadaba 23:bb685f35b08b 1773 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 23:bb685f35b08b 1774 ADMW1001_CH_ID eChannelId,
Vkadaba 23:bb685f35b08b 1775 ADMW1001_DIGITAL_CALIBRATION_COMMAND *pCalibrationParam)
ADIJake 0:85855ecd3257 1776 {
Vkadaba 32:52445bef314d 1777 // ADMW_CORE_Calibration_Parameter_t calibrationParamReg;
Vkadaba 32:52445bef314d 1778 //
Vkadaba 32:52445bef314d 1779 // calibrationParamReg.VALUE32 = REG_RESET_VAL(CORE_CALIBRATION_PARAMETERn);
Vkadaba 32:52445bef314d 1780 //
Vkadaba 32:52445bef314d 1781 // if (pCalibrationParam->enableCalibrationParam == false)
Vkadaba 32:52445bef314d 1782 // calibrationParamReg.Calibration_Parameter_Enable = 0;
Vkadaba 32:52445bef314d 1783 // else
Vkadaba 32:52445bef314d 1784 // calibrationParamReg.Calibration_Parameter_Enable = 1;
Vkadaba 32:52445bef314d 1785 //
Vkadaba 32:52445bef314d 1786 // CHECK_REG_FIELD_VAL(CORE_CALIBRATION_PARAMETER_CALIBRATION_PARAMETER,
Vkadaba 32:52445bef314d 1787 // pCalibrationParam->calibrationParam);
Vkadaba 32:52445bef314d 1788 //
Vkadaba 32:52445bef314d 1789 // calibrationParamReg.Calibration_Parameter = pCalibrationParam->calibrationParam;
Vkadaba 32:52445bef314d 1790 //
Vkadaba 32:52445bef314d 1791 // WRITE_REG_U32(hDevice, calibrationParamReg.VALUE32,
Vkadaba 32:52445bef314d 1792 // CORE_CALIBRATION_PARAMETERn(eChannelId));
Vkadaba 32:52445bef314d 1793 //
Vkadaba 5:0728bde67bdb 1794 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1795 }
ADIJake 0:85855ecd3257 1796
Vkadaba 5:0728bde67bdb 1797 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1798 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1799 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1800 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1801 {
Vkadaba 8:2f2775c34640 1802 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1803
ADIJake 0:85855ecd3257 1804 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1805
ADIJake 0:85855ecd3257 1806 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1807 switch(sensorType) {
Vkadaba 58:aa9cd5072f66 1808 case ADMW1001_I2C_SENSOR_HUMIDITY:
Vkadaba 50:d84305e5e1c0 1809 case ADMW1001_I2C_SENSOR_TEMPERATURE_ADT742X:
Vkadaba 8:2f2775c34640 1810 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1811 break;
Vkadaba 8:2f2775c34640 1812 default:
Vkadaba 8:2f2775c34640 1813 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1814 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1815 }
ADIJake 0:85855ecd3257 1816
ADIJake 0:85855ecd3257 1817 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1818
Vkadaba 5:0728bde67bdb 1819 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1820 }
ADIJake 0:85855ecd3257 1821
Vkadaba 5:0728bde67bdb 1822 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1823 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1824 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1825 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1826 {
ADIJake 0:85855ecd3257 1827 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1828 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1829
Vkadaba 5:0728bde67bdb 1830 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1831 }
ADIJake 0:85855ecd3257 1832
Vkadaba 5:0728bde67bdb 1833 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1834 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1835 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1836 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1837 {
Vkadaba 8:2f2775c34640 1838 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1839
ADIJake 0:85855ecd3257 1840 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1841
Vkadaba 23:bb685f35b08b 1842 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1843
Vkadaba 23:bb685f35b08b 1844 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1845 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1846 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1847 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1848 } else {
Vkadaba 5:0728bde67bdb 1849 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1850 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1851 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1852 }
ADIJake 0:85855ecd3257 1853
Vkadaba 23:bb685f35b08b 1854 if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_0) {
Vkadaba 5:0728bde67bdb 1855 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_0;
Vkadaba 23:bb685f35b08b 1856 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_1) {
Vkadaba 5:0728bde67bdb 1857 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_1;
Vkadaba 23:bb685f35b08b 1858 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_2) {
