Code clean up, removed unwanted enums and configurations

Committer:
Vkadaba
Date:
Tue Apr 14 07:04:24 2020 +0000
Revision:
64:e8670e971e22
Parent:
63:2655a04c00f5
Child:
65:d91e1d63153d
code clean up - part 2; ADMW_api.h - removed  admw_EraseExternalFlash, admw_GetExternalFlashSampleCount, admw_SetExternalFlashIndex, admw_GetExternalFlashData, admw_RunDiagnostics, admw_RunCalibration; admw_RunDigitalCalibration;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ADIJake 0:85855ecd3257 1 /*
Vkadaba 8:2f2775c34640 2 Copyright 2019 (c) Analog Devices, Inc.
ADIJake 0:85855ecd3257 3
ADIJake 0:85855ecd3257 4 All rights reserved.
ADIJake 0:85855ecd3257 5
ADIJake 0:85855ecd3257 6 Redistribution and use in source and binary forms, with or without
ADIJake 0:85855ecd3257 7 modification, are permitted provided that the following conditions are met:
ADIJake 0:85855ecd3257 8 - Redistributions of source code must retain the above copyright
ADIJake 0:85855ecd3257 9 notice, this list of conditions and the following disclaimer.
ADIJake 0:85855ecd3257 10 - Redistributions in binary form must reproduce the above copyright
ADIJake 0:85855ecd3257 11 notice, this list of conditions and the following disclaimer in
ADIJake 0:85855ecd3257 12 the documentation and/or other materials provided with the
ADIJake 0:85855ecd3257 13 distribution.
ADIJake 0:85855ecd3257 14 - Neither the name of Analog Devices, Inc. nor the names of its
ADIJake 0:85855ecd3257 15 contributors may be used to endorse or promote products derived
ADIJake 0:85855ecd3257 16 from this software without specific prior written permission.
ADIJake 0:85855ecd3257 17 - The use of this software may or may not infringe the patent rights
ADIJake 0:85855ecd3257 18 of one or more patent holders. This license does not release you
ADIJake 0:85855ecd3257 19 from the requirement that you obtain separate licenses from these
ADIJake 0:85855ecd3257 20 patent holders to use this software.
ADIJake 0:85855ecd3257 21 - Use of the software either in source or binary form, must be run
ADIJake 0:85855ecd3257 22 on or directly connected to an Analog Devices Inc. component.
ADIJake 0:85855ecd3257 23
ADIJake 0:85855ecd3257 24 THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
ADIJake 0:85855ecd3257 25 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
ADIJake 0:85855ecd3257 26 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
ADIJake 0:85855ecd3257 27 IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
ADIJake 0:85855ecd3257 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
ADIJake 0:85855ecd3257 29 LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
ADIJake 0:85855ecd3257 30 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
ADIJake 0:85855ecd3257 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
ADIJake 0:85855ecd3257 32 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
ADIJake 0:85855ecd3257 33 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
ADIJake 0:85855ecd3257 34 */
ADIJake 0:85855ecd3257 35
ADIJake 0:85855ecd3257 36 /*!
ADIJake 0:85855ecd3257 37 ******************************************************************************
ADIJake 0:85855ecd3257 38 * @file:
Vkadaba 8:2f2775c34640 39 * @brief: API implementation for ADMW1001
ADIJake 0:85855ecd3257 40 *-----------------------------------------------------------------------------
ADIJake 0:85855ecd3257 41 */
ADIJake 0:85855ecd3257 42
ADIJake 0:85855ecd3257 43 #include <float.h>
ADIJake 0:85855ecd3257 44 #include <math.h>
ADIJake 0:85855ecd3257 45 #include <string.h>
ADIJake 0:85855ecd3257 46
Vkadaba 5:0728bde67bdb 47 #include "admw_platform.h"
Vkadaba 5:0728bde67bdb 48 #include "admw_api.h"
Vkadaba 5:0728bde67bdb 49 #include "admw1001/admw1001_api.h"
Vkadaba 5:0728bde67bdb 50
Vkadaba 5:0728bde67bdb 51 #include "admw1001/ADMW1001_REGISTERS_typedefs.h"
Vkadaba 5:0728bde67bdb 52 #include "admw1001/ADMW1001_REGISTERS.h"
Vkadaba 5:0728bde67bdb 53 #include "admw1001/admw1001_lut_data.h"
Vkadaba 5:0728bde67bdb 54 #include "admw1001/admw1001_host_comms.h"
Vkadaba 55:215da406282b 55 #include "inc/mbedVersion.h"
Vkadaba 13:97cb32670539 56 #define VERSIONID_MAJOR 2
Vkadaba 13:97cb32670539 57 #define VERSIONID_MINOR 0
ADIJake 0:85855ecd3257 58
ADIJake 0:85855ecd3257 59 uint32_t getDataCnt = 0;
Vkadaba 32:52445bef314d 60 #define ADMW_VERSION_REG_VAL_SIZE 4u
Vkadaba 32:52445bef314d 61 #define ADMW_FORMATTED_VERSION_SIZE 11u
ADIJake 0:85855ecd3257 62
Vkadaba 32:52445bef314d 63 #define ADMW_SFL_READ_STATUS_SIZE 42u
ADIJake 0:85855ecd3257 64 /*
ADIJake 0:85855ecd3257 65 * The following macros are used to encapsulate the register access code
ADIJake 0:85855ecd3257 66 * to improve readability in the functions further below in this file
ADIJake 0:85855ecd3257 67 */
ADIJake 0:85855ecd3257 68 #define STRINGIFY(name) #name
ADIJake 0:85855ecd3257 69
ADIJake 0:85855ecd3257 70 /* Expand the full name of the reset value macro for the specified register */
Vkadaba 5:0728bde67bdb 71 #define REG_RESET_VAL(_name) REG_##_name##_RESET
ADIJake 0:85855ecd3257 72
ADIJake 0:85855ecd3257 73 /* Checks if a value is outside the bounds of the specified register field */
ADIJake 0:85855ecd3257 74 #define CHECK_REG_FIELD_VAL(_field, _val) \
ADIJake 0:85855ecd3257 75 do { \
Vkadaba 8:2f2775c34640 76 uint32_t _mask = BITM_##_field; \
Vkadaba 8:2f2775c34640 77 uint32_t _shift = BITP_##_field; \
ADIJake 0:85855ecd3257 78 if ((((_val) << _shift) & ~(_mask)) != 0) { \
Vkadaba 6:9d393a9677f4 79 ADMW_LOG_ERROR("Value 0x%08X invalid for register field %s",\
ADIJake 0:85855ecd3257 80 (uint32_t)(_val), \
Vkadaba 6:9d393a9677f4 81 STRINGIFY(ADMW_##_field)); \
Vkadaba 8:2f2775c34640 82 return ADMW_INVALID_PARAM; \
ADIJake 0:85855ecd3257 83 } \
ADIJake 0:85855ecd3257 84 } while(false)
ADIJake 0:85855ecd3257 85
ADIJake 0:85855ecd3257 86 /*
ADIJake 0:85855ecd3257 87 * Encapsulates the write to a specified register
ADIJake 0:85855ecd3257 88 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 89 */
ADIJake 0:85855ecd3257 90 #define WRITE_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 91 do { \
Vkadaba 8:2f2775c34640 92 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 93 _type _regval = _val; \
Vkadaba 8:2f2775c34640 94 _res = admw1001_WriteRegister((_hdev), \
Vkadaba 8:2f2775c34640 95 REG_##_name, \
ADIJake 0:85855ecd3257 96 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 97 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 98 return _res; \
ADIJake 0:85855ecd3257 99 } while(false)
ADIJake 0:85855ecd3257 100
ADIJake 0:85855ecd3257 101 /* Wrapper macro to write a value to a uint32_t register */
Vkadaba 8:2f2775c34640 102 #define WRITE_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 103 WRITE_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 104 /* Wrapper macro to write a value to a uint16_t register */
Vkadaba 8:2f2775c34640 105 #define WRITE_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 106 WRITE_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 107 /* Wrapper macro to write a value to a uint8_t register */
Vkadaba 8:2f2775c34640 108 #define WRITE_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 109 WRITE_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 110 /* Wrapper macro to write a value to a float32_t register */
Vkadaba 8:2f2775c34640 111 #define WRITE_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 112 WRITE_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 113
ADIJake 0:85855ecd3257 114 /*
ADIJake 0:85855ecd3257 115 * Encapsulates the read from a specified register
ADIJake 0:85855ecd3257 116 * NOTE - this will cause the calling function to return on error
ADIJake 0:85855ecd3257 117 */
ADIJake 0:85855ecd3257 118 #define READ_REG(_hdev, _val, _name, _type) \
ADIJake 0:85855ecd3257 119 do { \
Vkadaba 8:2f2775c34640 120 ADMW_RESULT _res; \
ADIJake 0:85855ecd3257 121 _type _regval; \
Vkadaba 8:2f2775c34640 122 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 123 REG_##_name, \
ADIJake 0:85855ecd3257 124 &_regval, sizeof(_regval)); \
Vkadaba 8:2f2775c34640 125 if (_res != ADMW_SUCCESS) \
ADIJake 0:85855ecd3257 126 return _res; \
ADIJake 0:85855ecd3257 127 _val = _regval; \
ADIJake 0:85855ecd3257 128 } while(false)
ADIJake 0:85855ecd3257 129
ADIJake 0:85855ecd3257 130 /* Wrapper macro to read a value from a uint32_t register */
Vkadaba 8:2f2775c34640 131 #define READ_REG_U32(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 132 READ_REG(_hdev, _val, _name, uint32_t)
ADIJake 0:85855ecd3257 133 /* Wrapper macro to read a value from a uint16_t register */
Vkadaba 8:2f2775c34640 134 #define READ_REG_U16(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 135 READ_REG(_hdev, _val, _name, uint16_t)
ADIJake 0:85855ecd3257 136 /* Wrapper macro to read a value from a uint8_t register */
Vkadaba 8:2f2775c34640 137 #define READ_REG_U8(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 138 READ_REG(_hdev, _val, _name, uint8_t)
ADIJake 0:85855ecd3257 139 /* Wrapper macro to read a value from a float32_t register */
Vkadaba 8:2f2775c34640 140 #define READ_REG_FLOAT(_hdev, _val, _name) \
ADIJake 0:85855ecd3257 141 READ_REG(_hdev, _val, _name, float32_t)
ADIJake 0:85855ecd3257 142
ADIJake 0:85855ecd3257 143 /*
ADIJake 0:85855ecd3257 144 * Wrapper macro to write an array of values to a uint8_t register
ADIJake 0:85855ecd3257 145 * NOTE - this is intended only for writing to a keyhole data register
ADIJake 0:85855ecd3257 146 */
Vkadaba 8:2f2775c34640 147 #define WRITE_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 148 do { \
Vkadaba 8:2f2775c34640 149 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 150 _res = admw1001_WriteRegister(_hdev, \
Vkadaba 8:2f2775c34640 151 REG_##_name, \
Vkadaba 6:9d393a9677f4 152 _arr, _len); \
Vkadaba 8:2f2775c34640 153 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 154 return _res; \
ADIJake 0:85855ecd3257 155 } while(false)
ADIJake 0:85855ecd3257 156
ADIJake 0:85855ecd3257 157 /*
ADIJake 0:85855ecd3257 158 * Wrapper macro to read an array of values from a uint8_t register
ADIJake 0:85855ecd3257 159 * NOTE - this is intended only for reading from a keyhole data register
ADIJake 0:85855ecd3257 160 */
Vkadaba 6:9d393a9677f4 161 #define READ_REG_U8_ARRAY(_hdev, _arr, _len, _name) \
Vkadaba 6:9d393a9677f4 162 do { \
Vkadaba 8:2f2775c34640 163 ADMW_RESULT _res; \
Vkadaba 8:2f2775c34640 164 _res = admw1001_ReadRegister((_hdev), \
Vkadaba 8:2f2775c34640 165 REG##_name, \
Vkadaba 6:9d393a9677f4 166 _arr, _len); \
Vkadaba 8:2f2775c34640 167 if (_res != ADMW_SUCCESS) \
Vkadaba 6:9d393a9677f4 168 return _res; \
ADIJake 0:85855ecd3257 169 } while(false)
ADIJake 0:85855ecd3257 170
Vkadaba 8:2f2775c34640 171 #define ADMW1001_CHANNEL_IS_ADC(c) \
Vkadaba 8:2f2775c34640 172 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 173
Vkadaba 8:2f2775c34640 174 #define ADMW1001_CHANNEL_IS_ADC_CJC(c) \
Vkadaba 8:2f2775c34640 175 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 176
Vkadaba 8:2f2775c34640 177 #define ADMW1001_CHANNEL_IS_ADC_SENSOR(c) \
Vkadaba 8:2f2775c34640 178 ((c) >= ADMW1001_CH_ID_ANLG_1_UNIVERSAL && (c) <= ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 179
Vkadaba 8:2f2775c34640 180 #define ADMW1001_CHANNEL_IS_ADC_VOLTAGE(c) \
Vkadaba 8:2f2775c34640 181 ((c) == ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL || ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL)
Vkadaba 6:9d393a9677f4 182
Vkadaba 8:2f2775c34640 183 #define ADMW1001_CHANNEL_IS_ADC_CURRENT(c) \
Vkadaba 8:2f2775c34640 184 ((c) == ADMW1001_CH_ID_ANLG_1_UNIVERSAL || (c) == ADMW1001_CH_ID_ANLG_2_UNIVERSAL)
Vkadaba 6:9d393a9677f4 185
ADIJake 0:85855ecd3257 186
Vkadaba 32:52445bef314d 187 //typedef struct {
Vkadaba 32:52445bef314d 188 // unsigned nDeviceIndex;
Vkadaba 32:52445bef314d 189 // ADMW_SPI_HANDLE hSpi;
Vkadaba 32:52445bef314d 190 // ADMW_GPIO_HANDLE hGpio;
Vkadaba 32:52445bef314d 191 //
Vkadaba 32:52445bef314d 192 //} ADMW_DEVICE_CONTEXT;
Vkadaba 5:0728bde67bdb 193
Vkadaba 5:0728bde67bdb 194 static ADMW_DEVICE_CONTEXT gDeviceCtx[ADMW_PLATFORM_MAX_DEVICES];
ADIJake 0:85855ecd3257 195
ADIJake 0:85855ecd3257 196 /*
Vkadaba 5:0728bde67bdb 197 * Open an ADMW device instance.
ADIJake 0:85855ecd3257 198 */
Vkadaba 5:0728bde67bdb 199 ADMW_RESULT admw_Open(
Vkadaba 8:2f2775c34640 200 unsigned const nDeviceIndex,
Vkadaba 5:0728bde67bdb 201 ADMW_CONNECTION * const pConnectionInfo,
Vkadaba 5:0728bde67bdb 202 ADMW_DEVICE_HANDLE * const phDevice)
ADIJake 0:85855ecd3257 203 {
Vkadaba 5:0728bde67bdb 204 ADMW_DEVICE_CONTEXT *pCtx;
Vkadaba 5:0728bde67bdb 205 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 206
Vkadaba 5:0728bde67bdb 207 if (nDeviceIndex >= ADMW_PLATFORM_MAX_DEVICES)
Vkadaba 5:0728bde67bdb 208 return ADMW_INVALID_DEVICE_NUM;
ADIJake 0:85855ecd3257 209
ADIJake 0:85855ecd3257 210 pCtx = &gDeviceCtx[nDeviceIndex];
ADIJake 0:85855ecd3257 211 pCtx->nDeviceIndex = nDeviceIndex;
ADIJake 0:85855ecd3257 212
Vkadaba 5:0728bde67bdb 213 eRet = admw_LogOpen(&pConnectionInfo->log);
Vkadaba 5:0728bde67bdb 214 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 215 return eRet;
ADIJake 0:85855ecd3257 216
Vkadaba 5:0728bde67bdb 217 eRet = admw_GpioOpen(&pConnectionInfo->gpio, &pCtx->hGpio);
Vkadaba 5:0728bde67bdb 218 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 219 return eRet;
ADIJake 0:85855ecd3257 220
Vkadaba 5:0728bde67bdb 221 eRet = admw_SpiOpen(&pConnectionInfo->spi, &pCtx->hSpi);
Vkadaba 5:0728bde67bdb 222 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 223 return eRet;
ADIJake 0:85855ecd3257 224
ADIJake 0:85855ecd3257 225 *phDevice = pCtx;
Vkadaba 5:0728bde67bdb 226 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 227 }
ADIJake 0:85855ecd3257 228
ADIJake 0:85855ecd3257 229 /*
ADIJake 0:85855ecd3257 230 * Get the current state of the specified GPIO input signal.
ADIJake 0:85855ecd3257 231 */
Vkadaba 5:0728bde67bdb 232 ADMW_RESULT admw_GetGpioState(
Vkadaba 5:0728bde67bdb 233 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 234 ADMW_GPIO_PIN const ePinId,
ADIJake 0:85855ecd3257 235 bool * const pbAsserted)
ADIJake 0:85855ecd3257 236 {
Vkadaba 5:0728bde67bdb 237 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 238
Vkadaba 5:0728bde67bdb 239 return admw_GpioGet(pCtx->hGpio, ePinId, pbAsserted);
ADIJake 0:85855ecd3257 240 }
ADIJake 0:85855ecd3257 241
ADIJake 0:85855ecd3257 242 /*
ADIJake 0:85855ecd3257 243 * Register an application-defined callback function for GPIO interrupts.
ADIJake 0:85855ecd3257 244 */
Vkadaba 5:0728bde67bdb 245 ADMW_RESULT admw_RegisterGpioCallback(
Vkadaba 5:0728bde67bdb 246 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 247 ADMW_GPIO_PIN const ePinId,
Vkadaba 5:0728bde67bdb 248 ADMW_GPIO_CALLBACK const callbackFunction,
ADIJake 0:85855ecd3257 249 void * const pCallbackParam)
ADIJake 0:85855ecd3257 250 {
Vkadaba 5:0728bde67bdb 251 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
ADIJake 0:85855ecd3257 252
Vkadaba 23:bb685f35b08b 253 if (callbackFunction) {
Vkadaba 5:0728bde67bdb 254 return admw_GpioIrqEnable(pCtx->hGpio, ePinId, callbackFunction,
Vkadaba 23:bb685f35b08b 255 pCallbackParam);
Vkadaba 23:bb685f35b08b 256 } else {
Vkadaba 5:0728bde67bdb 257 return admw_GpioIrqDisable(pCtx->hGpio, ePinId);
ADIJake 0:85855ecd3257 258 }
ADIJake 0:85855ecd3257 259 }
ADIJake 0:85855ecd3257 260
Vkadaba 8:2f2775c34640 261 /*!
Vkadaba 8:2f2775c34640 262 * @brief Reset the specified ADMW device.
Vkadaba 8:2f2775c34640 263 *
Vkadaba 8:2f2775c34640 264 * @param[in] hDevice - handle of ADMW device to reset.
Vkadaba 8:2f2775c34640 265 *
Vkadaba 8:2f2775c34640 266 * @return Status
Vkadaba 8:2f2775c34640 267 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 8:2f2775c34640 268 * - #ADMW_FAILURE If reseet faisl
Vkadaba 8:2f2775c34640 269 *
Vkadaba 23:bb685f35b08b 270 * @details Toggle reset pin of the ADMW device low for a
Vkadaba 8:2f2775c34640 271 * minimum of 4 usec.
Vkadaba 8:2f2775c34640 272 *
ADIJake 0:85855ecd3257 273 */
Vkadaba 8:2f2775c34640 274 ADMW_RESULT admw_Reset(ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 275 {
Vkadaba 5:0728bde67bdb 276 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 277 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 278
ADIJake 0:85855ecd3257 279 /* Pulse the Reset GPIO pin low for a minimum of 4 microseconds */
Vkadaba 5:0728bde67bdb 280 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, false);
Vkadaba 5:0728bde67bdb 281 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 282 return eRet;
ADIJake 0:85855ecd3257 283
Vkadaba 5:0728bde67bdb 284 admw_TimeDelayUsec(4);
Vkadaba 5:0728bde67bdb 285
Vkadaba 5:0728bde67bdb 286 eRet = admw_GpioSet(pCtx->hGpio, ADMW_GPIO_PIN_RESET, true);
Vkadaba 5:0728bde67bdb 287 if (eRet != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 288 return eRet;
ADIJake 0:85855ecd3257 289
Vkadaba 5:0728bde67bdb 290 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 291 }
ADIJake 0:85855ecd3257 292
ADIJake 0:85855ecd3257 293 /*!
