mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_NXP/TARGET_LPC15XX/pwmout_api.c
- Committer:
- Anna Bridge
- Date:
- 2018-01-17
- Revision:
- 181:96ed750bd169
- Parent:
- 156:95d6b41a828b
File content as of revision 181:96ed750bd169:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "pwmout_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" static LPC_SCT0_Type *SCTs[4] = { (LPC_SCT0_Type*)LPC_SCT0, (LPC_SCT0_Type*)LPC_SCT1, (LPC_SCT0_Type*)LPC_SCT2, (LPC_SCT0_Type*)LPC_SCT3, }; // bit flags for used SCTs static unsigned char sct_used = (1 << 3); static int get_available_sct(void) { int i; for (i=0; i<4; i++) { if ((sct_used & (1 << i)) == 0) return i; } return -1; } void pwmout_init(pwmout_t* obj, PinName pin) { MBED_ASSERT(pin != (uint32_t)NC); int sct_n = get_available_sct(); if (sct_n == -1) { error("No available SCT"); } sct_used |= (1 << sct_n); obj->pwm = SCTs[sct_n]; obj->pwm_ch = sct_n; LPC_SCT0_Type* pwm = obj->pwm; // Enable the SCT clock LPC_SYSCON->SYSAHBCLKCTRL1 |= (1 << (obj->pwm_ch + 2)); // Clear peripheral reset the SCT: LPC_SYSCON->PRESETCTRL1 |= (1 << (obj->pwm_ch + 2)); LPC_SYSCON->PRESETCTRL1 &= ~(1 << (obj->pwm_ch + 2)); switch(obj->pwm_ch) { case 0: // SCT0_OUT0 LPC_SWM->PINASSIGN[7] &= ~0x0000FF00; LPC_SWM->PINASSIGN[7] |= (pin << 8); break; case 1: // SCT1_OUT0 LPC_SWM->PINASSIGN[8] &= ~0x000000FF; LPC_SWM->PINASSIGN[8] |= (pin); break; case 2: // SCT2_OUT0 LPC_SWM->PINASSIGN[8] &= ~0xFF000000; LPC_SWM->PINASSIGN[8] |= (pin << 24); break; case 3: // SCT3_OUT0 LPC_SWM->PINASSIGN[9] &= ~0x00FF0000; LPC_SWM->PINASSIGN[9] |= (pin << 16); break; default: break; } // Unified 32-bit counter, autolimit pwm->CONFIG |= ((0x3 << 17) | 0x01); // halt and clear the counter pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUT0_SET = (1 << 0); // event 0 pwm->OUT0_CLR = (1 << 1); // event 1 // Resolve conflicts on output 0 to set output // This allows duty cycle = 1.0 to work, where the MATCH registers for set and clear are equal pwm->RES = 0x01; pwm->EV0_CTRL = (1 << 12); pwm->EV0_STATE = 0xFFFFFFFF; pwm->EV1_CTRL = (1 << 12) | (1 << 0); pwm->EV1_STATE = 0xFFFFFFFF; // default to 20ms: standard for servos, and fine for e.g. brightness control pwmout_period_ms(obj, 20); pwmout_write (obj, 0); } void pwmout_free(pwmout_t* obj) { // Disable the SCT clock LPC_SYSCON->SYSAHBCLKCTRL1 &= ~(1 << (obj->pwm_ch + 2)); sct_used &= ~(1 << obj->pwm_ch); } void pwmout_write(pwmout_t* obj, float value) { LPC_SCT0_Type* pwm = obj->pwm; if (value < 0.0f) { value = 0.0; } else if (value > 1.0f) { value = 1.0; } uint32_t t_on = (uint32_t)((float)(pwm->MATCHREL0 + 1) * value); if (t_on > 0) { pwm->MATCHREL1 = t_on - 1; // Un-halt the timer and ensure the new pulse-width takes immediate effect if necessary if (pwm->CTRL & (1 << 2)) { pwm->MATCH1 = pwm->MATCHREL1; pwm->CTRL &= ~(1 << 2); } } else { // Halt the timer and force the output low pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUTPUT = 0x00000000; } } float pwmout_read(pwmout_t* obj) { LPC_SCT0_Type* pwm = obj->pwm; uint32_t t_off = pwm->MATCHREL0 + 1; uint32_t t_on = (!(pwm->CTRL & (1 << 2))) ? pwm->MATCHREL1 + 1 : 0; float v = (float)t_on/(float)t_off; return (v > 1.0f) ? (1.0f) : (v); } void pwmout_period(pwmout_t* obj, float seconds) { pwmout_period_us(obj, seconds * 1000000.0f); } void pwmout_period_ms(pwmout_t* obj, int ms) { pwmout_period_us(obj, ms * 1000); } // Set the PWM period, keeping the duty cycle the same. void pwmout_period_us(pwmout_t* obj, int us) { LPC_SCT0_Type* pwm = obj->pwm; uint32_t t_off = pwm->MATCHREL0 + 1; uint32_t t_on = (!(pwm->CTRL & (1 << 2))) ? pwm->MATCHREL1 + 1 : 0; float v = (float)t_on/(float)t_off; uint32_t period_ticks = (uint32_t)(((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000); uint32_t pulsewidth_ticks = period_ticks * v; pwm->MATCHREL0 = period_ticks - 1; if (pulsewidth_ticks > 0) { pwm->MATCHREL1 = pulsewidth_ticks - 1; // Un-halt the timer and ensure the new period & pulse-width take immediate effect if necessary if (pwm->CTRL & (1 << 2)) { pwm->MATCH0 = pwm->MATCHREL0; pwm->MATCH1 = pwm->MATCHREL1; pwm->CTRL &= ~(1 << 2); } } else { // Halt the timer and force the output low pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUTPUT = 0x00000000; // Ensure the new period will take immediate effect when the timer is un-halted pwm->MATCH0 = pwm->MATCHREL0; } } void pwmout_pulsewidth(pwmout_t* obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { pwmout_pulsewidth_us(obj, ms * 1000); } void pwmout_pulsewidth_us(pwmout_t* obj, int us) { LPC_SCT0_Type* pwm = obj->pwm; if (us > 0) { pwm->MATCHREL1 = (uint32_t)(((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000) - 1; // Un-halt the timer and ensure the new pulse-width takes immediate effect if necessary if (pwm->CTRL & (1 << 2)) { pwm->MATCH1 = pwm->MATCHREL1; pwm->CTRL &= ~(1 << 2); } } else { // Halt the timer and force the output low pwm->CTRL |= (1 << 2) | (1 << 3); pwm->OUTPUT = 0x00000000; } }