ARM
MFRC522.h
- Committer:
- Toby_Chen
- Date:
- 2017-10-14
- Revision:
- 0:f266ca250f98
File content as of revision 0:f266ca250f98:
/** * MFRC522.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. * Based on code Dr.Leong ( WWW.B2CQSHOP.COM ) * Created by Miguel Balboa (circuitito.com), Jan, 2012. * Rewritten by Soren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.) * Ported to mbed by Martin Olejar, Dec, 2013 * * Please read this file for an overview and then MFRC522.cpp for comments on the specific functions. * Search for "mf-rc522" on ebay.com to purchase the MF-RC522 board. * * There are three hardware components involved: * 1) The micro controller: An Arduino * 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless Reader IC * 3) The PICC (short for Proximity Integrated Circuit Card): A card or tag using the ISO 14443A interface, eg Mifare or NTAG203. * * The microcontroller and card reader uses SPI for communication. * The protocol is described in the MFRC522 datasheet: http://www.nxp.com/documents/data_sheet/MFRC522.pdf * * The card reader and the tags communicate using a 13.56MHz electromagnetic field. * The protocol is defined in ISO/IEC 14443-3 Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision". * A free version of the final draft can be found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf * Details are found in chapter 6, Type A: Initialization and anticollision. * * If only the PICC UID is wanted, the above documents has all the needed information. * To read and write from MIFARE PICCs, the MIFARE protocol is used after the PICC has been selected. * The MIFARE Classic chips and protocol is described in the datasheets: * 1K: http://www.nxp.com/documents/data_sheet/MF1S503x.pdf * 4K: http://www.nxp.com/documents/data_sheet/MF1S703x.pdf * Mini: http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf * The MIFARE Ultralight chip and protocol is described in the datasheets: * Ultralight: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf * Ultralight C: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf * * MIFARE Classic 1K (MF1S503x): * Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes. * The blocks are numbered 0-63. * Block 3 in each sector is the Sector Trailer. See http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7: * Bytes 0-5: Key A * Bytes 6-8: Access Bits * Bytes 9: User data * Bytes 10-15: Key B (or user data) * Block 0 is read only manufacturer data. * To access a block, an authentication using a key from the block's sector must be performed first. * Example: To read from block 10, first authenticate using a key from sector 3 (blocks 8-11). * All keys are set to FFFFFFFFFFFFh at chip delivery. * Warning: Please read section 8.7 "Memory Access". It includes this text: if the PICC detects a format violation the whole sector is irreversibly blocked. * To use a block in "value block" mode (for Increment/Decrement operations) you need to change the sector trailer. Use PICC_SetAccessBits() to calculate the bit patterns. * MIFARE Classic 4K (MF1S703x): * Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes. * The blocks are numbered 0-255. * The last block in each sector is the Sector Trailer like above. * MIFARE Classic Mini (MF1 IC S20): * Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes. * The blocks are numbered 0-19. * The last block in each sector is the Sector Trailer like above. * * MIFARE Ultralight (MF0ICU1): * Has 16 pages of 4 bytes = 64 bytes. * Pages 0 + 1 is used for the 7-byte UID. * Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) * Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. * Pages 4-15 are read/write unless blocked by the lock bytes in page 2. * MIFARE Ultralight C (MF0ICU2): * Has 48 pages of 4 bytes = 64 bytes. * Pages 0 + 1 is used for the 7-byte UID. * Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) * Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. * Pages 4-39 are read/write unless blocked by the lock bytes in page 2. * Page 40 Lock bytes * Page 41 16 bit one way counter * Pages 42-43 Authentication configuration * Pages 44-47 Authentication key */ #ifndef MFRC522_h #define MFRC522_h #include "mbed.h" /** * MFRC522 example * * @code * #include "mbed.h" * #include "MFRC522.h" * * //KL25Z Pins for MFRC522 SPI interface * #define SPI_MOSI PTC6 * #define SPI_MISO PTC7 * #define SPI_SCLK PTC5 * #define SPI_CS PTC4 * // KL25Z Pin for MFRC522 reset * #define MF_RESET PTC3 * // KL25Z Pins for Debug UART port * #define UART_RX PTA1 * #define UART_TX PTA2 * * DigitalOut LedRed (LED_RED); * DigitalOut LedGreen (LED_GREEN); * * Serial DebugUART(UART_TX, UART_RX); * MFRC522 RfChip (SPI_MOSI, SPI_MISO, SPI_SCLK, SPI_CS, MF_RESET); * * int main(void) { * // Set debug UART speed * DebugUART.baud(115200); * * // Init. RC522 Chip * RfChip.PCD_Init(); * * while (true) { * LedRed = 1; * LedGreen = 1; * * // Look for new cards * if ( ! RfChip.PICC_IsNewCardPresent()) * { * wait_ms(500); * continue; * } * * LedRed = 0; * * // Select one of the cards * if ( ! RfChip.PICC_ReadCardSerial()) * { * wait_ms(500); * continue; * } * * LedRed = 1; * LedGreen = 0; * * // Print Card UID * printf("Card UID: "); * for (uint8_t i = 0; i < RfChip.uid.size; i++) * { * printf(" %X02", RfChip.uid.uidByte[i]); * } * printf("\n\r"); * * // Print Card type * uint8_t piccType = RfChip.PICC_GetType(RfChip.uid.sak); * printf("PICC Type: %s \n\r", RfChip.PICC_GetTypeName(piccType)); * wait_ms(1000); * } * } * @endcode */ class MFRC522 { public: /** * MFRC522 registers (described in chapter 9 of the datasheet). * When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3) */ enum PCD_Register { // Page 0: Command and status // 0x00 // reserved for future use CommandReg = 0x01 << 1, // starts and stops command execution ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits ComIrqReg = 0x04 << 1, // interrupt request bits DivIrqReg = 0x05 << 1, // interrupt request bits ErrorReg = 0x06 << 1, // error bits showing the error status of the last command executed Status1Reg = 0x07 << 1, // communication status bits Status2Reg = 0x08 << 1, // receiver and transmitter status bits FIFODataReg = 0x09 << 1, // input and output of 64 byte FIFO buffer FIFOLevelReg = 0x0A << 1, // number of bytes stored in the FIFO buffer WaterLevelReg = 0x0B << 1, // level for FIFO underflow and overflow warning ControlReg = 0x0C << 1, // miscellaneous control registers BitFramingReg = 0x0D << 1, // adjustments for bit-oriented frames CollReg = 0x0E << 1, // bit position of the first bit-collision detected on the RF interface // 0x0F // reserved for future use // Page 1:Command // 0x10 // reserved for future use ModeReg = 0x11 << 1, // defines general modes for transmitting and receiving TxModeReg = 0x12 << 1, // defines transmission data rate and framing RxModeReg = 0x13 << 1, // defines reception data rate and framing TxControlReg = 0x14 << 1, // controls the logical behavior of the antenna driver pins TX1 and TX2 TxASKReg = 0x15 << 1, // controls the setting of the transmission modulation TxSelReg = 0x16 << 1, // selects the internal sources for the antenna driver RxSelReg = 0x17 << 1, // selects internal receiver settings RxThresholdReg = 0x18 << 1, // selects thresholds for the bit decoder DemodReg = 0x19 << 1, // defines demodulator settings // 0x1A // reserved for future use // 0x1B // reserved for future use MfTxReg = 0x1C << 1, // controls some MIFARE communication transmit parameters MfRxReg = 0x1D << 1, // controls some MIFARE communication receive parameters // 0x1E // reserved for future use SerialSpeedReg = 0x1F << 1, // selects the speed of the serial UART interface // Page 2: Configuration // 0x20 // reserved for future use CRCResultRegH = 0x21 << 1, // shows the MSB and LSB values of the CRC calculation CRCResultRegL = 0x22 << 1, // 0x23 // reserved for future use ModWidthReg = 0x24 << 1, // controls the ModWidth setting? // 0x25 // reserved for future use RFCfgReg = 0x26 << 1, // configures the receiver gain GsNReg = 0x27 << 1, // selects the conductance of the antenna driver pins TX1 and TX2 for modulation CWGsPReg = 0x28 << 1, // defines the conductance of the p-driver output during periods of no modulation ModGsPReg = 0x29 << 1, // defines the conductance of the p-driver output during periods of modulation TModeReg = 0x2A << 1, // defines settings for the internal timer TPrescalerReg = 0x2B << 1, // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg. TReloadRegH = 0x2C << 1, // defines the 16-bit timer reload value TReloadRegL = 0x2D << 1, TCntValueRegH = 0x2E << 1, // shows the 16-bit timer value TCntValueRegL = 0x2F << 1, // Page 3:Test Registers // 0x30 // reserved for future use TestSel1Reg = 0x31 << 1, // general test signal configuration TestSel2Reg = 0x32 << 1, // general test signal configuration TestPinEnReg = 0x33 << 1, // enables pin output driver on pins D1 to D7 TestPinValueReg = 0x34 << 1, // defines the values for D1 to D7 when it is used as an I/O bus TestBusReg = 0x35 << 1, // shows the status of the internal test bus AutoTestReg = 0x36 << 1, // controls the digital self test VersionReg = 0x37 << 1, // shows the software version AnalogTestReg = 0x38 << 1, // controls the pins AUX1 and AUX2 TestDAC1Reg = 0x39 << 1, // defines the test value for TestDAC1 TestDAC2Reg = 0x3A << 1, // defines the test value for TestDAC2 TestADCReg = 0x3B << 1 // shows the value of ADC I and Q channels // 0x3C // reserved for production tests // 0x3D // reserved for production tests // 0x3E // reserved for production tests // 0x3F // reserved for production tests }; // MFRC522 commands Described in chapter 10 of the datasheet. enum PCD_Command { PCD_Idle = 0x00, // no action, cancels current command execution PCD_Mem = 0x01, // stores 25 bytes into the internal buffer PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self test PCD_Transmit = 0x04, // transmits data from the FIFO buffer PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit PCD_Receive = 0x08, // activates the receiver circuits PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader PCD_SoftReset = 0x0F // resets the MFRC522 }; // Commands sent to the PICC. enum PICC_Command { // The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4) PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision. PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1 PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 1 PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 1 PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT. // The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9) // Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector. // The read/write commands can also be used for MIFARE Ultralight. PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight. PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight. PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register. PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register. PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register. PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block. // The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6) // The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight. PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC. }; // MIFARE constants that does not fit anywhere else enum MIFARE_Misc { MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK. MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes. }; // PICC types we can detect. Remember to update PICC_GetTypeName() if you add more. enum PICC_Type { PICC_TYPE_UNKNOWN = 0, PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4 PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC) PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete. }; // Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more. enum StatusCode { STATUS_OK = 1, // Success STATUS_ERROR = 2, // Error in communication STATUS_COLLISION = 3, // Collision detected STATUS_TIMEOUT = 4, // Timeout in communication. STATUS_NO_ROOM = 5, // A buffer is not big enough. STATUS_INTERNAL_ERROR = 6, // Internal error in the code. Should not happen ;-) STATUS_INVALID = 7, // Invalid argument. STATUS_CRC_WRONG = 8, // The CRC_A does not match STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK. }; // A struct used for passing the UID of a PICC. typedef struct { uint8_t size; // Number of bytes in the UID. 4, 7 or 10. uint8_t uidByte[10]; uint8_t sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection. } Uid; // A struct used for passing a MIFARE Crypto1 key typedef struct { uint8_t keyByte[MF_KEY_SIZE]; } MIFARE_Key; // Member variables Uid uid; // Used by PICC_ReadCardSerial(). // Size of the MFRC522 FIFO static const uint8_t FIFO_SIZE = 64; // The FIFO is 64 bytes. /** * MFRC522 constructor * * @param mosi SPI MOSI pin * @param miso SPI MISO pin * @param sclk SPI SCLK pin * @param cs SPI CS pin * @param reset Reset pin */ MFRC522(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset); /** * MFRC522 destructor */ ~MFRC522(); // ************************************************************************************ //! @name Functions for manipulating the MFRC522 // ************************************************************************************ //@{ /** * Initializes the MFRC522 chip. */ void PCD_Init (void); /** * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. */ void PCD_Reset (void); /** * Turns the antenna on by enabling pins TX1 and TX2. * After a reset these pins disabled. */ void PCD_AntennaOn (void); /** * Writes a byte to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. * * @param reg The register to write to. One of the PCD_Register enums. * @param value The value to write. */ void PCD_WriteRegister (uint8_t reg, uint8_t value); /** * Writes a number of bytes to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. * * @param reg The register to write to. One of the PCD_Register enums. * @param count The number of bytes to write to the register * @param values The values to write. Byte array. */ void PCD_WriteRegister (uint8_t reg, uint8_t count, uint8_t *values); /** * Reads a byte from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. * * @param reg The register to read from. One of the PCD_Register enums. * @returns Register value */ uint8_t PCD_ReadRegister (uint8_t reg); /** * Reads a number of bytes from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. * * @param reg The register to read from. One of the PCD_Register enums. * @param count The number of bytes to read. * @param values Byte array to store the values in. * @param rxAlign Only bit positions rxAlign..7 in values[0] are updated. */ void PCD_ReadRegister (uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign = 0); /** * Sets the bits given in mask in register reg. * * @param reg The register to update. One of the PCD_Register enums. * @param mask The bits to set. */ void PCD_SetRegisterBits(uint8_t reg, uint8_t mask); /** * Clears the bits given in mask from register reg. * * @param reg The register to update. One of the PCD_Register enums. * @param mask The bits to clear. */ void PCD_ClrRegisterBits(uint8_t reg, uint8_t mask); /** * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. * * @param data Pointer to the data to transfer to the FIFO for CRC calculation. * @param length The number of bytes to transfer. * @param result Pointer to result buffer. Result is written to result[0..1], low byte first. * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PCD_CalculateCRC (uint8_t *data, uint8_t length, uint8_t *result); /** * Executes the Transceive command. * CRC validation can only be done if backData and backLen are specified. * * @param sendData Pointer to the data to transfer to the FIFO. * @param sendLen Number of bytes to transfer to the FIFO. * @param backData NULL or pointer to buffer if data should be read back after executing the command. * @param backLen Max number of bytes to write to *backData. Out: The number of bytes returned. * @param validBits The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL. * @param rxAlign Defines the bit position in backData[0] for the first bit received. Default 0. * @param checkCRC True => The last two bytes of the response is assumed to be a CRC_A that must be validated. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PCD_TransceiveData (uint8_t *sendData, uint8_t sendLen, uint8_t *backData, uint8_t *backLen, uint8_t *validBits = NULL, uint8_t rxAlign = 0, bool checkCRC = false); /** * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO. * CRC validation can only be done if backData and backLen are specified. * * @param command The command to execute. One of the PCD_Command enums. * @param waitIRq The bits in the ComIrqReg register that signals successful completion of the command. * @param sendData Pointer to the data to transfer to the FIFO. * @param sendLen Number of bytes to transfer to the FIFO. * @param backData NULL or pointer to buffer if data should be read back after executing the command. * @param backLen In: Max number of bytes to write to *backData. Out: The number of bytes returned. * @param validBits In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. * @param rxAlign In: Defines the bit position in backData[0] for the first bit received. Default 0. * @param checkCRC In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PCD_CommunicateWithPICC(uint8_t command, uint8_t waitIRq, uint8_t *sendData, uint8_t sendLen, uint8_t *backData = NULL, uint8_t *backLen = NULL, uint8_t *validBits = NULL, uint8_t rxAlign = 0, bool checkCRC = false); /** * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @param bufferATQA The buffer to store the ATQA (Answer to request) in * @param bufferSize Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PICC_RequestA (uint8_t *bufferATQA, uint8_t *bufferSize); /** * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @param bufferATQA The buffer to store the ATQA (Answer to request) in * @param bufferSize Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PICC_WakeupA (uint8_t *bufferATQA, uint8_t *bufferSize); /** * Transmits REQA or WUPA commands. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @param command The command to send - PICC_CMD_REQA or PICC_CMD_WUPA * @param bufferATQA The buffer to store the ATQA (Answer to request) in * @param bufferSize Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PICC_REQA_or_WUPA (uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize); /** * Transmits SELECT/ANTICOLLISION commands to select a single PICC. * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). * On success: * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. * * A PICC UID consists of 4, 7 or 10 bytes. * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: * * UID size Number of UID bytes Cascade levels Example of PICC * ======== =================== ============== =============== * single 4 1 MIFARE Classic * double 7 2 MIFARE Ultralight * triple 10 3 Not currently in use? * * * @param uid Pointer to Uid struct. Normally output, but can also be used to supply a known UID. * @param validBits The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PICC_Select (Uid *uid, uint8_t validBits = 0); /** * Instructs a PICC in state ACTIVE(*) to go to state HALT. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PICC_HaltA (void); // ************************************************************************************ //@} // ************************************************************************************ //! @name Functions for communicating with MIFARE PICCs // ************************************************************************************ //@{ /** * Executes the MFRC522 MFAuthent command. * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. * For use with MIFARE Classic PICCs. * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. * * All keys are set to FFFFFFFFFFFFh at chip delivery. * * @param command PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B * @param blockAddr The block number. See numbering in the comments in the .h file. * @param key Pointer to the Crypteo1 key to use (6 bytes) * @param uid Pointer to Uid struct. The first 4 bytes of the UID is used. * * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. */ uint8_t PCD_Authenticate (uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid); /** * Used to exit the PCD from its authenticated state. * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. */ void PCD_StopCrypto1 (void); /** * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. * The MF0ICU1 returns a NAK for higher