Vkadaba 8:2f2775c34640 294 * @brief Get general status of ADMW module.
ADIJake 0:85855ecd3257 295 *
ADIJake 0:85855ecd3257 296 * @param[in]
ADIJake 0:85855ecd3257 297 * @param[out] pStatus : Pointer to CORE Status struct.
ADIJake 0:85855ecd3257 298 *
ADIJake 0:85855ecd3257 299 * @return Status
Vkadaba 5:0728bde67bdb 300 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 301 * - #ADMW_FAILURE If status register read fails.
ADIJake 0:85855ecd3257 302 *
Vkadaba 8:2f2775c34640 303 * @details Read the general status register for the ADMW
ADIJake 0:85855ecd3257 304 * module. Indicates Error, Alert conditions, data ready
ADIJake 0:85855ecd3257 305 * and command running.
ADIJake 0:85855ecd3257 306 *
ADIJake 0:85855ecd3257 307 */
Vkadaba 5:0728bde67bdb 308 ADMW_RESULT admw_GetStatus(
Vkadaba 5:0728bde67bdb 309 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 310 ADMW_STATUS * const pStatus)
ADIJake 0:85855ecd3257 311 {
Vkadaba 8:2f2775c34640 312 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 313 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 314
ADIJake 0:85855ecd3257 315 memset(pStatus, 0, sizeof(*pStatus));
ADIJake 0:85855ecd3257 316
ADIJake 0:85855ecd3257 317 if (!statusReg.Cmd_Running) /* Active-low, so invert it */
Vkadaba 5:0728bde67bdb 318 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_BUSY;
ADIJake 0:85855ecd3257 319 if (statusReg.Drdy)
Vkadaba 5:0728bde67bdb 320 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_DATAREADY;
ADIJake 0:85855ecd3257 321 if (statusReg.FIFO_Error)
Vkadaba 5:0728bde67bdb 322 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_FIFO_ERROR;
Vkadaba 23:bb685f35b08b 323 if (statusReg.Alert_Active) {
Vkadaba 5:0728bde67bdb 324 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ALERT;
Vkadaba 5:0728bde67bdb 325
Vkadaba 8:2f2775c34640 326 ADMW_CORE_Channel_Alert_Status_t channelAlertStatusReg;
ADIJake 0:85855ecd3257 327 READ_REG_U16(hDevice, channelAlertStatusReg.VALUE16,
ADIJake 0:85855ecd3257 328 CORE_CHANNEL_ALERT_STATUS);
ADIJake 0:85855ecd3257 329
Vkadaba 23:bb685f35b08b 330 for (unsigned i = 0; i < ADMW1001_MAX_CHANNELS; i++) {
Vkadaba 23:bb685f35b08b 331 if (channelAlertStatusReg.VALUE16 & (1 << i)) {
Vkadaba 8:2f2775c34640 332 ADMW_CORE_Alert_Detail_Ch_t alertDetailReg;
ADIJake 0:85855ecd3257 333 READ_REG_U16(hDevice, alertDetailReg.VALUE16,
ADIJake 0:85855ecd3257 334 CORE_ALERT_DETAIL_CHn(i));
ADIJake 0:85855ecd3257 335
Vkadaba 32:52445bef314d 336 if (alertDetailReg.ADC_Near_Overrange)
Vkadaba 32:52445bef314d 337 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_NEAR_OVERRANGE;
Vkadaba 32:52445bef314d 338 if (alertDetailReg.Sensor_UnderRange)
Vkadaba 32:52445bef314d 339 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_UNDERRANGE;
Vkadaba 32:52445bef314d 340 if (alertDetailReg.Sensor_OverRange)
Vkadaba 32:52445bef314d 341 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_OVERRANGE ;
Vkadaba 32:52445bef314d 342 if (alertDetailReg.CJ_Soft_Fault)
Vkadaba 32:52445bef314d 343 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_SOFT_FAULT ;
Vkadaba 32:52445bef314d 344 if (alertDetailReg.CJ_Hard_Fault)
Vkadaba 32:52445bef314d 345 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_CJ_HARD_FAULT;
Vkadaba 32:52445bef314d 346 if (alertDetailReg.ADC_Input_OverRange)
Vkadaba 32:52445bef314d 347 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_ADC_INPUT_OVERRANGE ;
Vkadaba 32:52445bef314d 348 if (alertDetailReg.Sensor_HardFault)
Vkadaba 32:52445bef314d 349 pStatus->channelAlerts[i] |= ADMW_ALERT_DETAIL_CH_SENSOR_HARDFAULT;
Vkadaba 32:52445bef314d 350
ADIJake 0:85855ecd3257 351 }
ADIJake 0:85855ecd3257 352 }
ADIJake 0:85855ecd3257 353
Vkadaba 32:52445bef314d 354 if (statusReg.Configuration_Error)
Vkadaba 5:0728bde67bdb 355 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_CONFIG_ERROR;
Vkadaba 32:52445bef314d 356 if (statusReg.LUT_Error)
Vkadaba 5:0728bde67bdb 357 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_LUT_ERROR;
ADIJake 0:85855ecd3257 358 }
ADIJake 0:85855ecd3257 359
Vkadaba 23:bb685f35b08b 360 if (statusReg.Error) {
Vkadaba 5:0728bde67bdb 361 pStatus->deviceStatus |= ADMW_DEVICE_STATUS_ERROR;
Vkadaba 5:0728bde67bdb 362
Vkadaba 8:2f2775c34640 363 ADMW_CORE_Error_Code_t errorCodeReg;
ADIJake 0:85855ecd3257 364 READ_REG_U16(hDevice, errorCodeReg.VALUE16, CORE_ERROR_CODE);
ADIJake 0:85855ecd3257 365 pStatus->errorCode = errorCodeReg.Error_Code;
ADIJake 0:85855ecd3257 366
ADIJake 0:85855ecd3257 367 }
Vkadaba 5:0728bde67bdb 368 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 369 }
ADIJake 0:85855ecd3257 370
Vkadaba 5:0728bde67bdb 371 ADMW_RESULT admw_GetCommandRunningState(
Vkadaba 5:0728bde67bdb 372 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 373 bool *pbCommandRunning)
ADIJake 0:85855ecd3257 374 {
Vkadaba 8:2f2775c34640 375 ADMW_CORE_Status_t statusReg;
ADIJake 0:85855ecd3257 376
ADIJake 0:85855ecd3257 377 READ_REG_U8(hDevice, statusReg.VALUE8, CORE_STATUS);
ADIJake 0:85855ecd3257 378
ADIJake 0:85855ecd3257 379 /* We should never normally see 0xFF here if the module is operational */
ADIJake 0:85855ecd3257 380 if (statusReg.VALUE8 == 0xFF)
Vkadaba 5:0728bde67bdb 381 return ADMW_ERR_NOT_INITIALIZED;
ADIJake 0:85855ecd3257 382
ADIJake 0:85855ecd3257 383 *pbCommandRunning = !statusReg.Cmd_Running; /* Active-low, so invert it */
ADIJake 0:85855ecd3257 384
Vkadaba 5:0728bde67bdb 385 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 386 }
ADIJake 0:85855ecd3257 387
Vkadaba 50:d84305e5e1c0 388 ADMW_RESULT admw_deviceInformation(ADMW_DEVICE_HANDLE hDevice)
Vkadaba 32:52445bef314d 389 {
Vkadaba 32:52445bef314d 390 uint16_t nAddress = REG_CORE_REVISION;
Vkadaba 32:52445bef314d 391 char nData[ADMW_VERSION_REG_VAL_SIZE]; //4 Bytes of version register data
Vkadaba 32:52445bef314d 392 ADMW_RESULT res;
Vkadaba 32:52445bef314d 393 res=admw1001_ReadRegister(hDevice,nAddress,nData,sizeof(nData));
Vkadaba 32:52445bef314d 394 if(res != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 395 //if reading version register failed, sending 00.00.0000 as ADMW1001 firmware version
Vkadaba 32:52445bef314d 396 //strcat(nData, ADMW1001_FIRMWARE_VERSION_DEFAULT);
Vkadaba 32:52445bef314d 397 ADMW_LOG_INFO("Firmware Version Id is %X.%X",nData[2],nData[0]);
Vkadaba 32:52445bef314d 398 } else {
Vkadaba 32:52445bef314d 399 char buffer[ADMW_FORMATTED_VERSION_SIZE]; //00.00.0000 8 digits + 2 Bytes "." + one null character at the end
Vkadaba 32:52445bef314d 400 strcat(nData, buffer);
Vkadaba 42:c9c5a22e539e 401 ADMW_LOG_INFO("Firmware Version Id is %X.%X.%X",nData[3],nData[2],nData[0]);
Vkadaba 32:52445bef314d 402 }
Vkadaba 32:52445bef314d 403 return ADMW_SUCCESS;
Vkadaba 32:52445bef314d 404 }
Vkadaba 55:215da406282b 405
Vkadaba 5:0728bde67bdb 406 static ADMW_RESULT executeCommand(
Vkadaba 5:0728bde67bdb 407 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 408 ADMW_CORE_Command_Special_Command const command,
ADIJake 0:85855ecd3257 409 bool const bWaitForCompletion)
ADIJake 0:85855ecd3257 410 {
Vkadaba 8:2f2775c34640 411 ADMW_CORE_Command_t commandReg;
ADIJake 0:85855ecd3257 412 bool bCommandRunning;
Vkadaba 5:0728bde67bdb 413 ADMW_RESULT eRet;
ADIJake 0:85855ecd3257 414
ADIJake 0:85855ecd3257 415 /*
ADIJake 0:85855ecd3257 416 * Don't allow another command to be issued if one is already running, but
Vkadaba 6:9d393a9677f4 417 * make an exception for ENUM_CORE_COMMAND_NOP which can be used to
ADIJake 0:85855ecd3257 418 * request a running command to be stopped (e.g. continuous measurement)
ADIJake 0:85855ecd3257 419 */
Vkadaba 23:bb685f35b08b 420 if (command != ENUM_CORE_COMMAND_NOP) {
Vkadaba 5:0728bde67bdb 421 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 422 if (eRet)
ADIJake 0:85855ecd3257 423 return eRet;
ADIJake 0:85855ecd3257 424
ADIJake 0:85855ecd3257 425 if (bCommandRunning)
Vkadaba 5:0728bde67bdb 426 return ADMW_IN_USE;
ADIJake 0:85855ecd3257 427 }
ADIJake 0:85855ecd3257 428
ADIJake 0:85855ecd3257 429 commandReg.Special_Command = command;
ADIJake 0:85855ecd3257 430 WRITE_REG_U8(hDevice, commandReg.VALUE8, CORE_COMMAND);
ADIJake 0:85855ecd3257 431
Vkadaba 23:bb685f35b08b 432 if (bWaitForCompletion) {
ADIJake 0:85855ecd3257 433 do {
Vkadaba 50:d84305e5e1c0 434 /* Allow a minimum 100usec delay for status update before checking */
Vkadaba 50:d84305e5e1c0 435 admw_TimeDelayUsec(100);
Vkadaba 5:0728bde67bdb 436
Vkadaba 5:0728bde67bdb 437 eRet = admw_GetCommandRunningState(hDevice, &bCommandRunning);
ADIJake 0:85855ecd3257 438 if (eRet)
ADIJake 0:85855ecd3257 439 return eRet;
ADIJake 0:85855ecd3257 440 } while (bCommandRunning);
ADIJake 0:85855ecd3257 441 }
ADIJake 0:85855ecd3257 442
Vkadaba 5:0728bde67bdb 443 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 444 }
ADIJake 0:85855ecd3257 445
Vkadaba 5:0728bde67bdb 446 ADMW_RESULT admw_ApplyConfigUpdates(
Vkadaba 5:0728bde67bdb 447 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 448 {
Vkadaba 5:0728bde67bdb 449 return executeCommand(hDevice, CORE_COMMAND_LATCH_CONFIG, true);
ADIJake 0:85855ecd3257 450 }
ADIJake 0:85855ecd3257 451
ADIJake 0:85855ecd3257 452 /*!
ADIJake 0:85855ecd3257 453 * @brief Start a measurement cycle.
ADIJake 0:85855ecd3257 454 *
ADIJake 0:85855ecd3257 455 * @param[out]
ADIJake 0:85855ecd3257 456 *
ADIJake 0:85855ecd3257 457 * @return Status
Vkadaba 5:0728bde67bdb 458 * - #ADMW_SUCCESS Call completed successfully.
Vkadaba 5:0728bde67bdb 459 * - #ADMW_FAILURE
ADIJake 0:85855ecd3257 460 *
ADIJake 0:85855ecd3257 461 * @details Sends the latch config command. Configuration for channels in
ADIJake 0:85855ecd3257 462 * conversion cycle should be completed before this function.
ADIJake 0:85855ecd3257 463 * Channel enabled bit should be set before this function.
ADIJake 0:85855ecd3257 464 * Starts a conversion and configures the format of the sample.
ADIJake 0:85855ecd3257 465 *
ADIJake 0:85855ecd3257 466 */
Vkadaba 5:0728bde67bdb 467 ADMW_RESULT admw_StartMeasurement(
Vkadaba 5:0728bde67bdb 468 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 469 ADMW_MEASUREMENT_MODE const eMeasurementMode)
ADIJake 0:85855ecd3257 470 {
Vkadaba 23:bb685f35b08b 471 switch (eMeasurementMode) {
Vkadaba 23:bb685f35b08b 472 case ADMW_MEASUREMENT_MODE_NORMAL:
Vkadaba 23:bb685f35b08b 473 return executeCommand(hDevice, CORE_COMMAND_CONVERT_WITH_RAW, false);
Vkadaba 23:bb685f35b08b 474 case ADMW_MEASUREMENT_MODE_OMIT_RAW:
Vkadaba 23:bb685f35b08b 475 return executeCommand(hDevice, CORE_COMMAND_CONVERT, false);
Vkadaba 23:bb685f35b08b 476 default:
Vkadaba 23:bb685f35b08b 477 ADMW_LOG_ERROR("Invalid measurement mode %d specified",
Vkadaba 23:bb685f35b08b 478 eMeasurementMode);
Vkadaba 23:bb685f35b08b 479 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 480 }
ADIJake 0:85855ecd3257 481 }
ADIJake 0:85855ecd3257 482
ADIJake 0:85855ecd3257 483 /*
ADIJake 0:85855ecd3257 484 * Store the configuration settings to persistent memory on the device.
ADIJake 0:85855ecd3257 485 * The settings can be saved to 4 different flash memory areas (slots).
ADIJake 0:85855ecd3257 486 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 487 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 488 */
Vkadaba 5:0728bde67bdb 489 ADMW_RESULT admw_SaveConfig(
Vkadaba 5:0728bde67bdb 490 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 491 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 492 {
Vkadaba 23:bb685f35b08b 493 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 494 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 495 return executeCommand(hDevice, CORE_COMMAND_SAVE_CONFIG_1, true);
ADIJake 0:85855ecd3257 496 default:
Vkadaba 5:0728bde67bdb 497 ADMW_LOG_ERROR("Invalid user config target slot %d specified",
Vkadaba 23:bb685f35b08b 498 eSlotId);
Vkadaba 5:0728bde67bdb 499 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 500 }
ADIJake 0:85855ecd3257 501 }
ADIJake 0:85855ecd3257 502
ADIJake 0:85855ecd3257 503 /*
ADIJake 0:85855ecd3257 504 * Restore the configuration settings from persistent memory on the device.
ADIJake 0:85855ecd3257 505 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 506 */
Vkadaba 5:0728bde67bdb 507 ADMW_RESULT admw_RestoreConfig(
Vkadaba 5:0728bde67bdb 508 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 509 ADMW_USER_CONFIG_SLOT const eSlotId)
ADIJake 0:85855ecd3257 510 {
Vkadaba 23:bb685f35b08b 511 switch (eSlotId) {
Vkadaba 5:0728bde67bdb 512 case ADMW_FLASH_CONFIG_1:
Vkadaba 5:0728bde67bdb 513 return executeCommand(hDevice, CORE_COMMAND_LOAD_CONFIG_1, true);
ADIJake 0:85855ecd3257 514 default:
Vkadaba 5:0728bde67bdb 515 ADMW_LOG_ERROR("Invalid user config source slot %d specified",
Vkadaba 23:bb685f35b08b 516 eSlotId);
Vkadaba 5:0728bde67bdb 517 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 518 }
ADIJake 0:85855ecd3257 519 }
ADIJake 0:85855ecd3257 520
ADIJake 0:85855ecd3257 521 /*
ADIJake 0:85855ecd3257 522 * Store the LUT data to persistent memory on the device.
ADIJake 0:85855ecd3257 523 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 524 * Do not power down the device while this command is running.
ADIJake 0:85855ecd3257 525 */
Vkadaba 5:0728bde67bdb 526 ADMW_RESULT admw_SaveLutData(
Vkadaba 5:0728bde67bdb 527 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 528 {
Vkadaba 5:0728bde67bdb 529 return executeCommand(hDevice, CORE_COMMAND_SAVE_LUT, true);
ADIJake 0:85855ecd3257 530 }
ADIJake 0:85855ecd3257 531
ADIJake 0:85855ecd3257 532 /*
ADIJake 0:85855ecd3257 533 * Restore the LUT data from persistent memory on the device.
ADIJake 0:85855ecd3257 534 * No other command must be running when this is called.
ADIJake 0:85855ecd3257 535 */
Vkadaba 5:0728bde67bdb 536 ADMW_RESULT admw_RestoreLutData(
Vkadaba 5:0728bde67bdb 537 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 538 {
Vkadaba 5:0728bde67bdb 539 return executeCommand(hDevice, CORE_COMMAND_LOAD_LUT, true);
ADIJake 0:85855ecd3257 540 }
ADIJake 0:85855ecd3257 541
ADIJake 0:85855ecd3257 542 /*
ADIJake 0:85855ecd3257 543 * Stop the measurement cycles on the device.
ADIJake 0:85855ecd3257 544 * To be used only if a measurement command is currently running.