Vkadaba 5:0728bde67bdb 1859 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_2;
Vkadaba 23:bb685f35b08b 1860 } else if(pDigitalComms->spiMode == ADMW1001_DIGITAL_SENSOR_COMMS_SPI_MODE_3) {
Vkadaba 5:0728bde67bdb 1861 digitalSensorComms.SPI_Mode = CORE_DIGITAL_SENSOR_COMMS_SPI_MODE_3;
Vkadaba 23:bb685f35b08b 1862 } else {
Vkadaba 5:0728bde67bdb 1863 ADMW_LOG_ERROR("Invalid SPI mode %d specified",
Vkadaba 23:bb685f35b08b 1864 pDigitalComms->spiMode);
Vkadaba 5:0728bde67bdb 1865 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1866 }
ADIJake 0:85855ecd3257 1867
Vkadaba 23:bb685f35b08b 1868 switch (pDigitalComms->spiClock) {
Vkadaba 23:bb685f35b08b 1869 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_8MHZ:
Vkadaba 23:bb685f35b08b 1870 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_8MHZ;
Vkadaba 23:bb685f35b08b 1871 break;
Vkadaba 23:bb685f35b08b 1872 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_4MHZ:
Vkadaba 23:bb685f35b08b 1873 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_4MHZ;
Vkadaba 23:bb685f35b08b 1874 break;
Vkadaba 23:bb685f35b08b 1875 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_2MHZ:
Vkadaba 23:bb685f35b08b 1876 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_2MHZ;
Vkadaba 23:bb685f35b08b 1877 break;
Vkadaba 23:bb685f35b08b 1878 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1MHZ:
Vkadaba 23:bb685f35b08b 1879 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1MHZ;
Vkadaba 23:bb685f35b08b 1880 break;
Vkadaba 23:bb685f35b08b 1881 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_500KHZ:
Vkadaba 23:bb685f35b08b 1882 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_500KHZ;
Vkadaba 23:bb685f35b08b 1883 break;
Vkadaba 23:bb685f35b08b 1884 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_250KHZ:
Vkadaba 23:bb685f35b08b 1885 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_250KHZ;
Vkadaba 23:bb685f35b08b 1886 break;
Vkadaba 23:bb685f35b08b 1887 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_125KHZ:
Vkadaba 23:bb685f35b08b 1888 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_125KHZ;
Vkadaba 23:bb685f35b08b 1889 break;
Vkadaba 23:bb685f35b08b 1890 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_62P5KHZ:
Vkadaba 23:bb685f35b08b 1891 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_62P5KHZ;
Vkadaba 23:bb685f35b08b 1892 break;
Vkadaba 23:bb685f35b08b 1893 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_31P3KHZ:
Vkadaba 23:bb685f35b08b 1894 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_31P3KHZ;
Vkadaba 23:bb685f35b08b 1895 break;
Vkadaba 23:bb685f35b08b 1896 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_15P6KHZ:
Vkadaba 23:bb685f35b08b 1897 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_15P6KHZ;
Vkadaba 23:bb685f35b08b 1898 break;
Vkadaba 23:bb685f35b08b 1899 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_7P8KHZ:
Vkadaba 23:bb685f35b08b 1900 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_7P8KHZ;
Vkadaba 23:bb685f35b08b 1901 break;
Vkadaba 23:bb685f35b08b 1902 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_3P9KHZ:
Vkadaba 23:bb685f35b08b 1903 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_3P9KHZ;
Vkadaba 23:bb685f35b08b 1904 break;
Vkadaba 23:bb685f35b08b 1905 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_1P9KHZ:
Vkadaba 23:bb685f35b08b 1906 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_1P9KHZ;
Vkadaba 23:bb685f35b08b 1907 break;
Vkadaba 23:bb685f35b08b 1908 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_977HZ:
Vkadaba 23:bb685f35b08b 1909 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_977HZ;
Vkadaba 23:bb685f35b08b 1910 break;
Vkadaba 23:bb685f35b08b 1911 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_488HZ:
Vkadaba 23:bb685f35b08b 1912 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_488HZ;
Vkadaba 23:bb685f35b08b 1913 break;
Vkadaba 23:bb685f35b08b 1914 case ADMW1001_DIGITAL_SENSOR_COMMS_SPI_CLOCK_244HZ:
Vkadaba 23:bb685f35b08b 1915 digitalSensorComms.SPI_Clock = CORE_DIGITAL_SENSOR_COMMS_SPI_244HZ;
Vkadaba 23:bb685f35b08b 1916 break;
Vkadaba 23:bb685f35b08b 1917 default:
Vkadaba 23:bb685f35b08b 1918 ADMW_LOG_ERROR("Invalid SPI clock %d specified",
Vkadaba 23:bb685f35b08b 1919 pDigitalComms->spiClock);
Vkadaba 23:bb685f35b08b 1920 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1921 }
ADIJake 0:85855ecd3257 1922 }
ADIJake 0:85855ecd3257 1923
Vkadaba 50:d84305e5e1c0 1924
ADIJake 0:85855ecd3257 1925 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1926
Vkadaba 5:0728bde67bdb 1927 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1928 }
ADIJake 0:85855ecd3257 1929
