Biorobotics 2018: Project group 16

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

Revision:
1:ba14d8f4d444
Parent:
0:94cf6b327972
Child:
2:bc6043623fb7
--- a/main.cpp	Thu Nov 01 10:06:58 2018 +0000
+++ b/main.cpp	Thu Nov 01 10:08:23 2018 +0000
@@ -1,2 +1,927 @@
 #include "mbed.h"
+#include "MODSERIAL.h"
+#include "HIDScope.h"
+#include "QEI.h"
+#include "BiQuad.h"
 
+MODSERIAL pc(USBTX, USBRX);
+DigitalOut DirectionPin1(D4);
+DigitalOut DirectionPin2(D7);
+PwmOut PwmPin1(D5);
+PwmOut PwmPin2(D6);
+DigitalIn Knop1(D2);
+DigitalIn Knop2(D3);
+DigitalIn Knop3(PTA4);
+DigitalIn Knop4(PTC6);
+AnalogIn pot1 (A5);
+AnalogIn pot2 (A4);
+AnalogIn emg0( A0 );
+AnalogIn emg1( A1 );
+AnalogIn emg2( A2 );
+AnalogIn emg3( A3 );
+DigitalOut led_G(LED_GREEN);
+DigitalOut led_R(LED_RED);
+DigitalOut led_B(LED_BLUE);
+
+QEI Encoder1(D12,D13,NC,64,QEI::X4_ENCODING);
+QEI Encoder2(D10,D11,NC,64,QEI::X4_ENCODING);
+
+BiQuadChain bqc1;
+BiQuadChain bqc2;
+BiQuadChain bqc3;
+BiQuadChain bqc4;
+BiQuadChain bqc5;
+BiQuadChain bqc6;
+BiQuadChain bqc7;
+BiQuadChain bqc8;
+
+BiQuad      BqNotch1_1( 9.65081e-01, -1.56203e+00, 9.65081e-01,-1.56858e+00, 9.64241e-01  );
+BiQuad      BqNotch2_1(  1.00000e+00, -1.61855e+00, 1.00000e+00 ,-1.61100e+00, 9.65922e-01);
+BiQuad      BqNotch1_2( 9.65081e-01, -1.56203e+00, 9.65081e-01,-1.56858e+00, 9.64241e-01  );
+BiQuad      BqNotch2_2(  1.00000e+00, -1.61855e+00, 1.00000e+00 ,-1.61100e+00, 9.65922e-01);
+BiQuad      BqNotch1_3( 9.65081e-01, -1.56203e+00, 9.65081e-01,-1.56858e+00, 9.64241e-01  );
+BiQuad      BqNotch2_3(  1.00000e+00, -1.61855e+00, 1.00000e+00 ,-1.61100e+00, 9.65922e-01);
+BiQuad      BqNotch1_4( 9.65081e-01, -1.56203e+00, 9.65081e-01,-1.56858e+00, 9.64241e-01  );
+BiQuad      BqNotch2_4(  1.00000e+00, -1.61855e+00, 1.00000e+00 ,-1.61100e+00, 9.65922e-01);
+BiQuad      BqHP1( 9.86760e-01, -1.97352e+00, 9.86760e-01, -1.97334e+00, 9.73695e-01 );
+BiQuad      BqHP2( 9.86760e-01, -1.97352e+00, 9.86760e-01, -1.97334e+00, 9.73695e-01 );
+BiQuad      BqHP3( 9.86760e-01, -1.97352e+00, 9.86760e-01, -1.97334e+00, 9.73695e-01 );
+BiQuad      BqHP4( 9.86760e-01, -1.97352e+00, 9.86760e-01, -1.97334e+00, 9.73695e-01 );
+
+BiQuad      BqLP1( 3.91302e-05, 7.82604e-05, 3.91302e-05, -1.98223e+00, 9.82385e-01 );
+BiQuad      BqLP2( 3.91302e-05, 7.82604e-05, 3.91302e-05, -1.98223e+00, 9.82385e-01 );
+BiQuad      BqLP3( 3.91302e-05, 7.82604e-05, 3.91302e-05, -1.98223e+00, 9.82385e-01 );
+BiQuad      BqLP4( 3.91302e-05, 7.82604e-05, 3.91302e-05, -1.98223e+00, 9.82385e-01 );
+
+BiQuad      LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+Ticker      StateTicker;
+Ticker      printTicker;
+
+HIDScope    scope( 4 );
+
+volatile float      Bicep_Right          = 0.0;
+volatile float      Bicep_Left           = 0.0;
+volatile float      Tricep_Right         = 0.0;
+volatile float      Tricep_Left          = 0.0;
+volatile float      FilterHP_Bi_R;
+volatile float      Filterabs_Bi_R;
+volatile float      Filtered_Bi_R;
+volatile float      FilterHP_Bi_L;
+volatile float      Filterabs_Bi_L;
+volatile float      Filtered_Bi_L;
+volatile float      FilterHP_Tri_R;
+volatile float      Filterabs_Tri_R;
+volatile float      Filtered_Tri_R;
+volatile float      FilterHP_Tri_L;
+volatile float      Filterabs_Tri_L;
+volatile float      Filtered_Tri_L;
+
+volatile float error_1_integral = 0;
+volatile float error_2_integral = 0;
+volatile float error_1_prev; // initialization with this value only done once!