ADIJake 0:85855ecd3257 545 */
Vkadaba 5:0728bde67bdb 546 ADMW_RESULT admw_StopMeasurement(
Vkadaba 5:0728bde67bdb 547 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 548 {
Vkadaba 5:0728bde67bdb 549 return executeCommand(hDevice, CORE_COMMAND_NOP, true);
ADIJake 0:85855ecd3257 550 }
ADIJake 0:85855ecd3257 551
ADIJake 0:85855ecd3257 552 /*
Vkadaba 32:52445bef314d 553 *
Vkadaba 32:52445bef314d 554 */
Vkadaba 32:52445bef314d 555 ADMW_RESULT admw1001_sendRun( ADMW_DEVICE_HANDLE const hDevice)
Vkadaba 32:52445bef314d 556 {
Vkadaba 32:52445bef314d 557 bool bitCommand;
Vkadaba 32:52445bef314d 558 ADMW_RESULT eRet;
Vkadaba 32:52445bef314d 559 uint8_t pinreg = 0x1;
Vkadaba 32:52445bef314d 560
Vkadaba 32:52445bef314d 561 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 32:52445bef314d 562 static uint8_t DataBuffer[SPI_BUFFER_SIZE] = {0};
Vkadaba 32:52445bef314d 563 uint16_t nSize;
Vkadaba 32:52445bef314d 564
Vkadaba 32:52445bef314d 565 //Construct Read Status command
Vkadaba 32:52445bef314d 566 DataBuffer[0] = 0x07;
Vkadaba 32:52445bef314d 567 DataBuffer[1] = 0x0E; //Packet ID
Vkadaba 32:52445bef314d 568
Vkadaba 32:52445bef314d 569 DataBuffer[2] = 0x00;
Vkadaba 32:52445bef314d 570 DataBuffer[3] = 0x00; //Data words
Vkadaba 32:52445bef314d 571
Vkadaba 32:52445bef314d 572 DataBuffer[4] = 0x45;
Vkadaba 32:52445bef314d 573 DataBuffer[5] = 0x00; //Command ID
Vkadaba 32:52445bef314d 574
Vkadaba 32:52445bef314d 575 DataBuffer[6] = 0x00;
Vkadaba 32:52445bef314d 576 DataBuffer[7] = 0x50;
Vkadaba 32:52445bef314d 577 DataBuffer[8] = 0x00;
Vkadaba 32:52445bef314d 578 DataBuffer[9] = 0x00; //Address
Vkadaba 32:52445bef314d 579
Vkadaba 32:52445bef314d 580 DataBuffer[10] = 0x95;
Vkadaba 32:52445bef314d 581 DataBuffer[11] = 0x00;
Vkadaba 32:52445bef314d 582 DataBuffer[12] = 0x00;
Vkadaba 32:52445bef314d 583 DataBuffer[13] = 0x00; //Checksum
Vkadaba 32:52445bef314d 584
Vkadaba 32:52445bef314d 585 nSize = SFL_READ_STATUS_HDR_SIZE;
Vkadaba 32:52445bef314d 586
Vkadaba 32:52445bef314d 587 do {
Vkadaba 32:52445bef314d 588 // Get the SFL command irq pin to check if SFL is ready to receive commands
Vkadaba 32:52445bef314d 589 // Status pin is not checked since SFL is just booted, there should not be any issue with SFL
Vkadaba 32:52445bef314d 590 eRet = admw_GetGpioState( hDevice, ADMW_GPIO_PIN_DATAREADY, &bitCommand );
Vkadaba 32:52445bef314d 591 if( eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 592 return eRet;
Vkadaba 32:52445bef314d 593 }
Vkadaba 32:52445bef314d 594
Vkadaba 32:52445bef314d 595 // Command IRQ pin should be low and Status IRQ pin should be high for SFL to be in good state and ready to recieve commands
Vkadaba 32:52445bef314d 596 // pinreg == '0x00' - Error occured in SFL
Vkadaba 32:52445bef314d 597 // pinreg == '0x01' - SFL is ready to recieve commands
Vkadaba 32:52445bef314d 598 // pinreg == '0x02' - Error occured in handling any commands in SFL
Vkadaba 32:52445bef314d 599 // pinreg == '0x03' - SFL not booted
Vkadaba 32:52445bef314d 600
Vkadaba 32:52445bef314d 601 pinreg = (bitCommand);
Vkadaba 32:52445bef314d 602
Vkadaba 32:52445bef314d 603 } while(pinreg != 0x0u);
Vkadaba 32:52445bef314d 604
Vkadaba 32:52445bef314d 605 eRet = admw_SpiTransfer(pCtx->hSpi, DataBuffer, NULL,
Vkadaba 32:52445bef314d 606 nSize, false);
Vkadaba 32:52445bef314d 607
Vkadaba 32:52445bef314d 608 return eRet;
Vkadaba 32:52445bef314d 609 }
Vkadaba 32:52445bef314d 610
Vkadaba 32:52445bef314d 611 /*
ADIJake 0:85855ecd3257 612 * Read a set of data samples from the device.
ADIJake 0:85855ecd3257 613 * This may be called at any time.
ADIJake 0:85855ecd3257 614 */
Vkadaba 32:52445bef314d 615
Vkadaba 5:0728bde67bdb 616 ADMW_RESULT admw_GetData(
Vkadaba 5:0728bde67bdb 617 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 618 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 619 ADMW_DATA_SAMPLE * const pSamples,
ADIJake 0:85855ecd3257 620 uint8_t const nBytesPerSample,
ADIJake 0:85855ecd3257 621 uint32_t const nRequested,
ADIJake 0:85855ecd3257 622 uint32_t * const pnReturned)
ADIJake 0:85855ecd3257 623 {
Vkadaba 5:0728bde67bdb 624 ADMW1001_Sensor_Result_t sensorResult;
Vkadaba 5:0728bde67bdb 625 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 626 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 627 (REG_CORE_DATA_FIFO & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 628 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 629 command >> 8,
ADIJake 0:85855ecd3257 630 command & 0xFF
ADIJake 0:85855ecd3257 631 };
ADIJake 0:85855ecd3257 632 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 633 unsigned nValidSamples = 0;
Vkadaba 5:0728bde67bdb 634 ADMW_RESULT eRet = ADMW_SUCCESS;
ADIJake 0:85855ecd3257 635
ADIJake 0:85855ecd3257 636 do {
Vkadaba 5:0728bde67bdb 637 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 638 sizeof(command), false);
Vkadaba 23:bb685f35b08b 639 if (eRet) {
Vkadaba 5:0728bde67bdb 640 ADMW_LOG_ERROR("Failed to send read command for FIFO register");
ADIJake 0:85855ecd3257 641 return eRet;
ADIJake 0:85855ecd3257 642 }
Vkadaba 5:0728bde67bdb 643 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 644 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 645 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 50:d84305e5e1c0 646
Vkadaba 23:bb685f35b08b 647 for (unsigned i = 0; i < nRequested; i++) {
ADIJake 0:85855ecd3257 648 bool bHoldCs = true;
ADIJake 0:85855ecd3257 649 /* Keep the CS signal asserted for all but the last sample */
ADIJake 0:85855ecd3257 650 if ((i + 1) == nRequested)
ADIJake 0:85855ecd3257 651 bHoldCs = false;
ADIJake 0:85855ecd3257 652
ADIJake 0:85855ecd3257 653 getDataCnt++;
ADIJake 0:85855ecd3257 654
Vkadaba 5:0728bde67bdb 655 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, &sensorResult,
Vkadaba 23:bb685f35b08b 656 nBytesPerSample, bHoldCs);
Vkadaba 23:bb685f35b08b 657 if (eRet) {
Vkadaba 5:0728bde67bdb 658 ADMW_LOG_ERROR("Failed to read data from FIFO register");
ADIJake 0:85855ecd3257 659 return eRet;
ADIJake 0:85855ecd3257 660 }
ADIJake 0:85855ecd3257 661
Vkadaba 23:bb685f35b08b 662 if (! sensorResult.Ch_Valid) {
ADIJake 0:85855ecd3257 663 /*
ADIJake 0:85855ecd3257 664 * Reading an invalid sample indicates that there are no
ADIJake 0:85855ecd3257 665 * more samples available or we've lost sync with the device.
ADIJake 0:85855ecd3257 666 * In the latter case, it might be recoverable, but return here
ADIJake 0:85855ecd3257 667 * to let the application check the device status and decide itself.
ADIJake 0:85855ecd3257 668 */
Vkadaba 5:0728bde67bdb 669 eRet = ADMW_INCOMPLETE;
ADIJake 0:85855ecd3257 670 break;
ADIJake 0:85855ecd3257 671 }
ADIJake 0:85855ecd3257 672
Vkadaba 5:0728bde67bdb 673 ADMW_DATA_SAMPLE *pSample = &pSamples[nValidSamples];
Vkadaba 5:0728bde67bdb 674
Vkadaba 5:0728bde67bdb 675 pSample->status = (ADMW_DEVICE_STATUS_FLAGS)0;
ADIJake 0:85855ecd3257 676 if (sensorResult.Ch_Error)
Vkadaba 5:0728bde67bdb 677 pSample->status |= ADMW_DEVICE_STATUS_ERROR;
ADIJake 0:85855ecd3257 678 if (sensorResult.Ch_Alert)
Vkadaba 5:0728bde67bdb 679 pSample->status |= ADMW_DEVICE_STATUS_ALERT;
ADIJake 0:85855ecd3257 680
ADIJake 0:85855ecd3257 681 if (sensorResult.Ch_Raw)
ADIJake 0:85855ecd3257 682 pSample->rawValue = sensorResult.Raw_Sample;
ADIJake 0:85855ecd3257 683 else
ADIJake 0:85855ecd3257 684 pSample->rawValue = 0;
ADIJake 0:85855ecd3257 685
ADIJake 0:85855ecd3257 686 pSample->channelId = sensorResult.Channel_ID;
ADIJake 0:85855ecd3257 687 pSample->processedValue = sensorResult.Sensor_Result;
ADIJake 0:85855ecd3257 688
ADIJake 0:85855ecd3257 689 nValidSamples++;
ADIJake 0:85855ecd3257 690
Vkadaba 50:d84305e5e1c0 691 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
ADIJake 0:85855ecd3257 692 }
ADIJake 0:85855ecd3257 693 *pnReturned = nValidSamples;
ADIJake 0:85855ecd3257 694
ADIJake 0:85855ecd3257 695 return eRet;
ADIJake 0:85855ecd3257 696 }
ADIJake 0:85855ecd3257 697
ADIJake 0:85855ecd3257 698 /*
Vkadaba 5:0728bde67bdb 699 * Close the given ADMW device.
ADIJake 0:85855ecd3257 700 */
Vkadaba 5:0728bde67bdb 701 ADMW_RESULT admw_Close(
Vkadaba 5:0728bde67bdb 702 ADMW_DEVICE_HANDLE const hDevice)
ADIJake 0:85855ecd3257 703 {
Vkadaba 5:0728bde67bdb 704 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 705
Vkadaba 5:0728bde67bdb 706 admw_GpioClose(pCtx->hGpio);
Vkadaba 5:0728bde67bdb 707 admw_SpiClose(pCtx->hSpi);
Vkadaba 5:0728bde67bdb 708 admw_LogClose();
Vkadaba 5:0728bde67bdb 709
Vkadaba 5:0728bde67bdb 710 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 711 }
ADIJake 0:85855ecd3257 712
Vkadaba 5:0728bde67bdb 713 ADMW_RESULT admw1001_WriteRegister(
Vkadaba 5:0728bde67bdb 714 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 715 uint16_t nAddress,
ADIJake 0:85855ecd3257 716 void *pData,
ADIJake 0:85855ecd3257 717 unsigned nLength)
ADIJake 0:85855ecd3257 718 {
Vkadaba 5:0728bde67bdb 719 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 720 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 721 uint16_t command = ADMW1001_HOST_COMMS_WRITE_CMD |
Vkadaba 23:bb685f35b08b 722 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 723 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 724 command >> 8,
ADIJake 0:85855ecd3257 725 command & 0xFF
ADIJake 0:85855ecd3257 726 };
ADIJake 0:85855ecd3257 727 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 728
ADIJake 0:85855ecd3257 729 do {
Vkadaba 5:0728bde67bdb 730 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 731 sizeof(command), false);
Vkadaba 23:bb685f35b08b 732 if (eRet) {
Vkadaba 5:0728bde67bdb 733 ADMW_LOG_ERROR("Failed to send write command for register %u",
Vkadaba 23:bb685f35b08b 734 nAddress);
ADIJake 0:85855ecd3257 735 return eRet;
ADIJake 0:85855ecd3257 736 }
ADIJake 0:85855ecd3257 737
Vkadaba 5:0728bde67bdb 738 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 739 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 740 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 741
Vkadaba 5:0728bde67bdb 742 eRet = admw_SpiTransfer(pCtx->hSpi, pData, NULL, nLength, false);
Vkadaba 23:bb685f35b08b 743 if (eRet) {
Vkadaba 5:0728bde67bdb 744 ADMW_LOG_ERROR("Failed to write data (%dB) to register %u",
Vkadaba 23:bb685f35b08b 745 nLength, nAddress);
ADIJake 0:85855ecd3257 746 return eRet;
ADIJake 0:85855ecd3257 747 }
ADIJake 0:85855ecd3257 748
Vkadaba 5:0728bde67bdb 749 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 750
Vkadaba 5:0728bde67bdb 751 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 752 }
ADIJake 0:85855ecd3257 753
Vkadaba 64:e8670e971e22 754 ADMW_RESULT admw_GetDeviceReadyState(
Vkadaba 64:e8670e971e22 755 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 64:e8670e971e22 756 bool * const bReady)
Vkadaba 6:9d393a9677f4 757 {
Vkadaba 64:e8670e971e22 758 ADMW_SPI_Chip_Type_t chipTypeReg;
Vkadaba 6:9d393a9677f4 759
Vkadaba 64:e8670e971e22 760 READ_REG_U8(hDevice, chipTypeReg.VALUE8, SPI_CHIP_TYPE);
Vkadaba 64:e8670e971e22 761 /* If we read this register successfully, assume the device is ready */
Vkadaba 64:e8670e971e22 762 *bReady = (chipTypeReg.VALUE8 == REG_SPI_CHIP_TYPE_RESET);
Vkadaba 6:9d393a9677f4 763
Vkadaba 6:9d393a9677f4 764 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 765 }
Vkadaba 64:e8670e971e22 766
Vkadaba 5:0728bde67bdb 767 ADMW_RESULT admw1001_ReadRegister(
Vkadaba 5:0728bde67bdb 768 ADMW_DEVICE_HANDLE hDevice,
ADIJake 0:85855ecd3257 769 uint16_t nAddress,
ADIJake 0:85855ecd3257 770 void *pData,
ADIJake 0:85855ecd3257 771 unsigned nLength)
ADIJake 0:85855ecd3257 772 {
Vkadaba 5:0728bde67bdb 773 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 774 ADMW_DEVICE_CONTEXT *pCtx = hDevice;
Vkadaba 5:0728bde67bdb 775 uint16_t command = ADMW1001_HOST_COMMS_READ_CMD |
Vkadaba 23:bb685f35b08b 776 (nAddress & ADMW1001_HOST_COMMS_ADR_MASK);
ADIJake 0:85855ecd3257 777 uint8_t commandData[2] = {
ADIJake 0:85855ecd3257 778 command >> 8,
ADIJake 0:85855ecd3257 779 command & 0xFF
ADIJake 0:85855ecd3257 780 };
ADIJake 0:85855ecd3257 781 uint8_t commandResponse[2];
ADIJake 0:85855ecd3257 782
ADIJake 0:85855ecd3257 783 do {
Vkadaba 5:0728bde67bdb 784 eRet = admw_SpiTransfer(pCtx->hSpi, commandData, commandResponse,
Vkadaba 23:bb685f35b08b 785 sizeof(command), false);
Vkadaba 23:bb685f35b08b 786 if (eRet) {
Vkadaba 5:0728bde67bdb 787 ADMW_LOG_ERROR("Failed to send read command for register %u",
Vkadaba 23:bb685f35b08b 788 nAddress);
ADIJake 0:85855ecd3257 789 return eRet;
ADIJake 0:85855ecd3257 790 }
ADIJake 0:85855ecd3257 791
Vkadaba 5:0728bde67bdb 792 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 793 } while ((commandResponse[0] != ADMW1001_HOST_COMMS_CMD_RESP_0) ||
Vkadaba 5:0728bde67bdb 794 (commandResponse[1] != ADMW1001_HOST_COMMS_CMD_RESP_1));
Vkadaba 5:0728bde67bdb 795
Vkadaba 5:0728bde67bdb 796 eRet = admw_SpiTransfer(pCtx->hSpi, NULL, pData, nLength, false);
Vkadaba 23:bb685f35b08b 797 if (eRet) {
Vkadaba 5:0728bde67bdb 798 ADMW_LOG_ERROR("Failed to read data (%uB) from register %u",
Vkadaba 23:bb685f35b08b 799 nLength, nAddress);
ADIJake 0:85855ecd3257 800 return eRet;
ADIJake 0:85855ecd3257 801 }
ADIJake 0:85855ecd3257 802
Vkadaba 5:0728bde67bdb 803 admw_TimeDelayUsec(ADMW1001_HOST_COMMS_XFER_DELAY);
Vkadaba 5:0728bde67bdb 804
Vkadaba 5:0728bde67bdb 805 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 806 }
ADIJake 0:85855ecd3257 807
Vkadaba 5:0728bde67bdb 808 ADMW_RESULT admw1001_GetDataReadyModeInfo(
Vkadaba 8:2f2775c34640 809 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 8:2f2775c34640 810 ADMW_MEASUREMENT_MODE const eMeasurementMode,
Vkadaba 5:0728bde67bdb 811 ADMW1001_OPERATING_MODE * const peOperatingMode,
Vkadaba 5:0728bde67bdb 812 ADMW1001_DATAREADY_MODE * const peDataReadyMode,
Vkadaba 8:2f2775c34640 813 uint32_t * const pnSamplesPerDataready,
Vkadaba 8:2f2775c34640 814 uint32_t * const pnSamplesPerCycle,
Vkadaba 8:2f2775c34640 815 uint8_t * const pnBytesPerSample)
ADIJake 0:85855ecd3257 816 {
ADIJake 0:85855ecd3257 817 unsigned nChannelsEnabled = 0;
ADIJake 0:85855ecd3257 818 unsigned nSamplesPerCycle = 0;
ADIJake 0:85855ecd3257 819
Vkadaba 8:2f2775c34640 820 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 821 READ_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 822
Vkadaba 57:c6275de14bc5 823 if (modeReg.Conversion_Mode == CORE_MODE_SINGLECYCLE)
Vkadaba 50:d84305e5e1c0 824 *peOperatingMode = ADMW1001_OPERATING_MODE_SINGLECYCLE;
Vkadaba 50:d84305e5e1c0 825 else
Vkadaba 50:d84305e5e1c0 826 *peOperatingMode = ADMW1001_OPERATING_MODE_CONTINUOUS;
ADIJake 0:85855ecd3257 827
Vkadaba 23:bb685f35b08b 828 if (eMeasurementMode == ADMW_MEASUREMENT_MODE_OMIT_RAW) {
Vkadaba 50:d84305e5e1c0 829 *pnBytesPerSample = 8;
Vkadaba 23:bb685f35b08b 830 } else {
Vkadaba 50:d84305e5e1c0 831 *pnBytesPerSample = 12;
Vkadaba 6:9d393a9677f4 832 }
Vkadaba 23:bb685f35b08b 833
Vkadaba 8:2f2775c34640 834 for (ADMW1001_CH_ID chId = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 835 chId < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 836 chId++) {
Vkadaba 8:2f2775c34640 837 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
Vkadaba 8:2f2775c34640 838 ADMW_CORE_Channel_Count_t channelCountReg;
Vkadaba 23:bb685f35b08b 839
Vkadaba 23:bb685f35b08b 840
Vkadaba 8:2f2775c34640 841 READ_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(chId));
Vkadaba 8:2f2775c34640 842 READ_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(chId));
Vkadaba 23:bb685f35b08b 843
Vkadaba 41:df78b7d7b675 844 if (channelCountReg.Channel_Enable && !sensorDetailsReg.Do_Not_Publish) {
Vkadaba 8:2f2775c34640 845 unsigned nActualChannels = 1;
Vkadaba 63:2655a04c00f5 846
Vkadaba 8:2f2775c34640 847 nChannelsEnabled += nActualChannels;
Vkadaba 23:bb685f35b08b 848