Vkadaba 5:0728bde67bdb 1930 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1931 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1932 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1933 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1934 {
Vkadaba 5:0728bde67bdb 1935 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1936 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1937 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1938
Vkadaba 5:0728bde67bdb 1939 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1940 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1941 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1942 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1943 eChannelId);
ADIJake 0:85855ecd3257 1944 return eRet;
ADIJake 0:85855ecd3257 1945 }
ADIJake 0:85855ecd3257 1946
Vkadaba 5:0728bde67bdb 1947 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1948 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1949 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1950 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1951 eChannelId);
ADIJake 0:85855ecd3257 1952 return eRet;
ADIJake 0:85855ecd3257 1953 }
ADIJake 0:85855ecd3257 1954
Vkadaba 5:0728bde67bdb 1955 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1956 pChannelConfig);
Vkadaba 23:bb685f35b08b 1957 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1958 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1959 eChannelId);
ADIJake 0:85855ecd3257 1960 return eRet;
ADIJake 0:85855ecd3257 1961 }
ADIJake 0:85855ecd3257 1962
Vkadaba 5:0728bde67bdb 1963 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1964 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1965 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1966 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1967 eChannelId);
ADIJake 0:85855ecd3257 1968 return eRet;
ADIJake 0:85855ecd3257 1969 }
ADIJake 0:85855ecd3257 1970
Vkadaba 5:0728bde67bdb 1971 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1972 &pI2cChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 1973 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1974 ADMW_LOG_ERROR("Failed to set I2C digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 1975 eChannelId);
ADIJake 0:85855ecd3257 1976 return eRet;
ADIJake 0:85855ecd3257 1977 }
ADIJake 0:85855ecd3257 1978
Vkadaba 5:0728bde67bdb 1979 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1980 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1981 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1982 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 1983 eChannelId);
ADIJake 0:85855ecd3257 1984 return eRet;
ADIJake 0:85855ecd3257 1985 }
ADIJake 0:85855ecd3257 1986
Vkadaba 5:0728bde67bdb 1987 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1988 }
ADIJake 0:85855ecd3257 1989
Vkadaba 5:0728bde67bdb 1990 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 1991 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1992 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1993 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1994 {
Vkadaba 8:2f2775c34640 1995 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1996
ADIJake 0:85855ecd3257 1997 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1998
ADIJake 0:85855ecd3257 1999 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 2000 switch(sensorType) {
Vkadaba 58:aa9cd5072f66 2001 case ADMW1001_SPI_SENSOR:
Vkadaba 23:bb685f35b08b 2002
Vkadaba 23:bb685f35b08b 2003 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 2004 break;
Vkadaba 23:bb685f35b08b 2005 default:
Vkadaba 23:bb685f35b08b 2006 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 2007 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2008 }
ADIJake 0:85855ecd3257 2009
ADIJake 0:85855ecd3257 2010 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 2011
Vkadaba 5:0728bde67bdb 2012 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2013 }
ADIJake 0:85855ecd3257 2014
Vkadaba 5:0728bde67bdb 2015 ADMW_RESULT admw_SetSpiChannelConfig(
Vkadaba 5:0728bde67bdb 2016 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2017 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2018 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2019 {
Vkadaba 5:0728bde67bdb 2020 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2021 ADMW1001_SPI_CHANNEL_CONFIG *pSpiChannelConfig =
ADIJake 0:85855ecd3257 2022 &pChannelConfig->spiChannelConfig;
ADIJake 0:85855ecd3257 2023
Vkadaba 5:0728bde67bdb 2024 eRet = admw_SetChannelSpiSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2025 pSpiChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 2026 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2027 ADMW_LOG_ERROR("Failed to set SPI sensor type for channel %d",