addresses. * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. * * The buffer must be at least 18 bytes because a CRC_A is also returned. * Checks the CRC_A before returning STATUS_OK. * * @param blockAddr MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from. * @param buffer The buffer to store the data in * @param bufferSize Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_Read (uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize); /** * Writes 16 bytes to the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight the opretaion is called "COMPATIBILITY WRITE". * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. * * @param blockAddr MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to. * @param buffer The 16 bytes to write to the PICC * @param bufferSize Buffer size, must be at least 16 bytes. Exactly 16 bytes are written. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_Write (uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize); /** * Writes a 4 byte page to the active MIFARE Ultralight PICC. * * @param page The page (2-15) to write to. * @param buffer The 4 bytes to write to the PICC * @param bufferSize Buffer size, must be at least 4 bytes. Exactly 4 bytes are written. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize); /** * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @param blockAddr The block (0-0xff) number. * @param delta This number is subtracted from the value of block blockAddr. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_Decrement (uint8_t blockAddr, uint32_t delta); /** * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @param blockAddr The block (0-0xff) number. * @param delta This number is added to the value of block blockAddr. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_Increment (uint8_t blockAddr, uint32_t delta); /** * MIFARE Restore copies the value of the addressed block into a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @param blockAddr The block (0-0xff) number. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_Restore (uint8_t blockAddr); /** * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * * @param blockAddr The block (0-0xff) number. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_Transfer (uint8_t blockAddr); // ************************************************************************************ //@} // ************************************************************************************ //! @name Support functions // ************************************************************************************ //@{ /** * Wrapper for MIFARE protocol communication. * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. * * @param sendData Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A. * @param sendLen Number of bytes in sendData. * @param acceptTimeout True => A timeout is also success * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout = false); /** * Translates the SAK (Select Acknowledge) to a PICC type. * * @param sak The SAK byte returned from PICC_Select(). * * @return PICC_Type */ uint8_t PICC_GetType (uint8_t sak); /** * Returns a string pointer to the PICC type name. * * @param type One of the PICC_Type enums. * * @return A string pointer to the PICC type name. */ char* PICC_GetTypeName (uint8_t type); /** * Returns a string pointer to a status code name. * * @param code One of the StatusCode enums. * * @return A string pointer to a status code name. */ char* GetStatusCodeName (uint8_t code); /** * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). * * @param accessBitBuffer Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. * @param g0 Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) * @param g1 Access bits [C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) * @param g2 Access bits [C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) * @param g3 Access bits [C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) */ void MIFARE_SetAccessBits (uint8_t *accessBitBuffer, uint8_t g0, uint8_t g1, uint8_t g2, uint8_t g3); // ************************************************************************************ //@} // ************************************************************************************ //! @name Convenience functions - does not add extra functionality // ************************************************************************************ //@{ /** * Returns true if a PICC responds to PICC_CMD_REQA. * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. * * @return bool */ bool PICC_IsNewCardPresent(void); /** * Simple wrapper around PICC_Select. * Returns true if a UID could be read. * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. * The read UID is available in the class variable uid. * * @return bool */ bool PICC_ReadCardSerial (void); // ************************************************************************************ //@} private: SPI m_SPI; DigitalOut m_CS; DigitalOut m_RESET; /** * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. * * @param command The command to use * @param blockAddr The block (0-0xff) number. * @param data The data to transfer in step 2 * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data); }; #endif