Vkadaba 8:2f2775c34640 849 nSamplesPerCycle += nActualChannels *
Vkadaba 8:2f2775c34640 850 (channelCountReg.Channel_Count + 1);
ADIJake 0:85855ecd3257 851 }
Vkadaba 6:9d393a9677f4 852 }
Vkadaba 23:bb685f35b08b 853
Vkadaba 23:bb685f35b08b 854 if (nChannelsEnabled == 0) {
Vkadaba 8:2f2775c34640 855 *pnSamplesPerDataready = 0;
Vkadaba 8:2f2775c34640 856 *pnSamplesPerCycle = 0;
Vkadaba 8:2f2775c34640 857 return ADMW_SUCCESS;
Vkadaba 6:9d393a9677f4 858 }
Vkadaba 23:bb685f35b08b 859
Vkadaba 6:9d393a9677f4 860 *pnSamplesPerCycle = nSamplesPerCycle;
Vkadaba 23:bb685f35b08b 861
Vkadaba 23:bb685f35b08b 862 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 863 *pnSamplesPerDataready = 1;
Vkadaba 50:d84305e5e1c0 864 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 865 *pnSamplesPerDataready = nSamplesPerCycle;
Vkadaba 50:d84305e5e1c0 866 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 867 ADMW_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg;
Vkadaba 50:d84305e5e1c0 868
Vkadaba 50:d84305e5e1c0 869 READ_REG_U8(hDevice, fifoNumCyclesReg.VALUE8, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 870
Vkadaba 50:d84305e5e1c0 871 *pnSamplesPerDataready = nSamplesPerCycle * fifoNumCyclesReg.Fifo_Num_Cycles;
Vkadaba 23:bb685f35b08b 872 } else {
Vkadaba 50:d84305e5e1c0 873 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 874 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 875 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 876 }
Vkadaba 23:bb685f35b08b 877
Vkadaba 23:bb685f35b08b 878 if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CONVERSION) {
Vkadaba 8:2f2775c34640 879 *peDataReadyMode = ADMW1001_DATAREADY_PER_CONVERSION;
Vkadaba 50:d84305e5e1c0 880 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_CYCLE) {
Vkadaba 50:d84305e5e1c0 881 *peDataReadyMode = ADMW1001_DATAREADY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 882 } else if (modeReg.Drdy_Mode == CORE_MODE_DRDY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 883 *peDataReadyMode = ADMW1001_DATAREADY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 884 } else {
Vkadaba 50:d84305e5e1c0 885 ADMW_LOG_ERROR("Invalid DRDY mode %d specified",
Vkadaba 50:d84305e5e1c0 886 modeReg.Drdy_Mode);
Vkadaba 50:d84305e5e1c0 887 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 888 }
Vkadaba 23:bb685f35b08b 889
Vkadaba 5:0728bde67bdb 890 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 891 }
ADIJake 0:85855ecd3257 892
Vkadaba 5:0728bde67bdb 893 ADMW_RESULT admw_GetProductID(
Vkadaba 5:0728bde67bdb 894 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 895 ADMW_PRODUCT_ID *pProductId)
ADIJake 0:85855ecd3257 896 {
Vkadaba 5:0728bde67bdb 897 ADMW_SPI_Product_ID_L_t productIdLoReg;
Vkadaba 5:0728bde67bdb 898 ADMW_SPI_Product_ID_H_t productIdHiReg;
ADIJake 0:85855ecd3257 899
ADIJake 0:85855ecd3257 900 READ_REG_U8(hDevice, productIdLoReg.VALUE8, SPI_PRODUCT_ID_L);
ADIJake 0:85855ecd3257 901 READ_REG_U8(hDevice, productIdHiReg.VALUE8, SPI_PRODUCT_ID_H);
ADIJake 0:85855ecd3257 902
Vkadaba 23:bb685f35b08b 903 *pProductId = (ADMW_PRODUCT_ID)((productIdHiReg.VALUE8 << 8) |
Vkadaba 8:2f2775c34640 904 productIdLoReg.VALUE8);
Vkadaba 5:0728bde67bdb 905 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 906 }
ADIJake 0:85855ecd3257 907
Vkadaba 5:0728bde67bdb 908 static ADMW_RESULT admw_SetPowerMode(
Vkadaba 5:0728bde67bdb 909 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 910 ADMW1001_POWER_MODE powerMode)
ADIJake 0:85855ecd3257 911 {
Vkadaba 50:d84305e5e1c0 912 ADMW_CORE_Power_Config_t powerConfigReg = { 0 };
Vkadaba 5:0728bde67bdb 913
Vkadaba 23:bb685f35b08b 914 if (powerMode == ADMW1001_POWER_MODE_HIBERNATION) {
Vkadaba 6:9d393a9677f4 915 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_HIBERNATION;
Vkadaba 23:bb685f35b08b 916 } else if (powerMode == ADMW1001_POWER_MODE_ACTIVE) {
Vkadaba 6:9d393a9677f4 917 powerConfigReg.Power_Mode_MCU = CORE_POWER_CONFIG_ACTIVE_MODE;
Vkadaba 23:bb685f35b08b 918 } else {
Vkadaba 5:0728bde67bdb 919 ADMW_LOG_ERROR("Invalid power mode %d specified", powerMode);
Vkadaba 5:0728bde67bdb 920 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 921 }
ADIJake 0:85855ecd3257 922
ADIJake 0:85855ecd3257 923 WRITE_REG_U8(hDevice, powerConfigReg.VALUE8, CORE_POWER_CONFIG);
ADIJake 0:85855ecd3257 924
Vkadaba 5:0728bde67bdb 925 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 926 }
ADIJake 0:85855ecd3257 927
Vkadaba 5:0728bde67bdb 928 ADMW_RESULT admw1001_SetPowerConfig(
Vkadaba 5:0728bde67bdb 929 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 930 ADMW1001_POWER_CONFIG *pPowerConfig)
ADIJake 0:85855ecd3257 931 {
Vkadaba 5:0728bde67bdb 932 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 933
Vkadaba 5:0728bde67bdb 934 eRet = admw_SetPowerMode(hDevice, pPowerConfig->powerMode);
Vkadaba 23:bb685f35b08b 935 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 936 ADMW_LOG_ERROR("Failed to set power mode");
ADIJake 0:85855ecd3257 937 return eRet;
ADIJake 0:85855ecd3257 938 }
ADIJake 0:85855ecd3257 939
Vkadaba 5:0728bde67bdb 940 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 941 }
ADIJake 0:85855ecd3257 942
Vkadaba 33:df7a00f1b8e1 943 static ADMW_RESULT admw_SetRSenseValue(
Vkadaba 33:df7a00f1b8e1 944 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 33:df7a00f1b8e1 945 float32_t RSenseValue)
Vkadaba 33:df7a00f1b8e1 946 {
Vkadaba 41:df78b7d7b675 947 ADMW_CORE_External_Reference_Resistor_t RefResistorConfigReg;
Vkadaba 41:df78b7d7b675 948
Vkadaba 41:df78b7d7b675 949 RefResistorConfigReg.Ext_Refin1_Value = RSenseValue;
Vkadaba 41:df78b7d7b675 950
Vkadaba 41:df78b7d7b675 951 WRITE_REG_FLOAT(hDevice, RefResistorConfigReg.VALUE32, CORE_EXTERNAL_REFERENCE_RESISTOR);
Vkadaba 41:df78b7d7b675 952
Vkadaba 41:df78b7d7b675 953 return ADMW_SUCCESS;
Vkadaba 33:df7a00f1b8e1 954
Vkadaba 33:df7a00f1b8e1 955 }
Vkadaba 5:0728bde67bdb 956 static ADMW_RESULT admw_SetMode(
Vkadaba 5:0728bde67bdb 957 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 958 ADMW1001_OPERATING_MODE eOperatingMode,
Vkadaba 8:2f2775c34640 959 ADMW1001_DATAREADY_MODE eDataReadyMode)
ADIJake 0:85855ecd3257 960 {
Vkadaba 8:2f2775c34640 961 ADMW_CORE_Mode_t modeReg;
ADIJake 0:85855ecd3257 962
ADIJake 0:85855ecd3257 963 modeReg.VALUE8 = REG_RESET_VAL(CORE_MODE);
ADIJake 0:85855ecd3257 964
Vkadaba 23:bb685f35b08b 965 if (eOperatingMode == ADMW1001_OPERATING_MODE_SINGLECYCLE) {
Vkadaba 5:0728bde67bdb 966 modeReg.Conversion_Mode = CORE_MODE_SINGLECYCLE;
Vkadaba 23:bb685f35b08b 967 } else if (eOperatingMode == ADMW1001_OPERATING_MODE_CONTINUOUS) {
Vkadaba 5:0728bde67bdb 968 modeReg.Conversion_Mode = CORE_MODE_CONTINUOUS;
Vkadaba 23:bb685f35b08b 969 } else {
Vkadaba 5:0728bde67bdb 970 ADMW_LOG_ERROR("Invalid operating mode %d specified",
Vkadaba 23:bb685f35b08b 971 eOperatingMode);
Vkadaba 5:0728bde67bdb 972 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 973 }
ADIJake 0:85855ecd3257 974
Vkadaba 23:bb685f35b08b 975 if (eDataReadyMode == ADMW1001_DATAREADY_PER_CONVERSION) {
Vkadaba 5:0728bde67bdb 976 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CONVERSION;
Vkadaba 23:bb685f35b08b 977 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_CYCLE) {
Vkadaba 5:0728bde67bdb 978 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_CYCLE;
Vkadaba 50:d84305e5e1c0 979 } else if (eDataReadyMode == ADMW1001_DATAREADY_PER_FIFO_FILL) {
Vkadaba 50:d84305e5e1c0 980 modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL;
Vkadaba 23:bb685f35b08b 981 } else {
Vkadaba 5:0728bde67bdb 982 ADMW_LOG_ERROR("Invalid data-ready mode %d specified", eDataReadyMode);
Vkadaba 5:0728bde67bdb 983 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 984 }
ADIJake 0:85855ecd3257 985
ADIJake 0:85855ecd3257 986 WRITE_REG_U8(hDevice, modeReg.VALUE8, CORE_MODE);
ADIJake 0:85855ecd3257 987
Vkadaba 5:0728bde67bdb 988 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 989 }
ADIJake 0:85855ecd3257 990
Vkadaba 8:2f2775c34640 991 ADMW_RESULT admw_SetCycleControl(ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 992 uint32_t nCycleInterval,
Vkadaba 50:d84305e5e1c0 993 bool vBiasEnable,
Vkadaba 43:e1789b7214cf 994 bool vPostExecCurrentState,
Vkadaba 43:e1789b7214cf 995 bool vGroundSwitch)
ADIJake 0:85855ecd3257 996 {
Vkadaba 8:2f2775c34640 997 ADMW_CORE_Cycle_Control_t cycleControlReg;
ADIJake 0:85855ecd3257 998
ADIJake 0:85855ecd3257 999 cycleControlReg.VALUE16 = REG_RESET_VAL(CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1000
Vkadaba 43:e1789b7214cf 1001 if (nCycleInterval < (1 << 12)) {
Vkadaba 43:e1789b7214cf 1002 cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS;
Vkadaba 23:bb685f35b08b 1003 } else {
Vkadaba 43:e1789b7214cf 1004 ADMW_LOG_ERROR("Invalid nCycleInterval %d specified", nCycleInterval);
Vkadaba 50:d84305e5e1c0 1005 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1006 }
ADIJake 0:85855ecd3257 1007
Vkadaba 23:bb685f35b08b 1008 if (vBiasEnable == true) {
Vkadaba 8:2f2775c34640 1009 cycleControlReg.Vbias = 1;
Vkadaba 8:2f2775c34640 1010 }
ADIJake 0:85855ecd3257 1011 CHECK_REG_FIELD_VAL(CORE_CYCLE_CONTROL_CYCLE_TIME, nCycleInterval);
ADIJake 0:85855ecd3257 1012 cycleControlReg.Cycle_Time = nCycleInterval;
Vkadaba 50:d84305e5e1c0 1013
Vkadaba 50:d84305e5e1c0 1014 switch(vPostExecCurrentState) {
Vkadaba 50:d84305e5e1c0 1015 case ADMW1001_ADC_EXC_STATE_CYCLE_POWER:
Vkadaba 50:d84305e5e1c0 1016 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_POWERCYCLE;
Vkadaba 50:d84305e5e1c0 1017 break;
Vkadaba 50:d84305e5e1c0 1018 case ADMW1001_ADC_EXC_STATE_ALWAYS_ON:
Vkadaba 50:d84305e5e1c0 1019 cycleControlReg.PST_MEAS_EXC_CTRL = CORE_CYCLE_CONTROL_ALWAYSON;
Vkadaba 50:d84305e5e1c0 1020 break;
Vkadaba 50:d84305e5e1c0 1021 default:
Vkadaba 50:d84305e5e1c0 1022 ADMW_LOG_ERROR("Invalid Post measurement Excitation Current state %d specified",
Vkadaba 50:d84305e5e1c0 1023 vPostExecCurrentState);
Vkadaba 50:d84305e5e1c0 1024 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1025 }
Vkadaba 50:d84305e5e1c0 1026
Vkadaba 50:d84305e5e1c0 1027 switch(vGroundSwitch) {
Vkadaba 50:d84305e5e1c0 1028 case ADMW1001_ADC_GND_SW_OPEN:
Vkadaba 50:d84305e5e1c0 1029 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_OPEN_SW;
Vkadaba 50:d84305e5e1c0 1030 break;
Vkadaba 50:d84305e5e1c0 1031 case ADMW1001_ADC_GND_SW_CLOSED:
Vkadaba 50:d84305e5e1c0 1032 cycleControlReg.GND_SW_CTRL = CORE_CYCLE_CONTROL_CLOSE_SW;
Vkadaba 50:d84305e5e1c0 1033 break;
Vkadaba 50:d84305e5e1c0 1034 default:
Vkadaba 50:d84305e5e1c0 1035 ADMW_LOG_ERROR("Invalid ground switch state %d specified",
Vkadaba 50:d84305e5e1c0 1036 vGroundSwitch);
Vkadaba 50:d84305e5e1c0 1037 return ADMW_INVALID_PARAM;
Vkadaba 43:e1789b7214cf 1038 }
Vkadaba 50:d84305e5e1c0 1039
ADIJake 0:85855ecd3257 1040 WRITE_REG_U16(hDevice, cycleControlReg.VALUE16, CORE_CYCLE_CONTROL);
ADIJake 0:85855ecd3257 1041
Vkadaba 5:0728bde67bdb 1042 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1043 }
Vkadaba 36:54e2418e7620 1044 static ADMW_RESULT admw_SetExternalReferenceVoltage(
Vkadaba 36:54e2418e7620 1045 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1046 float32_t externalRefVoltage)
Vkadaba 36:54e2418e7620 1047 {
Vkadaba 36:54e2418e7620 1048 WRITE_REG_FLOAT(hDevice, externalRefVoltage, CORE_EXTERNAL_VOLTAGE_REFERENCE);
Vkadaba 36:54e2418e7620 1049
Vkadaba 36:54e2418e7620 1050 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1051 }
Vkadaba 50:d84305e5e1c0 1052 static ADMW_RESULT admw_SetFifoNumCycles(
Vkadaba 50:d84305e5e1c0 1053 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1054 uint8_t fifoNumCycles)
Vkadaba 50:d84305e5e1c0 1055 {
Vkadaba 50:d84305e5e1c0 1056 WRITE_REG_U8(hDevice, fifoNumCycles, CORE_FIFO_NUM_CYCLES);
Vkadaba 50:d84305e5e1c0 1057
Vkadaba 50:d84305e5e1c0 1058 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1059 }
ADIJake 0:85855ecd3257 1060
Vkadaba 5:0728bde67bdb 1061 static ADMW_RESULT admw_SetExternalReferenceValues(
Vkadaba 5:0728bde67bdb 1062 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 6:9d393a9677f4 1063 float32_t externalRef1Value)
ADIJake 0:85855ecd3257 1064 {
Vkadaba 6:9d393a9677f4 1065 WRITE_REG_FLOAT(hDevice, externalRef1Value, CORE_EXTERNAL_REFERENCE_RESISTOR);
ADIJake 0:85855ecd3257 1066
Vkadaba 5:0728bde67bdb 1067 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1068 }
Vkadaba 45:f5f553b8c0d5 1069 static ADMW_RESULT admw_SetAVDDVoltage(
Vkadaba 50:d84305e5e1c0 1070 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 50:d84305e5e1c0 1071 float32_t AVDDVoltage)
Vkadaba 50:d84305e5e1c0 1072 {
Vkadaba 45:f5f553b8c0d5 1073
Vkadaba 50:d84305e5e1c0 1074 WRITE_REG_FLOAT(hDevice, AVDDVoltage, CORE_AVDD_VOLTAGE);
Vkadaba 45:f5f553b8c0d5 1075
Vkadaba 50:d84305e5e1c0 1076 return ADMW_SUCCESS;
Vkadaba 50:d84305e5e1c0 1077 }
ADIJake 0:85855ecd3257 1078
Vkadaba 5:0728bde67bdb 1079 ADMW_RESULT admw1001_SetMeasurementConfig(
Vkadaba 5:0728bde67bdb 1080 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 5:0728bde67bdb 1081 ADMW1001_MEASUREMENT_CONFIG *pMeasConfig)
ADIJake 0:85855ecd3257 1082 {
Vkadaba 5:0728bde67bdb 1083 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1084
Vkadaba 5:0728bde67bdb 1085 eRet = admw_SetMode(hDevice,
Vkadaba 8:2f2775c34640 1086 pMeasConfig->operatingMode,
Vkadaba 8:2f2775c34640 1087 pMeasConfig->dataReadyMode);
Vkadaba 23:bb685f35b08b 1088 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1089 ADMW_LOG_ERROR("Failed to set operating mode");
ADIJake 0:85855ecd3257 1090 return eRet;
ADIJake 0:85855ecd3257 1091 }
ADIJake 0:85855ecd3257 1092
Vkadaba 8:2f2775c34640 1093 eRet = admw_SetCycleControl(hDevice, pMeasConfig->cycleInterval,
Vkadaba 43:e1789b7214cf 1094 pMeasConfig->vBiasEnable,
Vkadaba 43:e1789b7214cf 1095 pMeasConfig->excitationState,
Vkadaba 43:e1789b7214cf 1096 pMeasConfig->groundSwitch );
Vkadaba 23:bb685f35b08b 1097 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1098 ADMW_LOG_ERROR("Failed to set cycle control");
ADIJake 0:85855ecd3257 1099 return eRet;
ADIJake 0:85855ecd3257 1100 }
ADIJake 0:85855ecd3257 1101
Vkadaba 50:d84305e5e1c0 1102 if (pMeasConfig->fifoNumCycles > 0) {
Vkadaba 50:d84305e5e1c0 1103 eRet = admw_SetFifoNumCycles(hDevice,
Vkadaba 50:d84305e5e1c0 1104 pMeasConfig->fifoNumCycles);
Vkadaba 50:d84305e5e1c0 1105 }
Vkadaba 50:d84305e5e1c0 1106
Vkadaba 50:d84305e5e1c0 1107 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1108 ADMW_LOG_ERROR("Failed to set the FIFO number of cycles.");
Vkadaba 50:d84305e5e1c0 1109 return eRet;
Vkadaba 50:d84305e5e1c0 1110 }
Vkadaba 50:d84305e5e1c0 1111
Vkadaba 43:e1789b7214cf 1112 if(pMeasConfig->externalRef1Value > 0) {
Vkadaba 8:2f2775c34640 1113 eRet = admw_SetExternalReferenceValues(hDevice,
Vkadaba 8:2f2775c34640 1114 pMeasConfig->externalRef1Value);
ADIJake 0:85855ecd3257 1115 }
Vkadaba 50:d84305e5e1c0 1116
Vkadaba 50:d84305e5e1c0 1117 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1118 ADMW_LOG_ERROR("Failed to set external reference values");
Vkadaba 50:d84305e5e1c0 1119 return eRet;
Vkadaba 50:d84305e5e1c0 1120 }
Vkadaba 50:d84305e5e1c0 1121
Vkadaba 50:d84305e5e1c0 1122 if((pMeasConfig->AVDDVoltage >= 3.0) && (pMeasConfig->AVDDVoltage <= 3.6)) {
Vkadaba 45:f5f553b8c0d5 1123 eRet = admw_SetAVDDVoltage(hDevice,
Vkadaba 45:f5f553b8c0d5 1124 pMeasConfig->AVDDVoltage);
Vkadaba 45:f5f553b8c0d5 1125 }
Vkadaba 50:d84305e5e1c0 1126
Vkadaba 23:bb685f35b08b 1127 if (eRet != ADMW_SUCCESS) {
Vkadaba 50:d84305e5e1c0 1128 ADMW_LOG_ERROR("Failed to set AVDD Voltge");
ADIJake 0:85855ecd3257 1129 return eRet;
ADIJake 0:85855ecd3257 1130 }
ADIJake 0:85855ecd3257 1131
Vkadaba 33:df7a00f1b8e1 1132 eRet = admw_SetRSenseValue(hDevice, pMeasConfig->RSenseValue);
Vkadaba 41:df78b7d7b675 1133 if (eRet != ADMW_SUCCESS) {