+volatile float error_2_prev;
+
+volatile const float pi             = 3.1415926; 
+volatile const float rad_count      = 0.0007479;                                // 2pi/8400;
+volatile const float maxVelocity    = 2.0f * pi;                                // in rad/s
+volatile const float r_3            = 0.035;                                
+
+volatile float referenceVelocity1   = 0.5;                                      // dit is de gecentreerde waarde en dus de nulstand
+volatile float referenceVelocity2   = 0.5;
+
+volatile int i   = 0;                                                           // Led blink status
+volatile int ii  = 0;                                                           // Calibratie timer
+volatile int iii = 0;                                                           // Start up timer
+
+volatile float Kp = 17.5;
+volatile float Ki = 1.02;
+volatile float Kd = 23.2;
+volatile float Ts = 0.01; // Sample time in seconds
+volatile float error_1;
+volatile float error_2;
+volatile float U_1;
+volatile float U_2; 
+
+volatile float q_1;
+volatile float q_2;
+volatile float r_1;
+volatile float r_2;
+volatile float w_1;
+volatile float w_2;
+
+volatile float Flex_Bi_R;
+volatile float Flex_Bi_L;
+volatile float Flex_Tri_R;
+volatile float Flex_Tri_L;
+volatile float Threshold_Value;
+volatile float Threshold_Bi_R;
+volatile float Threshold_Bi_L;
+volatile float Threshold_Tri_R;
+volatile float Threshold_Tri_L;
+volatile bool  Checking_Bi_R        = false;
+volatile bool  Checking_Bi_L        = false;
+volatile bool  Checking_Tri_R       = false;
+volatile bool  Checking_Tri_L       = false;
+
+enum states{Starting, Calibration, Homing_M1, Homing_M2, Post_Homing, Function, Safe};
+    
+volatile states Active_State = Starting;
+
+volatile float vx;
+volatile float vy;
+volatile int counts1;
+volatile int counts2;
+volatile float rad_m1;
+volatile float rad_m2;
+    
+void Encoding()
+{
+ 
+    counts1 = Encoder1.getPulses();
+    counts2 = Encoder2.getPulses();
+    
+    rad_m1 = rad_count * (float)counts1;
+    rad_m2 = rad_count * (float)counts2;
+}
+
+void Filter() 
+{
+    FilterHP_Bi_R = bqc1.step( emg0.read() );
+    Filterabs_Bi_R = fabs(FilterHP_Bi_R); 
+    Filtered_Bi_R = bqc2.step( Filterabs_Bi_R );
+    
+    FilterHP_Bi_L = bqc3.step( emg1.read() );
+    Filterabs_Bi_L = fabs(FilterHP_Bi_L);
+    Filtered_Bi_L = bqc4.step( Filterabs_Bi_L );
+    
+    FilterHP_Tri_R = bqc5.step( emg2.read() );
+    Filterabs_Tri_R = fabs(FilterHP_Tri_R); 
+    Filtered_Tri_R = bqc6.step( Filterabs_Tri_R );
+    
+    FilterHP_Tri_L = bqc7.step( emg3.read() );
+    Filterabs_Tri_L = fabs(FilterHP_Tri_L);
+    Filtered_Tri_L = bqc8.step( Filterabs_Tri_L );
+}
+
+void BlinkLed()
+{
+    if(i==1)
+    {
+            led_G=led_B=1;
+            static int rr = 0;
+            rr++;
+            if (rr == 1)
+            {
+                led_R = !led_R;
+            }
+            else if (rr == 50)
+            {
+                rr = 0;
+            }
+    }     
+    else if(i==2)
+    {        
+            led_R=led_B=1;
+            
+            static int gg = 0;
+            gg++;
+            if (gg == 1)
+            {
+                led_G = !led_G;
+            }
+            else if (gg == 250)
+            { 
+                gg = 0;
+            }
+    }
+    else if (i==3)
+    {            
+            led_R=1;
+            static int bb = 0;
+            bb++;
+            if (bb == 1)
+            {
+                led_B = !led_B;
+            }
+            else if (bb == 500)
+            {
+                bb = 0;
+            }
+    }
+    else if (i==4)
+    {
+            led_G=1;
+            static int rr = 0;
+            rr++;
+            if (rr == 1)
+            {
+                led_R = !led_R;
+                led_B = !led_B;
+            }