Vkadaba 23:bb685f35b08b 2028 eChannelId);
ADIJake 0:85855ecd3257 2029 return eRet;
ADIJake 0:85855ecd3257 2030 }
ADIJake 0:85855ecd3257 2031
Vkadaba 5:0728bde67bdb 2032 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2033 pChannelConfig);
Vkadaba 23:bb685f35b08b 2034 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2035 ADMW_LOG_ERROR("Failed to set SPI sensor details for channel %d",
Vkadaba 23:bb685f35b08b 2036 eChannelId);
ADIJake 0:85855ecd3257 2037 return eRet;
ADIJake 0:85855ecd3257 2038 }
ADIJake 0:85855ecd3257 2039
Vkadaba 5:0728bde67bdb 2040 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2041 &pSpiChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 2042 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2043 ADMW_LOG_ERROR("Failed to set SPI sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 2044 eChannelId);
ADIJake 0:85855ecd3257 2045 return eRet;
ADIJake 0:85855ecd3257 2046 }
ADIJake 0:85855ecd3257 2047
Vkadaba 5:0728bde67bdb 2048 eRet = admw_SetDigitalCalibrationParam(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2049 &pSpiChannelConfig->digitalCalibrationParam);
Vkadaba 23:bb685f35b08b 2050 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2051 ADMW_LOG_ERROR("Failed to set SPI digital calibration param for channel %d",
Vkadaba 23:bb685f35b08b 2052 eChannelId);
ADIJake 0:85855ecd3257 2053 return eRet;
ADIJake 0:85855ecd3257 2054 }
ADIJake 0:85855ecd3257 2055
Vkadaba 5:0728bde67bdb 2056 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2057 &pSpiChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 2058 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2059 ADMW_LOG_ERROR("Failed to set SPI comms for channel %d",
Vkadaba 23:bb685f35b08b 2060 eChannelId);
ADIJake 0:85855ecd3257 2061 return eRet;
ADIJake 0:85855ecd3257 2062 }
ADIJake 0:85855ecd3257 2063
Vkadaba 5:0728bde67bdb 2064 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2065 }
ADIJake 0:85855ecd3257 2066
Vkadaba 5:0728bde67bdb 2067 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 2068 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2069 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2070 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 2071 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 2072 {
ADIJake 0:85855ecd3257 2073 /*
ADIJake 0:85855ecd3257 2074 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 2075 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 2076 */
Vkadaba 23:bb685f35b08b 2077 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 2078 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2079 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 2080 } else {
ADIJake 0:85855ecd3257 2081 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 2082 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 2083 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 2084 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 2085 }
ADIJake 0:85855ecd3257 2086
ADIJake 0:85855ecd3257 2087 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 2088 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2089 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 2090 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 2091
Vkadaba 5:0728bde67bdb 2092 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2093 }
ADIJake 0:85855ecd3257 2094
Vkadaba 5:0728bde67bdb 2095 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 2096 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2097 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2098 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 2099 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 2100 {
ADIJake 0:85855ecd3257 2101 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 2102 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 2103 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 2104 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 2105 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 2106
ADIJake 0:85855ecd3257 2107 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 2108 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 2109
Vkadaba 5:0728bde67bdb 2110 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2111 }
ADIJake 0:85855ecd3257 2112
Vkadaba 5:0728bde67bdb 2113 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 2114 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2115 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2116 float32_t fSensorParam)
ADIJake 0:85855ecd3257 2117 {
ADIJake 0:85855ecd3257 2118 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 2119 fSensorParam = NAN;
ADIJake 0:85855ecd3257 2120