Vkadaba 33:df7a00f1b8e1 1134 ADMW_LOG_ERROR("Failed to set RSenseValue");
Vkadaba 33:df7a00f1b8e1 1135 return eRet;
Vkadaba 33:df7a00f1b8e1 1136 }
Vkadaba 41:df78b7d7b675 1137
Vkadaba 36:54e2418e7620 1138 eRet = admw_SetExternalReferenceVoltage(hDevice, pMeasConfig->externalRefVoltage);
Vkadaba 41:df78b7d7b675 1139 if (eRet != ADMW_SUCCESS) {
Vkadaba 36:54e2418e7620 1140 ADMW_LOG_ERROR("Failed to set External reference Voltage");
Vkadaba 36:54e2418e7620 1141 return eRet;
Vkadaba 41:df78b7d7b675 1142 }
Vkadaba 41:df78b7d7b675 1143
Vkadaba 5:0728bde67bdb 1144 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1145 }
Vkadaba 36:54e2418e7620 1146 ADMW_RESULT admw1001_SetDiagnosticsConfig(
Vkadaba 36:54e2418e7620 1147 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 36:54e2418e7620 1148 ADMW1001_DIAGNOSTICS_CONFIG *pDiagnosticsConfig)
Vkadaba 36:54e2418e7620 1149 {
Vkadaba 36:54e2418e7620 1150 ADMW_CORE_Diagnostics_Control_t diagnosticsControlReg;
ADIJake 0:85855ecd3257 1151
Vkadaba 36:54e2418e7620 1152 diagnosticsControlReg.VALUE8 = REG_RESET_VAL(CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1153
Vkadaba 36:54e2418e7620 1154 if (pDiagnosticsConfig->disableMeasurementDiag)
Vkadaba 36:54e2418e7620 1155 diagnosticsControlReg.Diag_Meas_En = 0;
Vkadaba 36:54e2418e7620 1156 else
Vkadaba 36:54e2418e7620 1157 diagnosticsControlReg.Diag_Meas_En = 1;
Vkadaba 36:54e2418e7620 1158
Vkadaba 55:215da406282b 1159 if(pDiagnosticsConfig->osdFrequency <= 0x7F) {
Vkadaba 55:215da406282b 1160 diagnosticsControlReg.Diag_OSD_Freq = pDiagnosticsConfig->osdFrequency;
Vkadaba 55:215da406282b 1161 } else {
Vkadaba 44:94bdfaefddac 1162 ADMW_LOG_ERROR("Invalid open-sensor diagnostic frequency %d specified",
Vkadaba 55:215da406282b 1163 pDiagnosticsConfig->osdFrequency);
Vkadaba 44:94bdfaefddac 1164 return ADMW_INVALID_PARAM;
Vkadaba 44:94bdfaefddac 1165 }
Vkadaba 36:54e2418e7620 1166 WRITE_REG_U8(hDevice, diagnosticsControlReg.VALUE8, CORE_DIAGNOSTICS_CONTROL);
Vkadaba 36:54e2418e7620 1167
Vkadaba 36:54e2418e7620 1168 return ADMW_SUCCESS;
Vkadaba 36:54e2418e7620 1169 }
ADIJake 0:85855ecd3257 1170
Vkadaba 5:0728bde67bdb 1171 ADMW_RESULT admw1001_SetChannelCount(
Vkadaba 5:0728bde67bdb 1172 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1173 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1174 uint32_t nMeasurementsPerCycle)
ADIJake 0:85855ecd3257 1175 {
Vkadaba 8:2f2775c34640 1176 ADMW_CORE_Channel_Count_t channelCountReg;
ADIJake 0:85855ecd3257 1177
ADIJake 0:85855ecd3257 1178 channelCountReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_COUNTn);
ADIJake 0:85855ecd3257 1179
Vkadaba 23:bb685f35b08b 1180 if (nMeasurementsPerCycle > 0) {
ADIJake 0:85855ecd3257 1181 nMeasurementsPerCycle -= 1;
ADIJake 0:85855ecd3257 1182
ADIJake 0:85855ecd3257 1183 CHECK_REG_FIELD_VAL(CORE_CHANNEL_COUNT_CHANNEL_COUNT,
ADIJake 0:85855ecd3257 1184 nMeasurementsPerCycle);
ADIJake 0:85855ecd3257 1185
ADIJake 0:85855ecd3257 1186 channelCountReg.Channel_Enable = 1;
ADIJake 0:85855ecd3257 1187 channelCountReg.Channel_Count = nMeasurementsPerCycle;
Vkadaba 23:bb685f35b08b 1188 } else {
ADIJake 0:85855ecd3257 1189 channelCountReg.Channel_Enable = 0;
ADIJake 0:85855ecd3257 1190 }
ADIJake 0:85855ecd3257 1191
ADIJake 0:85855ecd3257 1192 WRITE_REG_U8(hDevice, channelCountReg.VALUE8, CORE_CHANNEL_COUNTn(eChannelId));
ADIJake 0:85855ecd3257 1193
Vkadaba 5:0728bde67bdb 1194 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1195 }
ADIJake 0:85855ecd3257 1196
Vkadaba 5:0728bde67bdb 1197 ADMW_RESULT admw1001_SetChannelOptions(
Vkadaba 5:0728bde67bdb 1198 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1199 ADMW1001_CH_ID eChannelId,
Vkadaba 6:9d393a9677f4 1200 ADMW1001_CHANNEL_PRIORITY ePriority)
ADIJake 0:85855ecd3257 1201 {
Vkadaba 8:2f2775c34640 1202 ADMW_CORE_Channel_Options_t channelOptionsReg;
ADIJake 0:85855ecd3257 1203
ADIJake 0:85855ecd3257 1204 channelOptionsReg.VALUE8 = REG_RESET_VAL(CORE_CHANNEL_OPTIONSn);
ADIJake 0:85855ecd3257 1205
ADIJake 0:85855ecd3257 1206 CHECK_REG_FIELD_VAL(CORE_CHANNEL_OPTIONS_CHANNEL_PRIORITY, ePriority);
ADIJake 0:85855ecd3257 1207 channelOptionsReg.Channel_Priority = ePriority;
ADIJake 0:85855ecd3257 1208
ADIJake 0:85855ecd3257 1209 WRITE_REG_U8(hDevice, channelOptionsReg.VALUE8, CORE_CHANNEL_OPTIONSn(eChannelId));
ADIJake 0:85855ecd3257 1210
Vkadaba 5:0728bde67bdb 1211 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1212 }
ADIJake 0:85855ecd3257 1213
Vkadaba 5:0728bde67bdb 1214 ADMW_RESULT admw1001_SetChannelSkipCount(
Vkadaba 5:0728bde67bdb 1215 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1216 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1217 uint32_t nCycleSkipCount)
ADIJake 0:85855ecd3257 1218 {
Vkadaba 8:2f2775c34640 1219 ADMW_CORE_Channel_Skip_t channelSkipReg;
ADIJake 0:85855ecd3257 1220
ADIJake 0:85855ecd3257 1221 channelSkipReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_SKIPn);
ADIJake 0:85855ecd3257 1222
ADIJake 0:85855ecd3257 1223 CHECK_REG_FIELD_VAL(CORE_CHANNEL_SKIP_CHANNEL_SKIP, nCycleSkipCount);
ADIJake 0:85855ecd3257 1224
ADIJake 0:85855ecd3257 1225 channelSkipReg.Channel_Skip = nCycleSkipCount;
ADIJake 0:85855ecd3257 1226
ADIJake 0:85855ecd3257 1227 WRITE_REG_U16(hDevice, channelSkipReg.VALUE16, CORE_CHANNEL_SKIPn(eChannelId));
ADIJake 0:85855ecd3257 1228
Vkadaba 5:0728bde67bdb 1229 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1230 }
ADIJake 0:85855ecd3257 1231
Vkadaba 5:0728bde67bdb 1232 static ADMW_RESULT admw_SetChannelAdcSensorType(
Vkadaba 8:2f2775c34640 1233 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1234 ADMW1001_CH_ID eChannelId,
Vkadaba 8:2f2775c34640 1235 ADMW1001_ADC_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1236 {
Vkadaba 8:2f2775c34640 1237 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1238
ADIJake 0:85855ecd3257 1239 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1240
ADIJake 0:85855ecd3257 1241 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1242 switch(sensorType) {
Vkadaba 50:d84305e5e1c0 1243 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1244
Vkadaba 50:d84305e5e1c0 1245 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1246 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1247 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1248 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1249 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1250 case ADMW1001_ADC_SENSOR_RTD_2WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1251 case ADMW1001_ADC_SENSOR_RTD_2WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1252 case ADMW1001_ADC_SENSOR_RTD_2WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1253 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1254
Vkadaba 50:d84305e5e1c0 1255 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT50:
Vkadaba 50:d84305e5e1c0 1256 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1257 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1258 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT500:
Vkadaba 50:d84305e5e1c0 1259 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1260 case ADMW1001_ADC_SENSOR_RTD_4WIRE_PT1000_0P00375:
Vkadaba 50:d84305e5e1c0 1261 case ADMW1001_ADC_SENSOR_RTD_4WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1262 case ADMW1001_ADC_SENSOR_RTD_4WIRE_CUSTOM:
Vkadaba 50:d84305e5e1c0 1263 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT10:
Vkadaba 50:d84305e5e1c0 1264
Vkadaba 50:d84305e5e1c0 1265 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT50:
Vkadaba 8:2f2775c34640 1266 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT100:
Vkadaba 50:d84305e5e1c0 1267 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT200:
Vkadaba 50:d84305e5e1c0 1268 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT500:
Vkadaba 8:2f2775c34640 1269 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000:
Vkadaba 50:d84305e5e1c0 1270 case ADMW1001_ADC_SENSOR_RTD_3WIRE_PT1000_0P00375 :
Vkadaba 50:d84305e5e1c0 1271
Vkadaba 50:d84305e5e1c0 1272 case ADMW1001_ADC_SENSOR_RTD_3WIRE_NI120:
Vkadaba 50:d84305e5e1c0 1273 case ADMW1001_ADC_SENSOR_RTD_3WIRE_CUSTOM:
Vkadaba 58:aa9cd5072f66 1274 case ADMW1001_ADC_SENSOR_BRIDGE_4WIRE:
Vkadaba 58:aa9cd5072f66 1275 case ADMW1001_ADC_SENSOR_BRIDGE_6WIRE:
Vkadaba 50:d84305e5e1c0 1276 case ADMW1001_ADC_SENSOR_DIODE:
Vkadaba 50:d84305e5e1c0 1277 case ADMW1001_ADC_SENSOR_THERMISTOR_44004_44033_2P252K_AT_25C:
Vkadaba 50:d84305e5e1c0 1278 case ADMW1001_ADC_SENSOR_THERMISTOR_44005_44030_3K_AT_25C:
Vkadaba 50:d84305e5e1c0 1279 case ADMW1001_ADC_SENSOR_THERMISTOR_44007_44034_5K_AT_25C:
Vkadaba 50:d84305e5e1c0 1280 case ADMW1001_ADC_SENSOR_THERMISTOR_44006_44031_10K_AT_25C:
Vkadaba 50:d84305e5e1c0 1281 case ADMW1001_ADC_SENSOR_THERMISTOR_44008_44032_30K_AT_25C:
Vkadaba 50:d84305e5e1c0 1282 case ADMW1001_ADC_SENSOR_THERMISTOR_YSI_400:
Vkadaba 50:d84305e5e1c0 1283 case ADMW1001_ADC_SENSOR_THERMISTOR_SPECTRUM_1003K_1K:
Vkadaba 50:d84305e5e1c0 1284 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_STEINHART_HART:
Vkadaba 50:d84305e5e1c0 1285 case ADMW1001_ADC_SENSOR_THERMISTOR_CUSTOM_TABLE:
Vkadaba 36:54e2418e7620 1286 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_ABSOLUTE:
Vkadaba 36:54e2418e7620 1287 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_ABSOLUTE:
Vkadaba 36:54e2418e7620 1288 case ADMW1001_ADC_SENSOR_SINGLE_ENDED_RATIO:
Vkadaba 36:54e2418e7620 1289 case ADMW1001_ADC_SENSOR_DIFFERENTIAL_RATIO:
Vkadaba 50:d84305e5e1c0 1290
Vkadaba 50:d84305e5e1c0 1291 if (! (ADMW1001_CHANNEL_IS_ADC_CJC(eChannelId) ||
Vkadaba 50:d84305e5e1c0 1292 ADMW1001_CHANNEL_IS_ADC(eChannelId) )) {
Vkadaba 6:9d393a9677f4 1293 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1294 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1295 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1296 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1297 }
Vkadaba 6:9d393a9677f4 1298 break;
Vkadaba 8:2f2775c34640 1299 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_J:
Vkadaba 8:2f2775c34640 1300 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_K:
Vkadaba 8:2f2775c34640 1301 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_T:
Vkadaba 50:d84305e5e1c0 1302 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_E:
Vkadaba 50:d84305e5e1c0 1303 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_N:
Vkadaba 50:d84305e5e1c0 1304 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_R:
Vkadaba 50:d84305e5e1c0 1305 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_S:
Vkadaba 50:d84305e5e1c0 1306 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_B:
Vkadaba 50:d84305e5e1c0 1307 case ADMW1001_ADC_SENSOR_THERMOCOUPLE_CUSTOM:
Vkadaba 23:bb685f35b08b 1308 if (! ADMW1001_CHANNEL_IS_ADC_VOLTAGE(eChannelId)) {
Vkadaba 6:9d393a9677f4 1309 ADMW_LOG_ERROR(
Vkadaba 6:9d393a9677f4 1310 "Invalid ADC sensor type %d specified for channel %d",
Vkadaba 6:9d393a9677f4 1311 sensorType, eChannelId);
Vkadaba 6:9d393a9677f4 1312 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1313 }
Vkadaba 6:9d393a9677f4 1314 break;
Vkadaba 6:9d393a9677f4 1315 default:
Vkadaba 6:9d393a9677f4 1316 ADMW_LOG_ERROR("Invalid/unsupported ADC sensor type %d specified",
Vkadaba 23:bb685f35b08b 1317 sensorType);
Vkadaba 5:0728bde67bdb 1318 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1319 }
ADIJake 0:85855ecd3257 1320
ADIJake 0:85855ecd3257 1321 sensorTypeReg.Sensor_Type = sensorType;
ADIJake 0:85855ecd3257 1322
ADIJake 0:85855ecd3257 1323 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1324
Vkadaba 5:0728bde67bdb 1325 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1326 }
ADIJake 0:85855ecd3257 1327
Vkadaba 5:0728bde67bdb 1328 static ADMW_RESULT admw_SetChannelAdcSensorDetails(
Vkadaba 8:2f2775c34640 1329 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1330 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1331 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1332 /*
ADIJake 0:85855ecd3257 1333 * TODO - it would be nice if the general- vs. ADC-specific sensor details could be split into separate registers
ADIJake 0:85855ecd3257 1334 * General details:
ADIJake 0:85855ecd3257 1335 * - Measurement_Units
ADIJake 0:85855ecd3257 1336 * - Compensation_Channel
ADIJake 0:85855ecd3257 1337 * - CJC_Publish (if "CJC" was removed from the name)
ADIJake 0:85855ecd3257 1338 * ADC-specific details:
ADIJake 0:85855ecd3257 1339 * - PGA_Gain
ADIJake 0:85855ecd3257 1340 * - Reference_Select
ADIJake 0:85855ecd3257 1341 * - Reference_Buffer_Disable
ADIJake 0:85855ecd3257 1342 */
ADIJake 0:85855ecd3257 1343 {
Vkadaba 5:0728bde67bdb 1344 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig = &pChannelConfig->adcChannelConfig;
Vkadaba 8:2f2775c34640 1345 ADMW1001_ADC_REFERENCE_TYPE refType = pAdcChannelConfig->reference;
Vkadaba 8:2f2775c34640 1346 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1347
ADIJake 0:85855ecd3257 1348 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1349
Vkadaba 23:bb685f35b08b 1350 switch(pChannelConfig->measurementUnit) {
Vkadaba 8:2f2775c34640 1351 case ADMW1001_MEASUREMENT_UNIT_FAHRENHEIT:
Vkadaba 8:2f2775c34640 1352 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGF;
Vkadaba 8:2f2775c34640 1353 break;
Vkadaba 8:2f2775c34640 1354 case ADMW1001_MEASUREMENT_UNIT_CELSIUS:
Vkadaba 8:2f2775c34640 1355 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_DEGC;
Vkadaba 8:2f2775c34640 1356 break;
Vkadaba 8:2f2775c34640 1357 case ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED:
Vkadaba 8:2f2775c34640 1358 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 8:2f2775c34640 1359 break;
Vkadaba 8:2f2775c34640 1360 default:
Vkadaba 8:2f2775c34640 1361 ADMW_LOG_ERROR("Invalid measurement unit %d specified",
Vkadaba 8:2f2775c34640 1362 pChannelConfig->measurementUnit);
Vkadaba 8:2f2775c34640 1363 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1364 }
ADIJake 0:85855ecd3257 1365
Vkadaba 23:bb685f35b08b 1366 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1367 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1368 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1369 } else {
ADIJake 0:85855ecd3257 1370 sensorDetailsReg.Compensation_Disable = 0;
ADIJake 0:85855ecd3257 1371 sensorDetailsReg.Compensation_Channel = pChannelConfig->compensationChannel;
ADIJake 0:85855ecd3257 1372 }
ADIJake 0:85855ecd3257 1373
Vkadaba 23:bb685f35b08b 1374 switch(refType) {
Vkadaba 8:2f2775c34640 1375 case ADMW1001_ADC_REFERENCE_VOLTAGE_INTERNAL:
Vkadaba 8:2f2775c34640 1376 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VINT;
Vkadaba 8:2f2775c34640 1377 break;
Vkadaba 8:2f2775c34640 1378 case ADMW1001_ADC_REFERENCE_VOLTAGE_EXTERNAL_1:
Vkadaba 8:2f2775c34640 1379 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_VEXT1;
Vkadaba 8:2f2775c34640 1380 break;
Vkadaba 8:2f2775c34640 1381 case ADMW1001_ADC_REFERENCE_VOLTAGE_AVDD:
Vkadaba 8:2f2775c34640 1382 sensorDetailsReg.Reference_Select = CORE_SENSOR_DETAILS_REF_AVDD;
Vkadaba 8:2f2775c34640 1383 break;
Vkadaba 8:2f2775c34640 1384 default:
Vkadaba 8:2f2775c34640 1385 ADMW_LOG_ERROR("Invalid ADC reference type %d specified", refType);
Vkadaba 8:2f2775c34640 1386 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1387 }
Vkadaba 23:bb685f35b08b 1388
Vkadaba 23:bb685f35b08b 1389 switch(pAdcChannelConfig->gain) {
Vkadaba 8:2f2775c34640 1390 case ADMW1001_ADC_GAIN_1X:
Vkadaba 8:2f2775c34640 1391 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_1;
Vkadaba 8:2f2775c34640 1392 break;
Vkadaba 8:2f2775c34640 1393 case ADMW1001_ADC_GAIN_2X:
Vkadaba 8:2f2775c34640 1394 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_2;
Vkadaba 8:2f2775c34640 1395 break;