+            else if (rr == 250)
+            {
+                rr = 0;
+            }
+    }
+    else 
+    {
+        led_R=led_G=led_B=1;
+    }  
+}
+
+void EMG_Read()
+{
+    Bicep_Right     =   emg0.read();
+    Bicep_Left      =   emg1.read();
+    Tricep_Right    =   emg2.read();
+    Tricep_Left     =   emg3.read();   
+}
+
+void sample()
+{
+    
+    scope.set(0, Filtered_Bi_R*10.0f );
+    scope.set(1, Filtered_Bi_L*10.0f );
+    scope.set(2, Filtered_Tri_R*10.0f );
+    scope.set(3, Filtered_Tri_L*10.0f );
+  
+    scope.send();
+}
+
+void Inverse()
+{
+    q_1= rad_m1+(pi/6.0f);                                                       // uit Encoder
+    q_2= rad_m2+(pi/6.0f);                                                      // uit Encoder
+    r_1= -0.2f;
+    r_2= -0.2f;
+    
+        float u = -r_2*sin(q_1)*cos(q_2)-(r_2)*cos(q_1)*sin(q_2);
+        float z = 2.0f*(r_2*cos(q_1)*cos(q_2))-r_3;
+        float y = r_2*cos(q_1)*cos(q_2)-r_2*sin(q_1)*sin(q_2)+2.0f*(r_1*cos(q_1))-r_3;
+        float x = (-2.0f)*r_2*sin(q_1)*cos(q_2);
+        float D = 1.0f/(u*z-x*y);                                               // Determinant
+        //printf("Determinant is %f\r\n", D);
+        
+        float a = D*z;                                                          // Inverse jacobian a,b,c,d vormen 2 bij 2 matrix
+        float b = -D*x;                                                         // Inverse jacobian
+        float c = -D*y;                                                         // Inverse jacobian
+        float d = D*u;                                                          // Inverse jacobian
+        
+        vx = pot1.read()/5.0f;                                                 // uit emg data
+        vy = pot2.read()/5.0f;                                                 // uit emg data
+        
+        w_1 = vx*a+vy*b;
+        w_2 = vx*c+vy*d;
+        
+        /*
+        printf("%f\r\n", vx);
+        printf("%f\r\n", vy);
+          */   
+}
+
+void PID_controller()
+{
+      error_1 = (w_1*0.002f) - rad_m1;
+      error_2 = (w_2*0.002f) - rad_m2;
+      
+      error_1_prev = error_1;
+      error_2_prev = error_2;
+    
+      // Proportional part:
+      float u_k_1 = Kp * error_1;
+      float u_k_2 = Kp * error_2;
+    
+      // Integral part
+      error_1_integral = error_1_integral + error_1 * Ts;
+      error_2_integral = error_2_integral + error_2 * Ts;
+      float u_i_1 = Ki * error_1_integral;
+      float u_i_2 = Ki * error_2_integral;
+    
+      // Derivative part
+      float error_1_derivative = (error_1 - error_1_prev)/Ts;
+      float error_2_derivative = (error_2 - error_2_prev)/Ts;
+      float filtered_error_1_derivative = LowPassFilter.step(error_1_derivative);
+      float filtered_error_2_derivative = LowPassFilter.step(error_2_derivative);
+      float u_d_1 = Kd * filtered_error_1_derivative;
+      float u_d_2 = Kd * filtered_error_2_derivative;
+      error_1_prev = error_1;
+      error_2_prev = error_2;
+    
+      // Sum all parts and return it
+      U_1 = u_k_1 + u_i_1 + u_d_1;   
+      U_2 = u_k_2 + u_i_2 + u_d_2;
+}
+  
+void velocity1()
+{
+            if (pot1.read()>0.5f)
+                {
+                // Clockwise rotation
+                referenceVelocity1 = (pot1.read()-0.5f) * 2.0f; 
+                }
+            
+            else if (pot1.read() == 0.5f)
+            {
+                referenceVelocity1 = pot1.read() * 0.0f; 
+            } 
+            
+            else if (pot1.read() < 0.5f)
+                {
+                // Counterclockwise rotation      
+                referenceVelocity1 = 2.0f * (pot1.read()-0.5f) ;
+                }
+}
+    
+void velocity2()
+{
+            if (pot2.read()>0.5f)
+                {
+                // Clockwise rotation