Vkadaba 32:52445bef314d 2121 //WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 2122
Vkadaba 5:0728bde67bdb 2123 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2124 }
ADIJake 0:85855ecd3257 2125
Vkadaba 5:0728bde67bdb 2126 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 2127 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2128 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 2129 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 2130 {
Vkadaba 8:2f2775c34640 2131 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 2132
ADIJake 0:85855ecd3257 2133 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 2134 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 2135
ADIJake 0:85855ecd3257 2136 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 2137
Vkadaba 5:0728bde67bdb 2138 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2139 }
ADIJake 0:85855ecd3257 2140
Vkadaba 5:0728bde67bdb 2141 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 2142 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 2143 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 2144 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 2145 {
Vkadaba 5:0728bde67bdb 2146 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2147
Vkadaba 23:bb685f35b08b 2148 if (! ADMW1001_CHANNEL_IS_VIRTUAL(eChannelId)) {
Vkadaba 5:0728bde67bdb 2149 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2150 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 2151 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 2152 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2153 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 2154 eChannelId);
ADIJake 0:85855ecd3257 2155 return eRet;
ADIJake 0:85855ecd3257 2156 }
ADIJake 0:85855ecd3257 2157
Vkadaba 5:0728bde67bdb 2158 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2159 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 2160 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2161 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 2162 eChannelId);
ADIJake 0:85855ecd3257 2163 return eRet;
ADIJake 0:85855ecd3257 2164 }
ADIJake 0:85855ecd3257 2165
ADIJake 0:85855ecd3257 2166 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 2167 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 2168 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2169 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 2170 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2171 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 2172 eChannelId);
ADIJake 0:85855ecd3257 2173 return eRet;
ADIJake 0:85855ecd3257 2174 }
ADIJake 0:85855ecd3257 2175
Vkadaba 23:bb685f35b08b 2176 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 2177 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2178 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 2179 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2180 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 2181 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2182 break;
Vkadaba 23:bb685f35b08b 2183 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 2184 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 2185 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2186 break;
Vkadaba 23:bb685f35b08b 2187 case ADMW1001_CH_ID_DIG_SPI_0:
Vkadaba 23:bb685f35b08b 2188 eRet = admw_SetSpiChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 2189 break;
Vkadaba 23:bb685f35b08b 2190 default:
Vkadaba 23:bb685f35b08b 2191 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 32:52445bef314d 2192 eRet = ADMW_INVALID_PARAM;
Vkadaba 32:52445bef314d 2193 #if 0
Vkadaba 32:52445bef314d 2194 /* when using i2c sensors there is an error ( dataformat->length=0)
Vkadaba 32:52445bef314d 2195 the code below catches this error and this causes further problems.*/
Vkadaba 32:52445bef314d 2196 break;
Vkadaba 32:52445bef314d 2197 }
Vkadaba 32:52445bef314d 2198 if (eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 2199 ADMW_LOG_ERROR("Failed to set config for channel %d",
Vkadaba 32:52445bef314d 2200 eChannelId);
Vkadaba 32:52445bef314d 2201 return eRet;
Vkadaba 32:52445bef314d 2202 #endif
ADIJake 0:85855ecd3257 2203 }
ADIJake 0:85855ecd3257 2204
Vkadaba 5:0728bde67bdb 2205 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2206 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 2207 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2208 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 2209 eChannelId);
ADIJake 0:85855ecd3257 2210 return eRet;
ADIJake 0:85855ecd3257 2211 }
ADIJake 0:85855ecd3257 2212 }
ADIJake 0:85855ecd3257 2213 }
ADIJake 0:85855ecd3257 2214
