mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32620/spi_api.c
- Committer:
- Anna Bridge
- Date:
- 2018-01-17
- Revision:
- 181:96ed750bd169
- Parent:
- 170:19eb464bc2be
File content as of revision 181:96ed750bd169:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #include <string.h> #include "mbed_assert.h" #include "cmsis.h" #include "spi_api.h" #include "spi_multi_api.h" #include "pinmap.h" #include "ioman_regs.h" #include "clkman_regs.h" #include "PeripheralPins.h" #define DEFAULT_CHAR 8 #define DEFAULT_MODE 0 #define DEFAULT_FREQ 1000000 // BYTE maximums for FIFO and page writes; FIFO depth spec'd as 16-bit words #define SPI_MAX_BYTE_LEN (MXC_CFG_SPI_FIFO_DEPTH * 2) #define SPI_MAX_PAGE_LEN (MXC_CFG_SPI_FIFO_DEPTH * 2) #if DEVICE_SPI_ASYNCH // Instance references for async transactions static struct spi_s *state[MXC_CFG_SPI_INSTANCES] = {NULL}; #endif //****************************************************************************** void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // Make sure pins are pointing to the same SPI instance SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl; // Give the application the option to manually control Slave Select if ((SPIName)spi_ssel != (SPIName)NC) { spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); // Slave select is currently limited to slave select zero. If others are // to be supported a function to map PinName to a value suitable for use // in mstr_cfg.slave_sel will be required. obj->spi.ssel = 0; } else { spi_cntl = spi_sclk; obj->spi.ssel = -1; } SPIName spi = (SPIName)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((SPIName)spi != (SPIName)NC); // Set the obj pointer to the proper SPI Instance obj->spi.spi = (mxc_spi_regs_t*)spi; // Set the SPI index and FIFOs obj->spi.index = MXC_SPI_GET_IDX(obj->spi.spi); obj->spi.fifo = MXC_SPI_GET_SPI_FIFO(obj->spi.index); // Configure the pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); pinmap_pinout(ssel, PinMap_SPI_SSEL); #if DEVICE_SPI_ASYNCH // Configure default page size; size is known to async interface obj->spi.spi->mstr_cfg = (obj->spi.spi->mstr_cfg & ~MXC_F_SPI_MSTR_CFG_PAGE_SIZE) | MXC_S_SPI_MSTR_CFG_PAGE_32B; #endif // Enable SPI and FIFOs obj->spi.spi->gen_ctrl = (MXC_F_SPI_GEN_CTRL_SPI_MSTR_EN | MXC_F_SPI_GEN_CTRL_TX_FIFO_EN | MXC_F_SPI_GEN_CTRL_RX_FIFO_EN ); obj->spi.sclk = sclk; // save the sclk PinName in the object as a key for Quad SPI pin mapping lookup spi_master_width(obj, 0); // default this for Single SPI communications } //****************************************************************************** void spi_format(spi_t *obj, int bits, int mode, int slave) { // Check the validity of the inputs MBED_ASSERT(((bits >= 1) && (bits <= 32)) && ((mode >= 0) && (mode <= 3))); // Only supports master mode MBED_ASSERT(!slave); // Save formatting data obj->spi.bits = bits; // Set the mode MXC_SET_FIELD(&obj->spi.spi->mstr_cfg, MXC_F_SPI_MSTR_CFG_SPI_MODE, mode << MXC_F_SPI_MSTR_CFG_SPI_MODE_POS); } //****************************************************************************** void spi_frequency(spi_t *obj, int hz) { // Maximum frequency is half the system frequency MBED_ASSERT((unsigned int)hz <= (SystemCoreClock / 2)); unsigned clocks = ((SystemCoreClock / 2) / hz); // Figure out the divider ratio int clk_div = 1; while (clk_div < 10) { if (clocks < 0x10) { break; } clk_div++; clocks = clocks >> 1; } // Turn on the SPI clock if (obj->spi.index == 0) { MXC_CLKMAN->sys_clk_ctrl_11_spi0 = clk_div; } else if (obj->spi.index == 1) { MXC_CLKMAN->sys_clk_ctrl_12_spi1 = clk_div; } else if (obj->spi.index == 2) { MXC_CLKMAN->sys_clk_ctrl_13_spi2 = clk_div; } else { MBED_ASSERT(0); } // Set the number of clocks to hold sclk high and low MXC_SET_FIELD(&obj->spi.spi->mstr_cfg, (MXC_F_SPI_MSTR_CFG_SCK_HI_CLK | MXC_F_SPI_MSTR_CFG_SCK_LO_CLK), ((clocks << MXC_F_SPI_MSTR_CFG_SCK_HI_CLK_POS) | (clocks << MXC_F_SPI_MSTR_CFG_SCK_LO_CLK_POS))); } //****************************************************************************** void spi_master_width(spi_t *obj, SpiWidth width) { // Save the width to be used in the SPI header switch (width) { case WidthSingle: obj->spi.width = MXC_S_SPI_FIFO_WIDTH_SINGLE; break; case WidthDual: obj->spi.width = MXC_S_SPI_FIFO_WIDTH_DUAL; break; case WidthQuad: obj->spi.width = MXC_S_SPI_FIFO_WIDTH_QUAD; // do pin mapping for SDIO[2] and SDIO[3] if Quad SPI is selected pinmap_pinout(obj->spi.sclk, PinMap_SPI_QUAD); break; default: MBED_ASSERT(0); } } //****************************************************************************** /** Performs a master write or read transaction * * @param[in] obj The SPI peripheral to use for sending * @param[in] value The value to send * @param[in] direction Direction of the transaction, TX, RX or both * @return Returns the value received during send */ static int spi_master_transaction(spi_t *obj, int value, uint32_t direction) { int bits; // Create the header uint16_t header = (direction | // direction based on SPI object MXC_S_SPI_FIFO_UNIT_BITS | // unit size ((obj->spi.bits == 32) ? 0 : obj->spi.bits << MXC_F_SPI_FIFO_SIZE_POS) | // Number of units obj->spi.width | // I/O width ((obj->spi.ssel == -1) ? 0 : 1 << MXC_F_SPI_FIFO_DASS_POS)); // Send the message header *obj->spi.fifo->trans_16 = header; // Send the data if (obj->spi.bits < 17) { *obj->spi.fifo->trans_16 = (uint16_t)value; } else { *obj->spi.fifo->trans_32 = (uint32_t)value; } // Get the data bits = obj->spi.bits; int result = 0; int i = 0; while (bits > 0) { // Wait for data while (((obj->spi.spi->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED_POS) < 1); result |= (*obj->spi.fifo->rslts_8 << (i++*8)); bits-=8; } return result; } //****************************************************************************** int spi_master_write(spi_t *obj, int value) { // set the fifo direction for full duplex, TX and RX simultaneously return spi_master_transaction(obj, value, MXC_S_SPI_FIFO_DIR_BOTH); } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : write_fill; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } //****************************************************************************** int spi_master_read(spi_t *obj) { return spi_master_transaction(obj, 0xFF, MXC_S_SPI_FIFO_DIR_RX); } //****************************************************************************** // spi_busy() is part of the synchronous API, it is not used by the asynchronous API. int spi_busy(spi_t *obj) { return !(obj->spi.spi->intfl & MXC_F_SPI_INTFL_TX_READY); } #if DEVICE_SPI_ASYNCH //****************************************************************************** static uint32_t spi_master_read_rxfifo(mxc_spi_regs_t *spim, mxc_spi_fifo_regs_t *fifo, uint8_t *data, uint32_t len) { uint32_t num = 0; uint32_t avail = ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED_POS); // Get data from the RXFIFO while (avail && (len - num)) { // Save data from the RXFIFO if ((avail >= 4) && ((len - num) >= 4)) { uint32_t temp = *fifo->rslts_32; data[num++] = temp; data[num++] = temp >> 8; data[num++] = temp >> 16; data[num++] = temp >> 24; avail -= 4; } else if ((avail >= 2) && ((len - num) >= 2)) { uint16_t temp = *fifo->rslts_16; data[num++] = temp; data[num++] = temp >> 8; avail -= 2; } else { data[num++] = *fifo->rslts_8; avail--; } // Check to see if there is more data in the FIFO if (avail == 0) { avail = ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_RX_FIFO_USED_POS); } } return num; } //****************************************************************************** static uint32_t spi_master_transfer_handler(spi_t *obj) { uint8_t read; uint8_t write; uint16_t header; uint32_t pages; uint32_t bytes; uint32_t inten; unsigned remain; unsigned bytes_read; unsigned head_rem_temp; unsigned avail; struct spi_s *req = &obj->spi; mxc_spi_regs_t *spim = obj->spi.spi; mxc_spi_fifo_regs_t *fifo = obj->spi.fifo; inten = 0; // Figure out if we're reading read = (req->rx_data != NULL) ? 1 : 0; // Figure out if we're writing write = (req->tx_data != NULL) ? 1 : 0; // Read byte from the FIFO if we are reading if (read) { // Read all of the data in the RXFIFO, or until we don't need anymore bytes_read = spi_master_read_rxfifo(spim, fifo, &req->rx_data[req->read_num], (req->len - req->read_num)); req->read_num += bytes_read; // Adjust head_rem if we are only reading if (!write && (req->head_rem > 0)) { req->head_rem -= bytes_read; } // Figure out how many bytes we have left to read if (req->head_rem > 0) { remain = req->head_rem; } else { remain = req->len - req->read_num; } if (remain) { // Set the RX interrupts if (remain > MXC_CFG_SPI_FIFO_DEPTH) { spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL) | ((MXC_CFG_SPI_FIFO_DEPTH - 2) << MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL_POS)); } else { spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL) | ((remain - 1) << MXC_F_SPI_FIFO_CTRL_RX_FIFO_AF_LVL_POS)); } inten |= MXC_F_SPI_INTEN_RX_FIFO_AF; } } // Figure out how many bytes we have left to send headers for if (write) { remain = req->len - req->write_num; } else { remain = req->len - req->read_num; } // See if we need to send a new header if ((req->head_rem <= 0) && remain) { // Set the transaction configuration in the header header = ((write | (read << 1)) << MXC_F_SPI_FIFO_DIR_POS) | (req->width << MXC_F_SPI_FIFO_WIDTH_POS); if (remain >= SPI_MAX_BYTE_LEN) { // Send a 32 byte header if (remain == SPI_MAX_BYTE_LEN) { header |= (MXC_S_SPI_FIFO_UNIT_BYTES | MXC_F_SPI_FIFO_DASS); // Save the number of bytes we need to write to the FIFO bytes = SPI_MAX_BYTE_LEN; } else { // Send in increments of 32 byte pages header |= MXC_S_SPI_FIFO_UNIT_PAGES; pages = remain / SPI_MAX_PAGE_LEN; if (pages >= 32) { // 0 maps to 32 in the header bytes = 32 * SPI_MAX_PAGE_LEN; } else { header |= (pages << MXC_F_SPI_FIFO_SIZE_POS); bytes = pages * SPI_MAX_PAGE_LEN; } // Check if this is the last header we will send if ((remain - bytes) == 0) { header |= MXC_F_SPI_FIFO_DASS; } } fifo->trans_16[0] = header; // Save the number of bytes we need to write to the FIFO req->head_rem = bytes; } else { // Send final header with the number of bytes remaining and de-assert the SS at the end of the transaction header |= (MXC_S_SPI_FIFO_UNIT_BYTES | (remain << MXC_F_SPI_FIFO_SIZE_POS) | MXC_F_SPI_FIFO_DASS); fifo->trans_16[0] = header; req->head_rem = remain; } } // Put data into the FIFO if we are writing remain = req->len - req->write_num; head_rem_temp = req->head_rem; if (write && head_rem_temp) { // Fill the FIFO avail = (MXC_CFG_SPI_FIFO_DEPTH - ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED_POS)); // Use memcpy for everything except the last byte in odd length transactions while ((avail >= 2) && (head_rem_temp >= 2)) { unsigned length; if (head_rem_temp < avail) { length = head_rem_temp; } else { length = avail; } // Only