+                referenceVelocity2 = (pot2.read()-0.5f) * 2.0f; 
+                }
+            
+            else if (pot2.read() == 0.5f)
+            {
+                referenceVelocity2 = pot2.read() * 0.0f; 
+            } 
+            
+            else if (pot2.read() < 0.5f)
+                {
+                // Counterclockwise rotation      
+                referenceVelocity2 = 2.0f * (pot2.read()-0.5f) ;
+                }
+}    
+    
+void motor1()
+{          
+        float u_v1 = referenceVelocity1             ;                            //w_1
+        float u = u_v1;// (2.0f * pi);
+        DirectionPin1 = u < 0.0f;
+        PwmPin1 = fabs(u);
+}
+
+void motor2()
+{  
+        float u_v2 = referenceVelocity2              ;                           //w_2
+        float u = u_v2;// (2.0f * pi);
+        DirectionPin2 = u > 0.0f;
+        PwmPin2 = fabs(u);
+}
+   
+void Calibrating()
+{
+    static float n = 0.0;
+    static float m = 0.0;
+    static float l = 0.0;
+    static float k = 0.0;
+    
+    //static int ii; 
+    ii++;
+    
+            if (ii<=2500)
+            {
+                if (ii == 1)
+                {
+                    pc.printf("Relax your muscles please. \r\n");
+                    i = 2;
+                }
+                else if (ii == 1750)
+                {
+                    pc.printf("Flex your right bicep now please.\r\n");
+                    i = 3; 
+                }
+                                                                                //chillen
+            }
+            else if (ii>2500 && ii<5000) //
+            {
+                n = n + Filtered_Bi_R;                                            // dit wordt de variable naam na het filter
+                i = 1;
+            }
+            else if (ii == 5000)
+            {
+                Flex_Bi_R = n / 2500.0f;
+                pc.printf("You can relax your right bicep, thank you. \r\nYour mean flexing value was %f\r\n\r\n", Flex_Bi_R);
+                i = 2;
+            }
+            else if (ii>5000 && ii<=6000)
+            {
+                if (ii == 5500)
+                {
+                    pc.printf("Flex your left bicep now please. \r\n");
+                    i = 3;
+                }
+                //chillen
+            }
+            else if(ii>6000 && ii<8500)
+            {
+                m = m + Filtered_Bi_L;
+                i = 1;
+            }
+            else if (ii == 8500)
+            {
+                Flex_Bi_L = m / 2500.0f;
+                pc.printf("You can relax your left bicep, thank you. \r\nYour mean flexing value was %f\r\n\r\n", Flex_Bi_L);
+                i = 2;
+            }
+            else if (ii>8500 && ii<=9500)
+            {
+                if (ii == 9000)
+                {
+                    pc.printf("Flex your right tricep now please. \r\n");
+                    i = 3;
+                }
+                //chillen
+            }
+            else if (ii>9500 && ii<12000)
+            {
+                l = l + Filtered_Tri_R;
+                i = 1;
+            }
+            else if (ii == 12000)
+            {
+                Flex_Tri_R = l / 2500.0f;
+                pc.printf("You can relax your right tricep, thank you. \r\nYour mean flexing value was %f\r\n\r\n", Flex_Tri_R);
+                i = 2;
+            }
+            else if (ii>12000 && ii <=13000)
+            {
+                if (ii == 12500)
+                {
+                    pc.printf("Flex your left tricep now please. \r\n");
+                    i = 3; 
+                }
+                //chillen
+            }
+            else if (ii>13000 && ii<15500)
+            {
+                k = k + Filtered_Tri_L;
+                i = 1;
+            }
+            else if (ii == 15500)
+            {
+                Flex_Tri_L = k / 2500.0f;