Vkadaba 23:bb685f35b08b 2215 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 2216 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2217 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2218 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 2219 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 2220 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2221 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 2222 eChannelId);
ADIJake 0:85855ecd3257 2223 return eRet;
ADIJake 0:85855ecd3257 2224 }
ADIJake 0:85855ecd3257 2225
ADIJake 0:85855ecd3257 2226 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 2227 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2228 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 2229 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 2230 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2231 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 2232 eChannelId);
ADIJake 0:85855ecd3257 2233 return eRet;
ADIJake 0:85855ecd3257 2234 }
ADIJake 0:85855ecd3257 2235
ADIJake 0:85855ecd3257 2236 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 2237 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 2238 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 2239 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 2240 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 2241 eChannelId);
ADIJake 0:85855ecd3257 2242 return eRet;
ADIJake 0:85855ecd3257 2243 }
ADIJake 0:85855ecd3257 2244 }
ADIJake 0:85855ecd3257 2245
Vkadaba 5:0728bde67bdb 2246 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2247 }
ADIJake 0:85855ecd3257 2248
Vkadaba 5:0728bde67bdb 2249 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 2250 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2251 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 2252 {
Vkadaba 5:0728bde67bdb 2253 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 2254 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 2255 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 2256
Vkadaba 23:bb685f35b08b 2257 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 2258 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 2259 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 2260 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2261 }
Vkadaba 23:bb685f35b08b 2262
Vkadaba 23:bb685f35b08b 2263 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 2264 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 2265 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 2266 pConfig->versionId);
Vkadaba 6:9d393a9677f4 2267 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2268 }
Vkadaba 23:bb685f35b08b 2269
Vkadaba 23:bb685f35b08b 2270
ADIJake 0:85855ecd3257 2271 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2272 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2273 if (eRet) {
Vkadaba 5:0728bde67bdb 2274 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2275 return eRet;
ADIJake 0:85855ecd3257 2276 }
Vkadaba 23:bb685f35b08b 2277 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2278 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2279 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2280 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2281 }
ADIJake 0:85855ecd3257 2282
Vkadaba 5:0728bde67bdb 2283 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2284
Vkadaba 5:0728bde67bdb 2285 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2286 if (eRet) {
Vkadaba 5:0728bde67bdb 2287 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2288 return eRet;
ADIJake 0:85855ecd3257 2289 }
ADIJake 0:85855ecd3257 2290
Vkadaba 5:0728bde67bdb 2291 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2292 if (eRet) {
Vkadaba 5:0728bde67bdb 2293 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2294 return eRet;
ADIJake 0:85855ecd3257 2295 }
ADIJake 0:85855ecd3257 2296
Vkadaba 36:54e2418e7620 2297 eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 41:df78b7d7b675 2298 if (eRet) {
Vkadaba 36:54e2418e7620 2299 ADMW_LOG_ERROR("Failed to set diagnostics configuration");
Vkadaba 36:54e2418e7620 2300 return eRet;
Vkadaba 36:54e2418e7620 2301 }
ADIJake 0:85855ecd3257 2302
Vkadaba 8:2f2775c34640 2303 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2304 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2305 id++) {
Vkadaba 5:0728bde67bdb 2306 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2307 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2308 if (eRet) {
Vkadaba 5:0728bde67bdb 2309 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2310 return eRet;
ADIJake 0:85855ecd3257 2311 }
ADIJake 0:85855ecd3257 2312 }
ADIJake 0:85855ecd3257 2313
