Tony Lin
/
BX-car_2
Dynamic kp!!!
Fork of BX-car by
Diff: controller.cpp
- Revision:
- 7:fd976e1ced33
- Child:
- 8:8e49e21d80a2
diff -r 5a39bde2e016 -r fd976e1ced33 controller.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/controller.cpp Sun Jun 22 13:58:01 2014 +0000 @@ -0,0 +1,297 @@ +#include "mbed.h" +#include "controller.h" + + +PID::PID(float Kc, float tauI, float tauD, float interval) { + + usingFeedForward = false; + //inAuto = false; + + //Default the limits to the full range of I/O. + //Make sure to set these to more appropriate limits for your application. + setInputLimits(10.0, 118.0); + setOutputLimits(-1.0,1.0); + + tSample_ = interval; + + setTunings(Kc, tauI, tauD); + + setPoint_ = 0.0; + processVariable_ = 0.0; + prevProcessVariable_ = 0.0; + controllerOutput_ = 0.0; + prevControllerOutput_ = 0.0; + + accError_ = 0.0; + bias_ = 0.0; + + realOutput_ = 0.0; + +} + +void PID::setInputLimits(float inMin, float inMax) { + + //Make sure we haven't been given impossible values. + if (inMin >= inMax) { + return; + } + + //Rescale the working variables to reflect the changes. + prevProcessVariable_ *= (inMax - inMin) / inSpan_; + accError_ *= (inMax - inMin) / inSpan_; + + //Make sure the working variables are within the new limits. + if (prevProcessVariable_ > 1) { + prevProcessVariable_ = 1; + } + else if (prevProcessVariable_ < 0) { + prevProcessVariable_ = 0; + } + + inMin_ = inMin; + inMax_ = inMax; + inSpan_ = inMax - inMin; + +} + +void PID::setOutputLimits(float outMin, float outMax) { + + //Make sure we haven't been given impossible values. + if (outMin >= outMax) { + return; + } + + //Rescale the working variables to reflect the changes. + prevControllerOutput_ *= (outMax - outMin) / outSpan_; + + //Make sure the working variables are within the new limits. + if (prevControllerOutput_ > 1) { + prevControllerOutput_ = 1; + } + else if (prevControllerOutput_ < 0) { + prevControllerOutput_ = 0; + } + + outMin_ = outMin; + outMax_ = outMax; + outSpan_ = outMax - outMin; + +} + + + +//-------------------------------------------------- + + + +void PID::setTunings(float Kc, float tauI, float tauD) { + + //Verify that the tunings make sense. + if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) { + return; + } + + //Store raw values to hand back to user on request. + pParam_ = Kc; + iParam_ = tauI; + dParam_ = tauD; + + float tempTauR; + + if (tauI == 0.0) { + tempTauR = 0.0; + } + else { + tempTauR = (1.0 / tauI) * tSample_; + } + + //For "bumpless transfer" we need to rescale the accumulated error. + //if (inAuto) { + //if (tempTauR == 0.0) { + //accError_ = 0.0; + //} + //else { + accError_ *= (Kc_ * tauR_) / (Kc * tempTauR); + //} + //} + + Kc_ = Kc; + tauR_ = tempTauR; + tauD_ = tauD / tSample_; + +} + +void PID::reset(void) { + + float scaledBias = 0.0; + + if (usingFeedForward) { + scaledBias = (bias_ - outMin_) / outSpan_; + } + else { + scaledBias = (realOutput_ - outMin_) / outSpan_; + } + + prevControllerOutput_ = scaledBias; + prevProcessVariable_ = (processVariable_ - inMin_) / inSpan_; + + //Clear any error in the integral. + accError_ = 0; + +} +/* +void PID::setMode(int mode) { + + //We were in manual, and we just got set to auto. + //Reset the controller internals. + if (mode != 0 && !inAuto) { + reset(); + } + + inAuto = (mode != 0); + +}*/ + +void PID::setInterval(float interval) { + + if (interval > 0) { + //Convert the time-based tunings to reflect this change. + tauR_ *= (interval / tSample_); + accError_ *= (tSample_ / interval); + tauD_ *= (interval / tSample_); + tSample_ = interval; + } + +} +/* +void PID::setSetPoint(float sp) { + + setPoint_ = sp; + +} + +void PID::setProcessValue(float pv) { + + processVariable_ = pv; + +} +*/ +void PID::setBias(float bias){ + + bias_ = bias; + usingFeedForward = 1; + +} + +float PID::compute(float pv, float sp) { + + //enregistrer variables dans var interne + processVariable_ = pv; //ce que l'on mesure + setPoint_ = sp; // ce que l'on veut atteindre + + //Pull in the input and setpoint, and scale them into percent span. + float scaledPV = (processVariable_ - inMin_) / inSpan_; + + if (scaledPV > 1.0) { + scaledPV = 1.0; + } + else if (scaledPV < 0.0) { + scaledPV = 0.0; + } + + float scaledSP = (setPoint_ - inMin_) / inSpan_; + if (scaledSP > 1.0) { + scaledSP = 1; + } + else if (scaledSP < 0.0) { + scaledSP = 0; + } + + float error = scaledSP - scaledPV; + + //Check and see if the output is pegged at a limit and only + //integrate if it is not. This is to prevent reset-windup. + if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) { + accError_ += error; + } + + //Compute the current slope of the input signal. + float dMeas = (scaledPV - prevProcessVariable_) / tSample_; + //float dMeas = (scaledPV - prevProcessVariable_); + + float scaledBias = 0.0; + + if (usingFeedForward) { + scaledBias = (bias_ - outMin_) / outSpan_; + } + + //Perform the PID calculation. + controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas)); + //controllerOutput_ = Kc_ * error + tauR_ * accError_ + tauD_ * dMeas; + + //Make sure the computed output is within output constraints. + if (controllerOutput_ < 0.0) { + controllerOutput_ = 0.0; + } + else if (controllerOutput_ > 1.0) { + controllerOutput_ = 1.0; + } + + //Remember this output for the windup check next time. + prevControllerOutput_ = controllerOutput_; + //Remember the input for the derivative calculation next time. + prevProcessVariable_ = scaledPV; + + //Scale the output from percent span back out to a real world number. + return ((controllerOutput_ * outSpan_) + outMin_); + +} + +float PID::getInMin() { + + return inMin_; + +} + +float PID::getInMax() { + + return inMax_; + +} + +float PID::getOutMin() { + + return outMin_; + +} + +float PID::getOutMax() { + + return outMax_; + +} + +float PID::getInterval() { + + return tSample_; + +} + +float PID::getPParam() { + + return pParam_; + +} + +float PID::getIParam() { + + return iParam_; + +} + +float PID::getDParam() { + + return dParam_; + +} +