Vkadaba 8:2f2775c34640 1396 case ADMW1001_ADC_GAIN_4X:
Vkadaba 8:2f2775c34640 1397 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_4;
Vkadaba 8:2f2775c34640 1398 break;
Vkadaba 8:2f2775c34640 1399 case ADMW1001_ADC_GAIN_8X:
Vkadaba 8:2f2775c34640 1400 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_8;
Vkadaba 8:2f2775c34640 1401 break;
Vkadaba 8:2f2775c34640 1402 case ADMW1001_ADC_GAIN_16X:
Vkadaba 8:2f2775c34640 1403 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_16;
Vkadaba 8:2f2775c34640 1404 break;
Vkadaba 8:2f2775c34640 1405 case ADMW1001_ADC_GAIN_32X:
Vkadaba 8:2f2775c34640 1406 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_32;
Vkadaba 8:2f2775c34640 1407 break;
Vkadaba 8:2f2775c34640 1408 case ADMW1001_ADC_GAIN_64X:
Vkadaba 8:2f2775c34640 1409 sensorDetailsReg.PGA_Gain = CORE_SENSOR_DETAILS_PGA_GAIN_64;
Vkadaba 8:2f2775c34640 1410 break;
Vkadaba 8:2f2775c34640 1411 default:
Vkadaba 8:2f2775c34640 1412 ADMW_LOG_ERROR("Invalid ADC gain %d specified",
Vkadaba 23:bb685f35b08b 1413 pAdcChannelConfig->gain);
Vkadaba 8:2f2775c34640 1414 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1415 }
ADIJake 0:85855ecd3257 1416
Vkadaba 23:bb685f35b08b 1417 switch(pAdcChannelConfig->rtdCurve) {
Vkadaba 8:2f2775c34640 1418 case ADMW1001_ADC_RTD_CURVE_EUROPEAN:
Vkadaba 8:2f2775c34640 1419 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_EUROPEAN_CURVE;
Vkadaba 8:2f2775c34640 1420 break;
Vkadaba 8:2f2775c34640 1421 case ADMW1001_ADC_RTD_CURVE_AMERICAN:
Vkadaba 8:2f2775c34640 1422 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_AMERICAN_CURVE;
Vkadaba 8:2f2775c34640 1423 break;
Vkadaba 8:2f2775c34640 1424 case ADMW1001_ADC_RTD_CURVE_JAPANESE:
Vkadaba 8:2f2775c34640 1425 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_JAPANESE_CURVE;
Vkadaba 8:2f2775c34640 1426 break;
Vkadaba 8:2f2775c34640 1427 case ADMW1001_ADC_RTD_CURVE_ITS90:
Vkadaba 8:2f2775c34640 1428 sensorDetailsReg.RTD_Curve = CORE_SENSOR_DETAILS_ITS90_CURVE;
Vkadaba 8:2f2775c34640 1429 break;
Vkadaba 8:2f2775c34640 1430 default:
Vkadaba 8:2f2775c34640 1431 ADMW_LOG_ERROR("Invalid RTD Curve %d specified",
Vkadaba 23:bb685f35b08b 1432 pAdcChannelConfig->rtdCurve);
Vkadaba 8:2f2775c34640 1433 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 1434 }
Vkadaba 6:9d393a9677f4 1435
Vkadaba 23:bb685f35b08b 1436 if (pChannelConfig->disablePublishing) {
ADIJake 0:85855ecd3257 1437 sensorDetailsReg.Do_Not_Publish = 1;
Vkadaba 23:bb685f35b08b 1438 } else {
ADIJake 0:85855ecd3257 1439 sensorDetailsReg.Do_Not_Publish = 0;
Vkadaba 8:2f2775c34640 1440 }
Vkadaba 23:bb685f35b08b 1441
Vkadaba 23:bb685f35b08b 1442 switch (pChannelConfig->lutSelect) {
Vkadaba 8:2f2775c34640 1443 case ADMW1001_LUT_DEFAULT:
Vkadaba 8:2f2775c34640 1444 case ADMW1001_LUT_CUSTOM:
Vkadaba 8:2f2775c34640 1445 sensorDetailsReg.LUT_Select = pChannelConfig->lutSelect;
Vkadaba 8:2f2775c34640 1446 break;
Vkadaba 8:2f2775c34640 1447 default:
Vkadaba 8:2f2775c34640 1448 ADMW_LOG_ERROR("Invalid LUT selection %d specified",
Vkadaba 23:bb685f35b08b 1449 pChannelConfig->lutSelect);
Vkadaba 23:bb685f35b08b 1450 return ADMW_INVALID_PARAM;
Vkadaba 8:2f2775c34640 1451 }
Vkadaba 23:bb685f35b08b 1452
ADIJake 0:85855ecd3257 1453 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1454
Vkadaba 5:0728bde67bdb 1455 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1456 }
ADIJake 0:85855ecd3257 1457
Vkadaba 33:df7a00f1b8e1 1458 static ADMW_RESULT admw_SetChannelAdcMeasurementSetup(
Vkadaba 5:0728bde67bdb 1459 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1460 ADMW1001_CH_ID eChannelId,
Vkadaba 33:df7a00f1b8e1 1461 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig)
ADIJake 0:85855ecd3257 1462 {
Vkadaba 8:2f2775c34640 1463 ADMW_CORE_Measurement_Setup_t MeasSetupReg;
Vkadaba 33:df7a00f1b8e1 1464 ADMW1001_ADC_FILTER_CONFIG *pFilterConfig = &pAdcChannelConfig->filter;
Vkadaba 6:9d393a9677f4 1465 MeasSetupReg.VALUE32 = REG_RESET_VAL(CORE_MEASUREMENT_SETUPn);
Vkadaba 33:df7a00f1b8e1 1466 MeasSetupReg.Buffer_Bypass = pAdcChannelConfig->bufferBypass;
Vkadaba 41:df78b7d7b675 1467
Vkadaba 23:bb685f35b08b 1468 if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC4) {
Vkadaba 6:9d393a9677f4 1469 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC4;
Vkadaba 6:9d393a9677f4 1470 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1471 } else if (pFilterConfig->type == ADMW1001_ADC_FILTER_SINC3) {
Vkadaba 6:9d393a9677f4 1472 MeasSetupReg.ADC_Filter_Type = CORE_MEASUREMENT_SETUP_ENABLE_SINC3;
Vkadaba 23:bb685f35b08b 1473 MeasSetupReg.ADC_SF = pFilterConfig->sf;
Vkadaba 23:bb685f35b08b 1474 } else {
Vkadaba 5:0728bde67bdb 1475 ADMW_LOG_ERROR("Invalid ADC filter type %d specified",
Vkadaba 23:bb685f35b08b 1476 pFilterConfig->type);
Vkadaba 5:0728bde67bdb 1477 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1478 }
Vkadaba 23:bb685f35b08b 1479
Vkadaba 8:2f2775c34640 1480 /* chop mod ecan be 0 (none), 1 (HW, 2 (SW, 3 (HW+SW). */
Vkadaba 17:2f0028880874 1481 MeasSetupReg.Chop_Mode = pFilterConfig->chopMode;
Vkadaba 23:bb685f35b08b 1482
Vkadaba 6:9d393a9677f4 1483 if(pFilterConfig->notch1p2)
Vkadaba 6:9d393a9677f4 1484 MeasSetupReg.NOTCH_EN_2 = 1;
Vkadaba 6:9d393a9677f4 1485 else
Vkadaba 6:9d393a9677f4 1486 MeasSetupReg.NOTCH_EN_2 = 0;
Vkadaba 23:bb685f35b08b 1487
Vkadaba 6:9d393a9677f4 1488 WRITE_REG_U32(hDevice, MeasSetupReg.VALUE32, CORE_MEASUREMENT_SETUPn(eChannelId));
ADIJake 0:85855ecd3257 1489
Vkadaba 5:0728bde67bdb 1490 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1491 }
ADIJake 0:85855ecd3257 1492
Vkadaba 5:0728bde67bdb 1493 static ADMW_RESULT admw_SetChannelAdcCurrentConfig(
Vkadaba 5:0728bde67bdb 1494 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1495 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1496 ADMW1001_ADC_EXC_CURRENT_CONFIG *pCurrentConfig)
ADIJake 0:85855ecd3257 1497 {
Vkadaba 8:2f2775c34640 1498 ADMW_CORE_Channel_Excitation_t channelExcitationReg;
ADIJake 0:85855ecd3257 1499
Vkadaba 6:9d393a9677f4 1500 channelExcitationReg.VALUE16 = REG_RESET_VAL(CORE_CHANNEL_EXCITATIONn);
Vkadaba 6:9d393a9677f4 1501
Vkadaba 18:cbf514cce921 1502 if (pCurrentConfig->outputLevel == ADMW1001_ADC_NO_EXTERNAL_EXC_CURRENT)
Vkadaba 18:cbf514cce921 1503 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_NONE;
Vkadaba 18:cbf514cce921 1504 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_EXTERNAL)
Vkadaba 6:9d393a9677f4 1505 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_EXTERNAL;
Vkadaba 18:cbf514cce921 1506 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_50uA)
Vkadaba 6:9d393a9677f4 1507 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_50UA;
Vkadaba 6:9d393a9677f4 1508 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_100uA)
Vkadaba 6:9d393a9677f4 1509 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_100UA;
Vkadaba 6:9d393a9677f4 1510 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_250uA)
Vkadaba 6:9d393a9677f4 1511 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_250UA;
Vkadaba 6:9d393a9677f4 1512 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_500uA)
Vkadaba 6:9d393a9677f4 1513 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_500UA;
Vkadaba 6:9d393a9677f4 1514 else if (pCurrentConfig->outputLevel == ADMW1001_ADC_EXC_CURRENT_1000uA)
Vkadaba 6:9d393a9677f4 1515 channelExcitationReg.IOUT_Excitation_Current = CORE_CHANNEL_EXCITATION_IEXC_1000UA;
Vkadaba 23:bb685f35b08b 1516 else {
Vkadaba 6:9d393a9677f4 1517 ADMW_LOG_ERROR("Invalid ADC excitation current %d specified",
Vkadaba 6:9d393a9677f4 1518 pCurrentConfig->outputLevel);
Vkadaba 6:9d393a9677f4 1519 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1520 }
ADIJake 0:85855ecd3257 1521
Vkadaba 6:9d393a9677f4 1522 WRITE_REG_U16(hDevice, channelExcitationReg.VALUE16, CORE_CHANNEL_EXCITATIONn(eChannelId));
ADIJake 0:85855ecd3257 1523
Vkadaba 5:0728bde67bdb 1524 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1525 }
ADIJake 0:85855ecd3257 1526
Vkadaba 5:0728bde67bdb 1527 ADMW_RESULT admw_SetAdcChannelConfig(
Vkadaba 5:0728bde67bdb 1528 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1529 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1530 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1531 {
Vkadaba 5:0728bde67bdb 1532 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1533 ADMW1001_ADC_CHANNEL_CONFIG *pAdcChannelConfig =
ADIJake 0:85855ecd3257 1534 &pChannelConfig->adcChannelConfig;
ADIJake 0:85855ecd3257 1535
Vkadaba 5:0728bde67bdb 1536 eRet = admw_SetChannelAdcSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1537 pAdcChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1538 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1539 ADMW_LOG_ERROR("Failed to set ADC sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1540 eChannelId);
ADIJake 0:85855ecd3257 1541 return eRet;
ADIJake 0:85855ecd3257 1542 }
ADIJake 0:85855ecd3257 1543
Vkadaba 5:0728bde67bdb 1544 eRet = admw_SetChannelAdcSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1545 pChannelConfig);
Vkadaba 23:bb685f35b08b 1546 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1547 ADMW_LOG_ERROR("Failed to set ADC sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1548 eChannelId);
ADIJake 0:85855ecd3257 1549 return eRet;
ADIJake 0:85855ecd3257 1550 }
ADIJake 0:85855ecd3257 1551
Vkadaba 33:df7a00f1b8e1 1552 eRet = admw_SetChannelAdcMeasurementSetup(hDevice, eChannelId,
Vkadaba 41:df78b7d7b675 1553 pAdcChannelConfig);
Vkadaba 23:bb685f35b08b 1554 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1555 ADMW_LOG_ERROR("Failed to set ADC filter for channel %d",
Vkadaba 23:bb685f35b08b 1556 eChannelId);
ADIJake 0:85855ecd3257 1557 return eRet;
ADIJake 0:85855ecd3257 1558 }
ADIJake 0:85855ecd3257 1559
Vkadaba 5:0728bde67bdb 1560 eRet = admw_SetChannelAdcCurrentConfig(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1561 &pAdcChannelConfig->current);
Vkadaba 23:bb685f35b08b 1562 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1563 ADMW_LOG_ERROR("Failed to set ADC current for channel %d",
Vkadaba 23:bb685f35b08b 1564 eChannelId);
ADIJake 0:85855ecd3257 1565 return eRet;
ADIJake 0:85855ecd3257 1566 }
ADIJake 0:85855ecd3257 1567
Vkadaba 5:0728bde67bdb 1568 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1569 }
ADIJake 0:85855ecd3257 1570
Vkadaba 5:0728bde67bdb 1571 static ADMW_RESULT admw_SetChannelDigitalSensorDetails(
Vkadaba 5:0728bde67bdb 1572 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1573 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1574 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1575 {
Vkadaba 8:2f2775c34640 1576 ADMW_CORE_Sensor_Details_t sensorDetailsReg;
ADIJake 0:85855ecd3257 1577
ADIJake 0:85855ecd3257 1578 sensorDetailsReg.VALUE32 = REG_RESET_VAL(CORE_SENSOR_DETAILSn);
ADIJake 0:85855ecd3257 1579
Vkadaba 23:bb685f35b08b 1580 if (pChannelConfig->compensationChannel == ADMW1001_CH_ID_NONE) {
ADIJake 0:85855ecd3257 1581 sensorDetailsReg.Compensation_Disable = 1;
ADIJake 0:85855ecd3257 1582 sensorDetailsReg.Compensation_Channel = 0;
Vkadaba 23:bb685f35b08b 1583 } else {
Vkadaba 5:0728bde67bdb 1584 ADMW_LOG_ERROR("Invalid compensation channel specified for digital sensor");
Vkadaba 5:0728bde67bdb 1585 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1586 }
ADIJake 0:85855ecd3257 1587
Vkadaba 23:bb685f35b08b 1588 if (pChannelConfig->measurementUnit == ADMW1001_MEASUREMENT_UNIT_UNSPECIFIED) {
Vkadaba 5:0728bde67bdb 1589 sensorDetailsReg.Measurement_Units = CORE_SENSOR_DETAILS_UNITS_UNSPECIFIED;
Vkadaba 23:bb685f35b08b 1590 } else {
Vkadaba 5:0728bde67bdb 1591 ADMW_LOG_ERROR("Invalid measurement unit specified for digital channel");
Vkadaba 5:0728bde67bdb 1592 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1593 }
ADIJake 0:85855ecd3257 1594
ADIJake 0:85855ecd3257 1595 if (pChannelConfig->disablePublishing)
ADIJake 0:85855ecd3257 1596 sensorDetailsReg.Do_Not_Publish = 1;
ADIJake 0:85855ecd3257 1597 else
ADIJake 0:85855ecd3257 1598 sensorDetailsReg.Do_Not_Publish = 0;
ADIJake 0:85855ecd3257 1599
ADIJake 0:85855ecd3257 1600 WRITE_REG_U32(hDevice, sensorDetailsReg.VALUE32, CORE_SENSOR_DETAILSn(eChannelId));
ADIJake 0:85855ecd3257 1601
Vkadaba 5:0728bde67bdb 1602 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1603 }
ADIJake 0:85855ecd3257 1604
Vkadaba 5:0728bde67bdb 1605 static ADMW_RESULT admw_SetDigitalSensorFormat(
Vkadaba 5:0728bde67bdb 1606 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1607 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1608 ADMW1001_DIGITAL_SENSOR_DATA_FORMAT *pDataFormat)
ADIJake 0:85855ecd3257 1609 {
Vkadaba 8:2f2775c34640 1610 ADMW_CORE_Digital_Sensor_Config_t sensorConfigReg;
ADIJake 0:85855ecd3257 1611
ADIJake 0:85855ecd3257 1612 sensorConfigReg.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_CONFIGn);
ADIJake 0:85855ecd3257 1613
Vkadaba 23:bb685f35b08b 1614 if (pDataFormat->coding != ADMW1001_DIGITAL_SENSOR_DATA_CODING_NONE) {
Vkadaba 23:bb685f35b08b 1615 if (pDataFormat->frameLength == 0) {
Vkadaba 5:0728bde67bdb 1616 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1617 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1618 }
Vkadaba 23:bb685f35b08b 1619 if (pDataFormat->numDataBits == 0) {
Vkadaba 5:0728bde67bdb 1620 ADMW_LOG_ERROR("Invalid frame length specified for digital sensor data format");
Vkadaba 5:0728bde67bdb 1621 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1622 }
ADIJake 0:85855ecd3257 1623
ADIJake 0:85855ecd3257 1624 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_READ_BYTES,
ADIJake 0:85855ecd3257 1625 pDataFormat->frameLength - 1);
ADIJake 0:85855ecd3257 1626 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_DATA_BITS,
ADIJake 0:85855ecd3257 1627 pDataFormat->numDataBits - 1);
ADIJake 0:85855ecd3257 1628 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_CONFIG_DIGITAL_SENSOR_BIT_OFFSET,
ADIJake 0:85855ecd3257 1629 pDataFormat->bitOffset);
ADIJake 0:85855ecd3257 1630
ADIJake 0:85855ecd3257 1631 sensorConfigReg.Digital_Sensor_Read_Bytes = pDataFormat->frameLength - 1;
ADIJake 0:85855ecd3257 1632 sensorConfigReg.Digital_Sensor_Data_Bits = pDataFormat->numDataBits - 1;
ADIJake 0:85855ecd3257 1633 sensorConfigReg.Digital_Sensor_Bit_Offset = pDataFormat->bitOffset;
ADIJake 0:85855ecd3257 1634 sensorConfigReg.Digital_Sensor_Left_Aligned = pDataFormat->leftJustified ? 1 : 0;
ADIJake 0:85855ecd3257 1635 sensorConfigReg.Digital_Sensor_Little_Endian = pDataFormat->littleEndian ? 1 : 0;
ADIJake 0:85855ecd3257 1636
Vkadaba 23:bb685f35b08b 1637 switch (pDataFormat->coding) {
Vkadaba 23:bb685f35b08b 1638 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_UNIPOLAR:
Vkadaba 23:bb685f35b08b 1639 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_UNIPOLAR;
Vkadaba 23:bb685f35b08b 1640 break;
Vkadaba 23:bb685f35b08b 1641 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_TWOS_COMPLEMENT:
Vkadaba 23:bb685f35b08b 1642 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_TWOS_COMPL;
Vkadaba 23:bb685f35b08b 1643 break;
Vkadaba 23:bb685f35b08b 1644 case ADMW1001_DIGITAL_SENSOR_DATA_CODING_OFFSET_BINARY:
Vkadaba 23:bb685f35b08b 1645 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_OFFSET_BINARY;
Vkadaba 23:bb685f35b08b 1646 break;
Vkadaba 23:bb685f35b08b 1647 default:
Vkadaba 23:bb685f35b08b 1648 ADMW_LOG_ERROR("Invalid coding specified for digital sensor data format");
Vkadaba 23:bb685f35b08b 1649 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1650 }
Vkadaba 23:bb685f35b08b 1651 } else {
Vkadaba 5:0728bde67bdb 1652 sensorConfigReg.Digital_Sensor_Coding = CORE_DIGITAL_SENSOR_CONFIG_CODING_NONE;
ADIJake 0:85855ecd3257 1653 }
ADIJake 0:85855ecd3257 1654