memcpy even numbers length = ((length / 2) * 2); memcpy((void*)fifo->trans_32, &(req->tx_data[req->write_num]), length); head_rem_temp -= length; req->write_num += length; avail = (MXC_CFG_SPI_FIFO_DEPTH - ((spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED) >> MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED_POS)); } // Copy the last byte and pad with 0xF0 to not get confused as header if ((avail >= 1) && (head_rem_temp == 1)) { // Write the last byte fifo->trans_16[0] = (0xF000 | req->tx_data[req->write_num]); avail -= 1; req->write_num += 1; head_rem_temp -= 1; } req->head_rem = head_rem_temp; remain = req->len - req->write_num; // Set the TX interrupts if (remain) { // Set the TX FIFO almost empty interrupt if we have to refill spim->fifo_ctrl = ((spim->fifo_ctrl & ~MXC_F_SPI_FIFO_CTRL_TX_FIFO_AE_LVL) | ((MXC_CFG_SPI_FIFO_DEPTH - 2) << MXC_F_SPI_FIFO_CTRL_TX_FIFO_AE_LVL_POS)); inten |= MXC_F_SPI_INTEN_TX_FIFO_AE; } } // Check to see if we've finished reading and writing if (((read && (req->read_num == req->len)) || !read) && ((req->write_num == req->len) || !write)) { // Disable interrupts spim->inten = 0; } // Enable the SPIM interrupts return inten; } //****************************************************************************** void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) { MBED_ASSERT(tx_length == rx_length); MBED_ASSERT(bit_width == obj->spi.bits); // Save object reference for callback state[obj->spi.index] = &obj->spi; // Initialize request info obj->spi.tx_data = tx; obj->spi.rx_data = rx; obj->spi.len = tx_length; obj->spi.callback = (void(*)())handler; obj->spi.event = event; // Clear transfer state obj->spi.read_num = 0; obj->spi.write_num = 0; obj->spi.head_rem = 0; NVIC_EnableIRQ(MXC_SPI_GET_IRQ(obj->spi.index)); obj->spi.spi->inten = spi_master_transfer_handler(obj); } //****************************************************************************** uint32_t spi_irq_handler_asynch(spi_t *obj) { mxc_spi_regs_t *spim = obj->spi.spi; uint32_t flags; // Clear the interrupt flags spim->inten = 0; flags = spim->intfl; spim->intfl = flags; // Figure out if this SPIM has an active request if (flags) { if ((spim->inten = spi_master_transfer_handler(obj)) != 0) { return 0; } } state[obj->spi.index] = NULL; return SPI_EVENT_COMPLETE; } //****************************************************************************** uint8_t spi_active(spi_t *obj) { mxc_spi_regs_t *spim = obj->spi.spi; // Check to see if there are any ongoing transactions if ((state[obj->spi.index] == NULL) && !(spim->fifo_ctrl & MXC_F_SPI_FIFO_CTRL_TX_FIFO_USED)) { return 0; } return 1; } //****************************************************************************** void spi_abort_asynch(spi_t *obj) { mxc_spi_regs_t *spim = obj->spi.spi; // Disable interrupts, clear the flags spim->inten = 0; spim->intfl = spim->intfl; // Reset the SPIM to cancel the on ongoing transaction spim->gen_ctrl &= ~(MXC_F_SPI_GEN_CTRL_SPI_MSTR_EN); spim->gen_ctrl |= (MXC_F_SPI_GEN_CTRL_SPI_MSTR_EN); state[obj->spi.index] = NULL; } //****************************************************************************** static void SPI_IRQHandler(int spim_num) { if (state[spim_num] != NULL) { if (state[spim_num]->callback != NULL) { state[spim_num]->callback(); return; } } mxc_spi_regs_t *spim = MXC_SPI_GET_SPI(spim_num); spim->inten = 0; } //****************************************************************************** void SPI0_IRQHandler(void) { SPI_IRQHandler(0); } void SPI1_IRQHandler(void) { SPI_IRQHandler(1); } void SPI2_IRQHandler(void) { SPI_IRQHandler(2); } #endif