Vkadaba 5:0728bde67bdb 2314 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2315 }
ADIJake 0:85855ecd3257 2316
Vkadaba 50:d84305e5e1c0 2317
Vkadaba 5:0728bde67bdb 2318 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2319 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2320 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2321 {
Vkadaba 5:0728bde67bdb 2322 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2323 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2324 }
ADIJake 0:85855ecd3257 2325
Vkadaba 5:0728bde67bdb 2326 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2327 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2328 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2329 unsigned *pLength)
ADIJake 0:85855ecd3257 2330 {
Vkadaba 23:bb685f35b08b 2331 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2332 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 23:bb685f35b08b 2333 if (pDesc->equation == ADMW1001_LUT_EQUATION_BIVARIATE_POLYN)
Vkadaba 23:bb685f35b08b 2334 *pLength = ADMW1001_LUT_COEFF_LIST_SIZE(pData->coeffList);
Vkadaba 23:bb685f35b08b 2335 break;
Vkadaba 23:bb685f35b08b 2336 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2337 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2338 break;
Vkadaba 23:bb685f35b08b 2339 default:
Vkadaba 23:bb685f35b08b 2340 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2341 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2342 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2343 }
ADIJake 0:85855ecd3257 2344
Vkadaba 5:0728bde67bdb 2345 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2346 }
ADIJake 0:85855ecd3257 2347
Vkadaba 5:0728bde67bdb 2348 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2349 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2350 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2351 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2352 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2353 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2354 {
Vkadaba 5:0728bde67bdb 2355 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2356 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2357
Vkadaba 61:0f16a2e3b58b 2358 if (sizeof(*pHdr) > nLutBufferSize)
Vkadaba 61:0f16a2e3b58b 2359 {
Vkadaba 5:0728bde67bdb 2360 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2361 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2362 }
ADIJake 0:85855ecd3257 2363
ADIJake 0:85855ecd3257 2364 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2365 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2366 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2367 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2368 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2369 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2370
ADIJake 0:85855ecd3257 2371 /*
ADIJake 0:85855ecd3257 2372 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2373 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2374 */
Vkadaba 61:0f16a2e3b58b 2375 for (unsigned i = 0; i < nNumTables; i++)
Vkadaba 61:0f16a2e3b58b 2376 {
Vkadaba 5:0728bde67bdb 2377 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2378 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2379 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2380 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2381
ADIJake 0:85855ecd3257 2382 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2383 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2384 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2385 return res;
ADIJake 0:85855ecd3257 2386
ADIJake 0:85855ecd3257 2387 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2388 pDesc->length = dataLength;
ADIJake 0:85855ecd3257 2389
Vkadaba 61:0f16a2e3b58b 2390 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize)
Vkadaba 61:0f16a2e3b58b 2391 {
Vkadaba 5:0728bde67bdb 2392 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2393 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2394 }
ADIJake 0:85855ecd3257 2395
ADIJake 0:85855ecd3257 2396 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2397 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2398 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2399 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2400 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2401
ADIJake 0:85855ecd3257 2402 pHdr->numTables++;
ADIJake 0:85855ecd3257 2403 }
ADIJake 0:85855ecd3257 2404
Vkadaba 5:0728bde67bdb 2405 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2406 }
Vkadaba 54:31921ad29828 2407 ADMW_RESULT admw1001_SetLutData(
Vkadaba 54:31921ad29828 2408 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 54:31921ad29828 2409 ADMW1001_LUT * const pLutData)