ADIJake 0:85855ecd3257 1655 WRITE_REG_U16(hDevice, sensorConfigReg.VALUE16,
ADIJake 0:85855ecd3257 1656 CORE_DIGITAL_SENSOR_CONFIGn(eChannelId));
ADIJake 0:85855ecd3257 1657
ADIJake 0:85855ecd3257 1658
Vkadaba 5:0728bde67bdb 1659 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1660 }
ADIJake 0:85855ecd3257 1661
ADIJake 0:85855ecd3257 1662
Vkadaba 5:0728bde67bdb 1663 static ADMW_RESULT admw_SetChannelI2cSensorType(
Vkadaba 5:0728bde67bdb 1664 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1665 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1666 ADMW1001_I2C_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1667 {
Vkadaba 8:2f2775c34640 1668 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1669
ADIJake 0:85855ecd3257 1670 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1671
ADIJake 0:85855ecd3257 1672 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1673 switch(sensorType) {
Vkadaba 58:aa9cd5072f66 1674 case ADMW1001_I2C_SENSOR_HUMIDITY:
Vkadaba 50:d84305e5e1c0 1675 case ADMW1001_I2C_SENSOR_TEMPERATURE_ADT742X:
Vkadaba 8:2f2775c34640 1676 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 8:2f2775c34640 1677 break;
Vkadaba 8:2f2775c34640 1678 default:
Vkadaba 8:2f2775c34640 1679 ADMW_LOG_ERROR("Unsupported I2C sensor type %d specified", sensorType);
Vkadaba 8:2f2775c34640 1680 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1681 }
ADIJake 0:85855ecd3257 1682
ADIJake 0:85855ecd3257 1683 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1684
Vkadaba 5:0728bde67bdb 1685 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1686 }
ADIJake 0:85855ecd3257 1687
Vkadaba 5:0728bde67bdb 1688 static ADMW_RESULT admw_SetChannelI2cSensorAddress(
Vkadaba 5:0728bde67bdb 1689 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1690 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1691 uint32_t deviceAddress)
ADIJake 0:85855ecd3257 1692 {
ADIJake 0:85855ecd3257 1693 CHECK_REG_FIELD_VAL(CORE_DIGITAL_SENSOR_ADDRESS_DIGITAL_SENSOR_ADDRESS, deviceAddress);
ADIJake 0:85855ecd3257 1694 WRITE_REG_U8(hDevice, deviceAddress, CORE_DIGITAL_SENSOR_ADDRESSn(eChannelId));
ADIJake 0:85855ecd3257 1695
Vkadaba 5:0728bde67bdb 1696 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1697 }
ADIJake 0:85855ecd3257 1698
Vkadaba 5:0728bde67bdb 1699 static ADMW_RESULT admw_SetDigitalChannelComms(
Vkadaba 5:0728bde67bdb 1700 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1701 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1702 ADMW1001_DIGITAL_SENSOR_COMMS *pDigitalComms)
ADIJake 0:85855ecd3257 1703 {
Vkadaba 8:2f2775c34640 1704 ADMW_CORE_Digital_Sensor_Comms_t digitalSensorComms;
ADIJake 0:85855ecd3257 1705
ADIJake 0:85855ecd3257 1706 digitalSensorComms.VALUE16 = REG_RESET_VAL(CORE_DIGITAL_SENSOR_COMMSn);
ADIJake 0:85855ecd3257 1707
Vkadaba 23:bb685f35b08b 1708 if(pDigitalComms->useCustomCommsConfig) {
ADIJake 0:85855ecd3257 1709
Vkadaba 23:bb685f35b08b 1710 if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_100K) {
Vkadaba 5:0728bde67bdb 1711 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_100K;
Vkadaba 23:bb685f35b08b 1712 } else if(pDigitalComms->i2cClockSpeed == ADMW1001_DIGITAL_SENSOR_COMMS_I2C_CLOCK_SPEED_400K) {
Vkadaba 5:0728bde67bdb 1713 digitalSensorComms.I2C_Clock = CORE_DIGITAL_SENSOR_COMMS_I2C_400K;
Vkadaba 23:bb685f35b08b 1714 } else {
Vkadaba 5:0728bde67bdb 1715 ADMW_LOG_ERROR("Invalid I2C clock speed %d specified",
Vkadaba 23:bb685f35b08b 1716 pDigitalComms->i2cClockSpeed);
Vkadaba 5:0728bde67bdb 1717 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1718 }
Vkadaba 63:2655a04c00f5 1719 }
ADIJake 0:85855ecd3257 1720 WRITE_REG_U16(hDevice, digitalSensorComms.VALUE16, CORE_DIGITAL_SENSOR_COMMSn(eChannelId));
ADIJake 0:85855ecd3257 1721
Vkadaba 5:0728bde67bdb 1722 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1723 }
ADIJake 0:85855ecd3257 1724
Vkadaba 5:0728bde67bdb 1725 ADMW_RESULT admw_SetI2cChannelConfig(
Vkadaba 5:0728bde67bdb 1726 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1727 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1728 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1729 {
Vkadaba 5:0728bde67bdb 1730 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1731 ADMW1001_I2C_CHANNEL_CONFIG *pI2cChannelConfig =
ADIJake 0:85855ecd3257 1732 &pChannelConfig->i2cChannelConfig;
ADIJake 0:85855ecd3257 1733
Vkadaba 5:0728bde67bdb 1734 eRet = admw_SetChannelI2cSensorType(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1735 pI2cChannelConfig->sensor);
Vkadaba 23:bb685f35b08b 1736 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1737 ADMW_LOG_ERROR("Failed to set I2C sensor type for channel %d",
Vkadaba 23:bb685f35b08b 1738 eChannelId);
ADIJake 0:85855ecd3257 1739 return eRet;
ADIJake 0:85855ecd3257 1740 }
ADIJake 0:85855ecd3257 1741
Vkadaba 5:0728bde67bdb 1742 eRet = admw_SetChannelI2cSensorAddress(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1743 pI2cChannelConfig->deviceAddress);
Vkadaba 23:bb685f35b08b 1744 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1745 ADMW_LOG_ERROR("Failed to set I2C sensor address for channel %d",
Vkadaba 23:bb685f35b08b 1746 eChannelId);
ADIJake 0:85855ecd3257 1747 return eRet;
ADIJake 0:85855ecd3257 1748 }
ADIJake 0:85855ecd3257 1749
Vkadaba 5:0728bde67bdb 1750 eRet = admw_SetChannelDigitalSensorDetails(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1751 pChannelConfig);
Vkadaba 23:bb685f35b08b 1752 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1753 ADMW_LOG_ERROR("Failed to set I2C sensor details for channel %d",
Vkadaba 23:bb685f35b08b 1754 eChannelId);
ADIJake 0:85855ecd3257 1755 return eRet;
ADIJake 0:85855ecd3257 1756 }
ADIJake 0:85855ecd3257 1757
Vkadaba 5:0728bde67bdb 1758 eRet = admw_SetDigitalSensorFormat(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1759 &pI2cChannelConfig->dataFormat);
Vkadaba 23:bb685f35b08b 1760 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1761 ADMW_LOG_ERROR("Failed to set I2C sensor data format for channel %d",
Vkadaba 23:bb685f35b08b 1762 eChannelId);
ADIJake 0:85855ecd3257 1763 return eRet;
ADIJake 0:85855ecd3257 1764 }
ADIJake 0:85855ecd3257 1765
ADIJake 0:85855ecd3257 1766
Vkadaba 5:0728bde67bdb 1767 eRet = admw_SetDigitalChannelComms(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1768 &pI2cChannelConfig->configureComms);
Vkadaba 23:bb685f35b08b 1769 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1770 ADMW_LOG_ERROR("Failed to set I2C comms for channel %d",
Vkadaba 23:bb685f35b08b 1771 eChannelId);
ADIJake 0:85855ecd3257 1772 return eRet;
ADIJake 0:85855ecd3257 1773 }
ADIJake 0:85855ecd3257 1774
Vkadaba 5:0728bde67bdb 1775 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1776 }
ADIJake 0:85855ecd3257 1777
Vkadaba 5:0728bde67bdb 1778 static ADMW_RESULT admw_SetChannelSpiSensorType(
Vkadaba 5:0728bde67bdb 1779 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1780 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1781 ADMW1001_SPI_SENSOR_TYPE sensorType)
ADIJake 0:85855ecd3257 1782 {
Vkadaba 8:2f2775c34640 1783 ADMW_CORE_Sensor_Type_t sensorTypeReg;
ADIJake 0:85855ecd3257 1784
ADIJake 0:85855ecd3257 1785 sensorTypeReg.VALUE16 = REG_RESET_VAL(CORE_SENSOR_TYPEn);
ADIJake 0:85855ecd3257 1786
ADIJake 0:85855ecd3257 1787 /* Ensure that the sensor type is valid for this channel */
Vkadaba 23:bb685f35b08b 1788 switch(sensorType) {
Vkadaba 58:aa9cd5072f66 1789 case ADMW1001_SPI_SENSOR:
Vkadaba 23:bb685f35b08b 1790
Vkadaba 23:bb685f35b08b 1791 sensorTypeReg.Sensor_Type = sensorType;
Vkadaba 23:bb685f35b08b 1792 break;
Vkadaba 23:bb685f35b08b 1793 default:
Vkadaba 23:bb685f35b08b 1794 ADMW_LOG_ERROR("Unsupported SPI sensor type %d specified", sensorType);
Vkadaba 23:bb685f35b08b 1795 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1796 }
ADIJake 0:85855ecd3257 1797
ADIJake 0:85855ecd3257 1798 WRITE_REG_U16(hDevice, sensorTypeReg.VALUE16, CORE_SENSOR_TYPEn(eChannelId));
ADIJake 0:85855ecd3257 1799
Vkadaba 5:0728bde67bdb 1800 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1801 }
ADIJake 0:85855ecd3257 1802
ADIJake 0:85855ecd3257 1803
Vkadaba 5:0728bde67bdb 1804 ADMW_RESULT admw1001_SetChannelThresholdLimits(
Vkadaba 5:0728bde67bdb 1805 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1806 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1807 float32_t fHighThresholdLimit,
ADIJake 0:85855ecd3257 1808 float32_t fLowThresholdLimit)
ADIJake 0:85855ecd3257 1809 {
ADIJake 0:85855ecd3257 1810 /*
ADIJake 0:85855ecd3257 1811 * If the low/high limits are *both* set to 0 in memory, or NaNs, assume
ADIJake 0:85855ecd3257 1812 * that they are unset, or not required, and use infinity defaults instead
ADIJake 0:85855ecd3257 1813 */
Vkadaba 23:bb685f35b08b 1814 if (fHighThresholdLimit == 0.0f && fLowThresholdLimit == 0.0f) {
ADIJake 0:85855ecd3257 1815 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 1816 fLowThresholdLimit = -INFINITY;
Vkadaba 23:bb685f35b08b 1817 } else {
ADIJake 0:85855ecd3257 1818 if (isnan(fHighThresholdLimit))
ADIJake 0:85855ecd3257 1819 fHighThresholdLimit = INFINITY;
ADIJake 0:85855ecd3257 1820 if (isnan(fLowThresholdLimit))
ADIJake 0:85855ecd3257 1821 fLowThresholdLimit = -INFINITY;
ADIJake 0:85855ecd3257 1822 }
ADIJake 0:85855ecd3257 1823
ADIJake 0:85855ecd3257 1824 WRITE_REG_FLOAT(hDevice, fHighThresholdLimit,
ADIJake 0:85855ecd3257 1825 CORE_HIGH_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 1826 WRITE_REG_FLOAT(hDevice, fLowThresholdLimit,
ADIJake 0:85855ecd3257 1827 CORE_LOW_THRESHOLD_LIMITn(eChannelId));
ADIJake 0:85855ecd3257 1828
Vkadaba 5:0728bde67bdb 1829 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1830 }
ADIJake 0:85855ecd3257 1831
Vkadaba 5:0728bde67bdb 1832 ADMW_RESULT admw1001_SetOffsetGain(
Vkadaba 5:0728bde67bdb 1833 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1834 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1835 float32_t fOffsetAdjustment,
ADIJake 0:85855ecd3257 1836 float32_t fGainAdjustment)
ADIJake 0:85855ecd3257 1837 {
ADIJake 0:85855ecd3257 1838 /* Replace with default values if NaNs are specified (or 0.0 for gain) */
ADIJake 0:85855ecd3257 1839 if (isnan(fGainAdjustment) || (fGainAdjustment == 0.0f))
ADIJake 0:85855ecd3257 1840 fGainAdjustment = 1.0f;
ADIJake 0:85855ecd3257 1841 if (isnan(fOffsetAdjustment))
ADIJake 0:85855ecd3257 1842 fOffsetAdjustment = 0.0f;
ADIJake 0:85855ecd3257 1843
ADIJake 0:85855ecd3257 1844 WRITE_REG_FLOAT(hDevice, fGainAdjustment, CORE_SENSOR_GAINn(eChannelId));
ADIJake 0:85855ecd3257 1845 WRITE_REG_FLOAT(hDevice, fOffsetAdjustment, CORE_SENSOR_OFFSETn(eChannelId));
ADIJake 0:85855ecd3257 1846
Vkadaba 5:0728bde67bdb 1847 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1848 }
ADIJake 0:85855ecd3257 1849
Vkadaba 5:0728bde67bdb 1850 ADMW_RESULT admw1001_SetSensorParameter(
Vkadaba 5:0728bde67bdb 1851 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1852 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1853 float32_t fSensorParam)
ADIJake 0:85855ecd3257 1854 {
ADIJake 0:85855ecd3257 1855 if (fSensorParam == 0.0f)
ADIJake 0:85855ecd3257 1856 fSensorParam = NAN;
ADIJake 0:85855ecd3257 1857
Vkadaba 32:52445bef314d 1858 //WRITE_REG_FLOAT(hDevice, fSensorParam, CORE_SENSOR_PARAMETERn(eChannelId));
ADIJake 0:85855ecd3257 1859
Vkadaba 5:0728bde67bdb 1860 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1861 }
ADIJake 0:85855ecd3257 1862
Vkadaba 5:0728bde67bdb 1863 ADMW_RESULT admw1001_SetChannelSettlingTime(
Vkadaba 5:0728bde67bdb 1864 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1865 ADMW1001_CH_ID eChannelId,
ADIJake 0:85855ecd3257 1866 uint32_t nSettlingTime)
ADIJake 0:85855ecd3257 1867 {
Vkadaba 8:2f2775c34640 1868 ADMW_CORE_Settling_Time_t settlingTimeReg;
ADIJake 0:85855ecd3257 1869
ADIJake 0:85855ecd3257 1870 CHECK_REG_FIELD_VAL(CORE_SETTLING_TIME_SETTLING_TIME, nSettlingTime);
ADIJake 0:85855ecd3257 1871 settlingTimeReg.Settling_Time = nSettlingTime;
ADIJake 0:85855ecd3257 1872
ADIJake 0:85855ecd3257 1873 WRITE_REG_U16(hDevice, settlingTimeReg.VALUE16, CORE_SETTLING_TIMEn(eChannelId));
ADIJake 0:85855ecd3257 1874
Vkadaba 5:0728bde67bdb 1875 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1876 }
ADIJake 0:85855ecd3257 1877
Vkadaba 5:0728bde67bdb 1878 ADMW_RESULT admw1001_SetChannelConfig(
Vkadaba 5:0728bde67bdb 1879 ADMW_DEVICE_HANDLE hDevice,
Vkadaba 8:2f2775c34640 1880 ADMW1001_CH_ID eChannelId,
Vkadaba 5:0728bde67bdb 1881 ADMW1001_CHANNEL_CONFIG *pChannelConfig)
ADIJake 0:85855ecd3257 1882 {
Vkadaba 5:0728bde67bdb 1883 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1884
Vkadaba 5:0728bde67bdb 1885 eRet = admw1001_SetChannelCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1886 pChannelConfig->enableChannel ?
Vkadaba 23:bb685f35b08b 1887 pChannelConfig->measurementsPerCycle : 0);
Vkadaba 23:bb685f35b08b 1888 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1889 ADMW_LOG_ERROR("Failed to set measurement count for channel %d",
Vkadaba 23:bb685f35b08b 1890 eChannelId);
ADIJake 0:85855ecd3257 1891 return eRet;
ADIJake 0:85855ecd3257 1892 }
ADIJake 0:85855ecd3257 1893
Vkadaba 5:0728bde67bdb 1894 eRet = admw1001_SetChannelOptions(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1895 pChannelConfig->priority);
Vkadaba 23:bb685f35b08b 1896 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1897 ADMW_LOG_ERROR("Failed to set priority for channel %d",
Vkadaba 23:bb685f35b08b 1898 eChannelId);
ADIJake 0:85855ecd3257 1899 return eRet;
ADIJake 0:85855ecd3257 1900 }
ADIJake 0:85855ecd3257 1901
ADIJake 0:85855ecd3257 1902 /* If the channel is not enabled, we can skip the following steps */
Vkadaba 23:bb685f35b08b 1903 if (pChannelConfig->enableChannel) {
Vkadaba 5:0728bde67bdb 1904 eRet = admw1001_SetChannelSkipCount(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1905 pChannelConfig->cycleSkipCount);
Vkadaba 23:bb685f35b08b 1906 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1907 ADMW_LOG_ERROR("Failed to set cycle skip count for channel %d",
Vkadaba 23:bb685f35b08b 1908 eChannelId);
ADIJake 0:85855ecd3257 1909 return eRet;
ADIJake 0:85855ecd3257 1910 }
ADIJake 0:85855ecd3257 1911
Vkadaba 23:bb685f35b08b 1912 switch (eChannelId) {
Vkadaba 23:bb685f35b08b 1913 case ADMW1001_CH_ID_ANLG_1_UNIVERSAL:
Vkadaba 23:bb685f35b08b 1914 case ADMW1001_CH_ID_ANLG_2_UNIVERSAL:
Vkadaba 23:bb685f35b08b 1915 case ADMW1001_CH_ID_ANLG_1_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 1916 case ADMW1001_CH_ID_ANLG_2_DIFFERENTIAL:
Vkadaba 23:bb685f35b08b 1917 eRet = admw_SetAdcChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 1918 break;
Vkadaba 23:bb685f35b08b 1919 case ADMW1001_CH_ID_DIG_I2C_0:
Vkadaba 23:bb685f35b08b 1920 case ADMW1001_CH_ID_DIG_I2C_1:
Vkadaba 23:bb685f35b08b 1921 eRet = admw_SetI2cChannelConfig(hDevice, eChannelId, pChannelConfig);
Vkadaba 23:bb685f35b08b 1922 break;
Vkadaba 23:bb685f35b08b 1923 default:
Vkadaba 23:bb685f35b08b 1924 ADMW_LOG_ERROR("Invalid channel ID %d specified", eChannelId);
Vkadaba 32:52445bef314d 1925 eRet = ADMW_INVALID_PARAM;
Vkadaba 32:52445bef314d 1926 #if 0
Vkadaba 32:52445bef314d 1927 /* when using i2c sensors there is an error ( dataformat->length=0)
Vkadaba 32:52445bef314d 1928 the code below catches this error and this causes further problems.*/
Vkadaba 32:52445bef314d 1929 break;
Vkadaba 32:52445bef314d 1930 }
Vkadaba 32:52445bef314d 1931 if (eRet != ADMW_SUCCESS) {
Vkadaba 32:52445bef314d 1932 ADMW_LOG_ERROR("Failed to set config for channel %d",
Vkadaba 32:52445bef314d 1933 eChannelId);
Vkadaba 32:52445bef314d 1934 return eRet;
Vkadaba 32:52445bef314d 1935 #endif
ADIJake 0:85855ecd3257 1936 }
ADIJake 0:85855ecd3257 1937