Vkadaba 54:31921ad29828 2410 {
Vkadaba 61:0f16a2e3b58b 2411 #pragma diag_suppress=Pa039
Vkadaba 54:31921ad29828 2412 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 54:31921ad29828 2413 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
Vkadaba 54:31921ad29828 2414
Vkadaba 54:31921ad29828 2415 unsigned actualLength = 0;
Vkadaba 54:31921ad29828 2416
Vkadaba 61:0f16a2e3b58b 2417 if (pLutData->header.signature != ADMW_LUT_SIGNATURE)
Vkadaba 61:0f16a2e3b58b 2418 {
Vkadaba 54:31921ad29828 2419 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 61:0f16a2e3b58b 2420 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 54:31921ad29828 2421 return ADMW_INVALID_SIGNATURE;
Vkadaba 54:31921ad29828 2422 }
Vkadaba 54:31921ad29828 2423 if ((pLutData->tables->descriptor.geometry!= ADMW1001_LUT_GEOMETRY_NES_1D) &&
Vkadaba 61:0f16a2e3b58b 2424 (pLutData->tables->data.lut1dNes.nElements > MAX_LUT_NUM_ENTRIES))
Vkadaba 61:0f16a2e3b58b 2425 {
Vkadaba 54:31921ad29828 2426 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2427 }
Vkadaba 61:0f16a2e3b58b 2428 for (unsigned i = 0; i < pLutHeader->numTables; i++)
Vkadaba 61:0f16a2e3b58b 2429 {
Vkadaba 54:31921ad29828 2430 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 54:31921ad29828 2431
Vkadaba 61:0f16a2e3b58b 2432 switch (pDesc->geometry)
Vkadaba 61:0f16a2e3b58b 2433 {
Vkadaba 61:0f16a2e3b58b 2434 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 61:0f16a2e3b58b 2435 switch (pDesc->equation)
Vkadaba 61:0f16a2e3b58b 2436 {
Vkadaba 61:0f16a2e3b58b 2437 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 61:0f16a2e3b58b 2438 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 61:0f16a2e3b58b 2439 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 61:0f16a2e3b58b 2440 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 61:0f16a2e3b58b 2441 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 61:0f16a2e3b58b 2442 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 61:0f16a2e3b58b 2443 break;
Vkadaba 61:0f16a2e3b58b 2444 default:
Vkadaba 61:0f16a2e3b58b 2445 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2446 pDesc->equation, i);
Vkadaba 61:0f16a2e3b58b 2447 return ADMW_INVALID_PARAM;
Vkadaba 55:215da406282b 2448 }
Vkadaba 61:0f16a2e3b58b 2449 break;
Vkadaba 61:0f16a2e3b58b 2450 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 61:0f16a2e3b58b 2451 break;
Vkadaba 61:0f16a2e3b58b 2452 default:
Vkadaba 61:0f16a2e3b58b 2453 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2454 pDesc->geometry, i);
Vkadaba 61:0f16a2e3b58b 2455 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2456 }
Vkadaba 54:31921ad29828 2457
Vkadaba 61:0f16a2e3b58b 2458 switch (pDesc->dataType)
Vkadaba 61:0f16a2e3b58b 2459 {
Vkadaba 61:0f16a2e3b58b 2460 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 61:0f16a2e3b58b 2461 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 61:0f16a2e3b58b 2462 break;
Vkadaba 61:0f16a2e3b58b 2463 default:
Vkadaba 61:0f16a2e3b58b 2464 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2465 pDesc->dataType, i);
Vkadaba 61:0f16a2e3b58b 2466 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2467 }
Vkadaba 54:31921ad29828 2468
Vkadaba 54:31921ad29828 2469
Vkadaba 54:31921ad29828 2470 actualLength += sizeof(*pDesc) + pDesc->length;
Vkadaba 54:31921ad29828 2471
Vkadaba 54:31921ad29828 2472 /* Move to the next look-up table */
Vkadaba 54:31921ad29828 2473 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
Vkadaba 54:31921ad29828 2474 }
Vkadaba 54:31921ad29828 2475
Vkadaba 61:0f16a2e3b58b 2476 if (actualLength != pLutHeader->totalLength)
Vkadaba 61:0f16a2e3b58b 2477 {
Vkadaba 54:31921ad29828 2478 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 61:0f16a2e3b58b 2479 pLutHeader->totalLength, actualLength);
Vkadaba 54:31921ad29828 2480 return ADMW_WRONG_SIZE;
Vkadaba 54:31921ad29828 2481 }
Vkadaba 54:31921ad29828 2482
Vkadaba 61:0f16a2e3b58b 2483 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE)
Vkadaba 61:0f16a2e3b58b 2484 {
Vkadaba 54:31921ad29828 2485 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 61:0f16a2e3b58b 2486 ADMW_LUT_MAX_SIZE);
Vkadaba 54:31921ad29828 2487 return ADMW_WRONG_SIZE;
Vkadaba 54:31921ad29828 2488 }
Vkadaba 54:31921ad29828 2489
Vkadaba 54:31921ad29828 2490 /* Write the LUT data to the device */
Vkadaba 54:31921ad29828 2491 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
Vkadaba 54:31921ad29828 2492 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
Vkadaba 54:31921ad29828 2493 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
Vkadaba 54:31921ad29828 2494
Vkadaba 54:31921ad29828 2495 return ADMW_SUCCESS;
Vkadaba 54:31921ad29828 2496 }