Vkadaba 5:0728bde67bdb 1938 eRet = admw1001_SetChannelSettlingTime(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1939 pChannelConfig->extraSettlingTime);
Vkadaba 23:bb685f35b08b 1940 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1941 ADMW_LOG_ERROR("Failed to set settling time for channel %d",
Vkadaba 23:bb685f35b08b 1942 eChannelId);
ADIJake 0:85855ecd3257 1943 return eRet;
ADIJake 0:85855ecd3257 1944 }
ADIJake 0:85855ecd3257 1945 }
ADIJake 0:85855ecd3257 1946
Vkadaba 23:bb685f35b08b 1947 if (pChannelConfig->enableChannel) {
ADIJake 0:85855ecd3257 1948 /* Threshold limits can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 1949 eRet = admw1001_SetChannelThresholdLimits(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1950 pChannelConfig->highThreshold,
Vkadaba 23:bb685f35b08b 1951 pChannelConfig->lowThreshold);
Vkadaba 23:bb685f35b08b 1952 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1953 ADMW_LOG_ERROR("Failed to set threshold limits for channel %d",
Vkadaba 23:bb685f35b08b 1954 eChannelId);
ADIJake 0:85855ecd3257 1955 return eRet;
ADIJake 0:85855ecd3257 1956 }
ADIJake 0:85855ecd3257 1957
ADIJake 0:85855ecd3257 1958 /* Offset and gain can be configured individually for virtual channels */
Vkadaba 5:0728bde67bdb 1959 eRet = admw1001_SetOffsetGain(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1960 pChannelConfig->offsetAdjustment,
Vkadaba 23:bb685f35b08b 1961 pChannelConfig->gainAdjustment);
Vkadaba 23:bb685f35b08b 1962 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1963 ADMW_LOG_ERROR("Failed to set offset/gain for channel %d",
Vkadaba 23:bb685f35b08b 1964 eChannelId);
ADIJake 0:85855ecd3257 1965 return eRet;
ADIJake 0:85855ecd3257 1966 }
ADIJake 0:85855ecd3257 1967
ADIJake 0:85855ecd3257 1968 /* Set sensor specific parameter */
Vkadaba 5:0728bde67bdb 1969 eRet = admw1001_SetSensorParameter(hDevice, eChannelId,
Vkadaba 23:bb685f35b08b 1970 pChannelConfig->sensorParameter);
Vkadaba 23:bb685f35b08b 1971 if (eRet != ADMW_SUCCESS) {
Vkadaba 5:0728bde67bdb 1972 ADMW_LOG_ERROR("Failed to set sensor parameter for channel %d",
Vkadaba 23:bb685f35b08b 1973 eChannelId);
ADIJake 0:85855ecd3257 1974 return eRet;
ADIJake 0:85855ecd3257 1975 }
ADIJake 0:85855ecd3257 1976 }
ADIJake 0:85855ecd3257 1977
Vkadaba 5:0728bde67bdb 1978 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 1979 }
ADIJake 0:85855ecd3257 1980
Vkadaba 5:0728bde67bdb 1981 ADMW_RESULT admw_SetConfig(
Vkadaba 5:0728bde67bdb 1982 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 1983 ADMW_CONFIG * const pConfig)
ADIJake 0:85855ecd3257 1984 {
Vkadaba 5:0728bde67bdb 1985 ADMW1001_CONFIG *pDeviceConfig;
Vkadaba 5:0728bde67bdb 1986 ADMW_PRODUCT_ID productId;
Vkadaba 5:0728bde67bdb 1987 ADMW_RESULT eRet;
Vkadaba 5:0728bde67bdb 1988
Vkadaba 23:bb685f35b08b 1989 if (pConfig->productId != ADMW_PRODUCT_ID_ADMW1001) {
Vkadaba 5:0728bde67bdb 1990 ADMW_LOG_ERROR("Configuration Product ID (0x%X) is not supported (0x%0X)",
Vkadaba 23:bb685f35b08b 1991 pConfig->productId, ADMW_PRODUCT_ID_ADMW1001);
Vkadaba 5:0728bde67bdb 1992 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 1993 }
Vkadaba 23:bb685f35b08b 1994
Vkadaba 23:bb685f35b08b 1995 if (!((pConfig->versionId.major==VERSIONID_MAJOR) &&
Vkadaba 23:bb685f35b08b 1996 (pConfig->versionId.minor==VERSIONID_MINOR))) {
Vkadaba 23:bb685f35b08b 1997 ADMW_LOG_ERROR("Configuration Version ID (0x%X) is not supported",
Vkadaba 23:bb685f35b08b 1998 pConfig->versionId);
Vkadaba 6:9d393a9677f4 1999 return ADMW_INVALID_PARAM;
Vkadaba 6:9d393a9677f4 2000 }
Vkadaba 23:bb685f35b08b 2001
Vkadaba 23:bb685f35b08b 2002
ADIJake 0:85855ecd3257 2003 /* Check that the actual Product ID is a match? */
Vkadaba 5:0728bde67bdb 2004 eRet = admw_GetProductID(hDevice, &productId);
Vkadaba 23:bb685f35b08b 2005 if (eRet) {
Vkadaba 5:0728bde67bdb 2006 ADMW_LOG_ERROR("Failed to read device Product ID register");
ADIJake 0:85855ecd3257 2007 return eRet;
ADIJake 0:85855ecd3257 2008 }
Vkadaba 23:bb685f35b08b 2009 if (pConfig->productId != productId) {
Vkadaba 5:0728bde67bdb 2010 ADMW_LOG_ERROR("Configuration Product ID (0x%X) does not match device (0x%0X)",
Vkadaba 8:2f2775c34640 2011 pConfig->productId, productId);
Vkadaba 5:0728bde67bdb 2012 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2013 }
ADIJake 0:85855ecd3257 2014
Vkadaba 5:0728bde67bdb 2015 pDeviceConfig = &pConfig->admw1001;
Vkadaba 5:0728bde67bdb 2016
Vkadaba 5:0728bde67bdb 2017 eRet = admw1001_SetPowerConfig(hDevice, &pDeviceConfig->power);
Vkadaba 23:bb685f35b08b 2018 if (eRet) {
Vkadaba 5:0728bde67bdb 2019 ADMW_LOG_ERROR("Failed to set power configuration");
ADIJake 0:85855ecd3257 2020 return eRet;
ADIJake 0:85855ecd3257 2021 }
ADIJake 0:85855ecd3257 2022
Vkadaba 5:0728bde67bdb 2023 eRet = admw1001_SetMeasurementConfig(hDevice, &pDeviceConfig->measurement);
Vkadaba 23:bb685f35b08b 2024 if (eRet) {
Vkadaba 5:0728bde67bdb 2025 ADMW_LOG_ERROR("Failed to set measurement configuration");
ADIJake 0:85855ecd3257 2026 return eRet;
ADIJake 0:85855ecd3257 2027 }
ADIJake 0:85855ecd3257 2028
Vkadaba 36:54e2418e7620 2029 eRet = admw1001_SetDiagnosticsConfig(hDevice, &pDeviceConfig->diagnostics);
Vkadaba 41:df78b7d7b675 2030 if (eRet) {
Vkadaba 36:54e2418e7620 2031 ADMW_LOG_ERROR("Failed to set diagnostics configuration");
Vkadaba 36:54e2418e7620 2032 return eRet;
Vkadaba 36:54e2418e7620 2033 }
ADIJake 0:85855ecd3257 2034
Vkadaba 8:2f2775c34640 2035 for (ADMW1001_CH_ID id = ADMW1001_CH_ID_ANLG_1_UNIVERSAL;
Vkadaba 23:bb685f35b08b 2036 id < ADMW1001_MAX_CHANNELS;
Vkadaba 23:bb685f35b08b 2037 id++) {
Vkadaba 5:0728bde67bdb 2038 eRet = admw1001_SetChannelConfig(hDevice, id,
Vkadaba 23:bb685f35b08b 2039 &pDeviceConfig->channels[id]);
Vkadaba 23:bb685f35b08b 2040 if (eRet) {
Vkadaba 5:0728bde67bdb 2041 ADMW_LOG_ERROR("Failed to set channel %d configuration", id);
ADIJake 0:85855ecd3257 2042 return eRet;
ADIJake 0:85855ecd3257 2043 }
ADIJake 0:85855ecd3257 2044 }
ADIJake 0:85855ecd3257 2045
Vkadaba 5:0728bde67bdb 2046 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2047 }
ADIJake 0:85855ecd3257 2048
Vkadaba 50:d84305e5e1c0 2049
Vkadaba 5:0728bde67bdb 2050 ADMW_RESULT admw1001_SetLutDataRaw(
Vkadaba 5:0728bde67bdb 2051 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 5:0728bde67bdb 2052 ADMW1001_LUT_RAW * const pLutData)
ADIJake 0:85855ecd3257 2053 {
Vkadaba 5:0728bde67bdb 2054 return admw1001_SetLutData(hDevice,
Vkadaba 23:bb685f35b08b 2055 (ADMW1001_LUT *)pLutData);
ADIJake 0:85855ecd3257 2056 }
ADIJake 0:85855ecd3257 2057
Vkadaba 5:0728bde67bdb 2058 static ADMW_RESULT getLutTableSize(
Vkadaba 5:0728bde67bdb 2059 ADMW1001_LUT_DESCRIPTOR * const pDesc,
Vkadaba 5:0728bde67bdb 2060 ADMW1001_LUT_TABLE_DATA * const pData,
ADIJake 0:85855ecd3257 2061 unsigned *pLength)
ADIJake 0:85855ecd3257 2062 {
Vkadaba 23:bb685f35b08b 2063 switch (pDesc->geometry) {
Vkadaba 23:bb685f35b08b 2064 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 23:bb685f35b08b 2065 *pLength = ADMW1001_LUT_1D_NES_SIZE(pData->lut1dNes);
Vkadaba 23:bb685f35b08b 2066 break;
Vkadaba 23:bb685f35b08b 2067 default:
Vkadaba 23:bb685f35b08b 2068 ADMW_LOG_ERROR("Invalid LUT table geometry %d specified\r\n",
Vkadaba 23:bb685f35b08b 2069 pDesc->geometry);
Vkadaba 23:bb685f35b08b 2070 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2071 }
ADIJake 0:85855ecd3257 2072
Vkadaba 5:0728bde67bdb 2073 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2074 }
ADIJake 0:85855ecd3257 2075
Vkadaba 5:0728bde67bdb 2076 ADMW_RESULT admw1001_AssembleLutData(
Vkadaba 5:0728bde67bdb 2077 ADMW1001_LUT * pLutBuffer,
ADIJake 0:85855ecd3257 2078 unsigned nLutBufferSize,
ADIJake 0:85855ecd3257 2079 unsigned const nNumTables,
Vkadaba 5:0728bde67bdb 2080 ADMW1001_LUT_DESCRIPTOR * const ppDesc[],
Vkadaba 5:0728bde67bdb 2081 ADMW1001_LUT_TABLE_DATA * const ppData[])
ADIJake 0:85855ecd3257 2082 {
Vkadaba 5:0728bde67bdb 2083 ADMW1001_LUT_HEADER *pHdr = &pLutBuffer->header;
ADIJake 0:85855ecd3257 2084 uint8_t *pLutTableData = (uint8_t *)pLutBuffer + sizeof(*pHdr);
ADIJake 0:85855ecd3257 2085
Vkadaba 61:0f16a2e3b58b 2086 if (sizeof(*pHdr) > nLutBufferSize)
Vkadaba 61:0f16a2e3b58b 2087 {
Vkadaba 5:0728bde67bdb 2088 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2089 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2090 }
ADIJake 0:85855ecd3257 2091
ADIJake 0:85855ecd3257 2092 /* First initialise the top-level header */
Vkadaba 5:0728bde67bdb 2093 pHdr->signature = ADMW_LUT_SIGNATURE;
ADIJake 0:85855ecd3257 2094 pHdr->version.major = 1;
ADIJake 0:85855ecd3257 2095 pHdr->version.minor = 0;
ADIJake 0:85855ecd3257 2096 pHdr->numTables = 0;
ADIJake 0:85855ecd3257 2097 pHdr->totalLength = 0;
ADIJake 0:85855ecd3257 2098
ADIJake 0:85855ecd3257 2099 /*
ADIJake 0:85855ecd3257 2100 * Walk through the list of table pointers provided, appending the table
ADIJake 0:85855ecd3257 2101 * descriptor+data from each one to the provided LUT buffer
ADIJake 0:85855ecd3257 2102 */
Vkadaba 61:0f16a2e3b58b 2103 for (unsigned i = 0; i < nNumTables; i++)
Vkadaba 61:0f16a2e3b58b 2104 {
Vkadaba 5:0728bde67bdb 2105 ADMW1001_LUT_DESCRIPTOR * const pDesc = ppDesc[i];
Vkadaba 5:0728bde67bdb 2106 ADMW1001_LUT_TABLE_DATA * const pData = ppData[i];
Vkadaba 5:0728bde67bdb 2107 ADMW_RESULT res;
ADIJake 0:85855ecd3257 2108 unsigned dataLength = 0;
ADIJake 0:85855ecd3257 2109
ADIJake 0:85855ecd3257 2110 /* Calculate the length of the table data */
ADIJake 0:85855ecd3257 2111 res = getLutTableSize(pDesc, pData, &dataLength);
Vkadaba 5:0728bde67bdb 2112 if (res != ADMW_SUCCESS)
ADIJake 0:85855ecd3257 2113 return res;
ADIJake 0:85855ecd3257 2114
ADIJake 0:85855ecd3257 2115 /* Fill in the table descriptor length and CRC fields */
ADIJake 0:85855ecd3257 2116 pDesc->length = dataLength;
ADIJake 0:85855ecd3257 2117
Vkadaba 61:0f16a2e3b58b 2118 if ((sizeof(*pHdr) + pHdr->totalLength + sizeof(*pDesc) + dataLength) > nLutBufferSize)
Vkadaba 61:0f16a2e3b58b 2119 {
Vkadaba 5:0728bde67bdb 2120 ADMW_LOG_ERROR("Insufficient LUT buffer size provided");
Vkadaba 5:0728bde67bdb 2121 return ADMW_INVALID_PARAM;
ADIJake 0:85855ecd3257 2122 }
ADIJake 0:85855ecd3257 2123
ADIJake 0:85855ecd3257 2124 /* Append the table to the LUT buffer (desc + data) */
ADIJake 0:85855ecd3257 2125 memcpy(pLutTableData + pHdr->totalLength, pDesc, sizeof(*pDesc));
ADIJake 0:85855ecd3257 2126 pHdr->totalLength += sizeof(*pDesc);
ADIJake 0:85855ecd3257 2127 memcpy(pLutTableData + pHdr->totalLength, pData, dataLength);
ADIJake 0:85855ecd3257 2128 pHdr->totalLength += dataLength;
ADIJake 0:85855ecd3257 2129
ADIJake 0:85855ecd3257 2130 pHdr->numTables++;
ADIJake 0:85855ecd3257 2131 }
ADIJake 0:85855ecd3257 2132
Vkadaba 5:0728bde67bdb 2133 return ADMW_SUCCESS;
ADIJake 0:85855ecd3257 2134 }
Vkadaba 54:31921ad29828 2135 ADMW_RESULT admw1001_SetLutData(
Vkadaba 54:31921ad29828 2136 ADMW_DEVICE_HANDLE const hDevice,
Vkadaba 54:31921ad29828 2137 ADMW1001_LUT * const pLutData)
Vkadaba 54:31921ad29828 2138 {
Vkadaba 61:0f16a2e3b58b 2139 #pragma diag_suppress=Pa039
Vkadaba 54:31921ad29828 2140 ADMW1001_LUT_HEADER *pLutHeader = &pLutData->header;
Vkadaba 54:31921ad29828 2141 ADMW1001_LUT_TABLE *pLutTable = pLutData->tables;
Vkadaba 54:31921ad29828 2142
Vkadaba 54:31921ad29828 2143 unsigned actualLength = 0;
Vkadaba 54:31921ad29828 2144
Vkadaba 61:0f16a2e3b58b 2145 if (pLutData->header.signature != ADMW_LUT_SIGNATURE)
Vkadaba 61:0f16a2e3b58b 2146 {
Vkadaba 54:31921ad29828 2147 ADMW_LOG_ERROR("LUT signature incorrect (expected 0x%X, actual 0x%X)",
Vkadaba 61:0f16a2e3b58b 2148 ADMW_LUT_SIGNATURE, pLutHeader->signature);
Vkadaba 54:31921ad29828 2149 return ADMW_INVALID_SIGNATURE;
Vkadaba 54:31921ad29828 2150 }
Vkadaba 54:31921ad29828 2151 if ((pLutData->tables->descriptor.geometry!= ADMW1001_LUT_GEOMETRY_NES_1D) &&
Vkadaba 61:0f16a2e3b58b 2152 (pLutData->tables->data.lut1dNes.nElements > MAX_LUT_NUM_ENTRIES))
Vkadaba 61:0f16a2e3b58b 2153 {
Vkadaba 54:31921ad29828 2154 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2155 }
Vkadaba 61:0f16a2e3b58b 2156 for (unsigned i = 0; i < pLutHeader->numTables; i++)
Vkadaba 61:0f16a2e3b58b 2157 {
Vkadaba 54:31921ad29828 2158 ADMW1001_LUT_DESCRIPTOR *pDesc = &pLutTable->descriptor;
Vkadaba 54:31921ad29828 2159
Vkadaba 61:0f16a2e3b58b 2160 switch (pDesc->geometry)
Vkadaba 61:0f16a2e3b58b 2161 {
Vkadaba 61:0f16a2e3b58b 2162 case ADMW1001_LUT_GEOMETRY_COEFFS:
Vkadaba 61:0f16a2e3b58b 2163 switch (pDesc->equation)
Vkadaba 61:0f16a2e3b58b 2164 {
Vkadaba 61:0f16a2e3b58b 2165 case ADMW1001_LUT_EQUATION_POLYN:
Vkadaba 61:0f16a2e3b58b 2166 case ADMW1001_LUT_EQUATION_POLYNEXP:
Vkadaba 61:0f16a2e3b58b 2167 case ADMW1001_LUT_EQUATION_QUADRATIC:
Vkadaba 61:0f16a2e3b58b 2168 case ADMW1001_LUT_EQUATION_STEINHART:
Vkadaba 61:0f16a2e3b58b 2169 case ADMW1001_LUT_EQUATION_LOGARITHMIC:
Vkadaba 61:0f16a2e3b58b 2170 case ADMW1001_LUT_EQUATION_BIVARIATE_POLYN:
Vkadaba 61:0f16a2e3b58b 2171 break;
Vkadaba 61:0f16a2e3b58b 2172 default:
Vkadaba 61:0f16a2e3b58b 2173 ADMW_LOG_ERROR("Invalid equation %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2174 pDesc->equation, i);
Vkadaba 61:0f16a2e3b58b 2175 return ADMW_INVALID_PARAM;
Vkadaba 55:215da406282b 2176 }
Vkadaba 61:0f16a2e3b58b 2177 break;
Vkadaba 61:0f16a2e3b58b 2178 case ADMW1001_LUT_GEOMETRY_NES_1D:
Vkadaba 61:0f16a2e3b58b 2179 break;
Vkadaba 61:0f16a2e3b58b 2180 default:
Vkadaba 61:0f16a2e3b58b 2181 ADMW_LOG_ERROR("Invalid geometry %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2182 pDesc->geometry, i);
Vkadaba 61:0f16a2e3b58b 2183 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2184 }
Vkadaba 54:31921ad29828 2185
Vkadaba 61:0f16a2e3b58b 2186 switch (pDesc->dataType)
Vkadaba 61:0f16a2e3b58b 2187 {
Vkadaba 61:0f16a2e3b58b 2188 case ADMW1001_LUT_DATA_TYPE_FLOAT32:
Vkadaba 61:0f16a2e3b58b 2189 case ADMW1001_LUT_DATA_TYPE_FLOAT64:
Vkadaba 61:0f16a2e3b58b 2190 break;
Vkadaba 61:0f16a2e3b58b 2191 default:
Vkadaba 61:0f16a2e3b58b 2192 ADMW_LOG_ERROR("Invalid vector format %u specified for LUT table %u",
Vkadaba 61:0f16a2e3b58b 2193 pDesc->dataType, i);
Vkadaba 61:0f16a2e3b58b 2194 return ADMW_INVALID_PARAM;
Vkadaba 54:31921ad29828 2195 }
Vkadaba 54:31921ad29828 2196
Vkadaba 54:31921ad29828 2197
Vkadaba 54:31921ad29828 2198 actualLength += sizeof(*pDesc) + pDesc->length;
Vkadaba 54:31921ad29828 2199
Vkadaba 54:31921ad29828 2200 /* Move to the next look-up table */
Vkadaba 54:31921ad29828 2201 pLutTable = (ADMW1001_LUT_TABLE *)((uint8_t *)pLutTable + sizeof(*pDesc) + pDesc->length);
Vkadaba 54:31921ad29828 2202 }
Vkadaba 54:31921ad29828 2203
Vkadaba 61:0f16a2e3b58b 2204 if (actualLength != pLutHeader->totalLength)
Vkadaba 61:0f16a2e3b58b 2205 {
Vkadaba 54:31921ad29828 2206 ADMW_LOG_ERROR("LUT table length mismatch (expected %u, actual %u)",
Vkadaba 61:0f16a2e3b58b 2207 pLutHeader->totalLength, actualLength);
Vkadaba 54:31921ad29828 2208 return ADMW_WRONG_SIZE;
Vkadaba 54:31921ad29828 2209 }
Vkadaba 54:31921ad29828 2210
Vkadaba 61:0f16a2e3b58b 2211 if (sizeof(*pLutHeader) + pLutHeader->totalLength > ADMW_LUT_MAX_SIZE)
Vkadaba 61:0f16a2e3b58b 2212 {
Vkadaba 54:31921ad29828 2213 ADMW_LOG_ERROR("Maximum LUT table length (%u bytes) exceeded",
Vkadaba 61:0f16a2e3b58b 2214 ADMW_LUT_MAX_SIZE);
Vkadaba 54:31921ad29828 2215 return ADMW_WRONG_SIZE;
Vkadaba 54:31921ad29828 2216 }
Vkadaba 54:31921ad29828 2217
Vkadaba 54:31921ad29828 2218 /* Write the LUT data to the device */
Vkadaba 54:31921ad29828 2219 unsigned lutSize = sizeof(*pLutHeader) + pLutHeader->totalLength;
Vkadaba 54:31921ad29828 2220 WRITE_REG_U16(hDevice, 0, CORE_LUT_OFFSET);
Vkadaba 54:31921ad29828 2221 WRITE_REG_U8_ARRAY(hDevice, (uint8_t *)pLutData, lutSize, CORE_LUT_DATA);
Vkadaba 54:31921ad29828 2222
Vkadaba 54:31921ad29828 2223 return ADMW_SUCCESS;
Vkadaba 54:31921ad29828 2224 }