+                pc.printf("You can relax your left tricep, thank you. \r\nYour mean flexing value was %f\r\n\r\nThe calibration has been completed, the system is now operatable. \r\n",Flex_Tri_L);
+                i = 2;
+            }
+
+Threshold_Value = 0.8f;
+            
+Threshold_Bi_R  = Threshold_Value * Flex_Bi_R;
+Threshold_Bi_L  = Threshold_Value * Flex_Bi_L;
+Threshold_Tri_R = Threshold_Value * Flex_Tri_R;
+Threshold_Tri_L = Threshold_Value * Flex_Tri_L;                  
+
+            if (ii == 16500)
+            {
+                pc.printf("\r\nThreshold value right bicep  = %f\r\nThreshold value left bicep   = %f\r\nThreshold value right tricep = %f\r\nThreshold value left tricep  = %f\r\n\r\n",Threshold_Bi_R,Threshold_Bi_L,Threshold_Tri_R,Threshold_Tri_L);
+            }
+            else if (ii == 20000)
+            {
+                pc.printf("\r\nAutomatic switch to Homing State\r\n");
+                Active_State = Homing_M1;
+                i = 0;
+            }
+}
+
+
+
+void Start_Up()
+{
+    i++;
+    iii++;
+    if (iii == 1)
+    {
+        pc.printf("\r\n\r\nSystem is starting...\r\nWaiting for further input...\r\n");
+    }
+    
+    else if (iii == 30000)
+    {
+        pc.printf("1 minute without input..\r\nReseting start-up...\r\n");
+        iii = 0;
+    }    
+    else if (iii == 40001)                                                      // sleeping state is only added for designing purposes and will most likely never be used
+    {                                                                           // when working with patients. Furthermore it cannot be reached automaticly
+        pc.printf("Sleeping... Press button 4 to wake me up!\r\n\r\n");
+        iii++;
+    }
+    else if (iii == 45000)
+    {
+        iii = 40000;
+    }
+}
+
+void OFF_m1()
+{
+    PwmPin1 = 0;
+}
+void OFF_m2()
+{
+    PwmPin2 = 0;
+}
+
+void Going_Home_Motor1()
+{
+    if (counts1 == 0)
+    {
+        pc.printf("Switching to Homing state for motor 2\r\n");
+        Active_State = Homing_M2;                                               // Statement here instead of statemachine because of checking speed
+    }
+    else if (counts1 > 0)
+    { 
+        PwmPin1 = 0.8f;
+        DirectionPin1 = false;
+    }
+    else
+    {
+        PwmPin1 = 0.8f;
+        DirectionPin1 = true;
+    }    
+}
+
+void Going_Home_Motor2()
+{
+    pc.printf("Entered homing state 2"); 
+    if (counts2 == 0)
+    { 
+        // als het goed is hoeft hier niets te staan                            // Statement in statemachine because of the double check
+    }
+    else if (counts2 > 0)
+    {
+        PwmPin2 = 0.8f;
+        DirectionPin2 = true;
+    }
+    else
+    {
+        PwmPin2 = 0.8f;
+        DirectionPin2 = false;
+    }
+}
+
+void Checking_EMG()
+{
+    // This function will make the the setting of signal to movement easier
+    
+    if (Filtered_Bi_R >= Threshold_Bi_R)
+    {
+                Checking_Bi_R               = true;
+    }
+    if (Filtered_Bi_L >= Threshold_Bi_L)
+    {
+                Checking_Bi_L               = true;
+    }   
+    if (Filtered_Tri_R >= Threshold_Tri_R)
+    {
+                Checking_Tri_R              = true;
+    }   
+    if (Filtered_Tri_L >= Threshold_Tri_L)
+    {
+                Checking_Tri_L             = true;
+    }   
+}
+
+void Setting_Movement()
+{
+    // Here we will set the emg values to the movement of the arm
+    
+    if (Checking_Bi_R && Checking_Bi_L)                                         // sloping y =  x,  y > 0
+    {
+        vx = 0.5f;
+        vy = 0.5f;
+    }
+    else if (Checking_Bi_R && Checking_Tri_L)                                   // sloping y = -x,  y > 0
+    {
+        vx = -0.5f;
+        vy =  0.5f;
+    }
+    else if (Checking_Bi_L && Checking_Tri_R)                                   // sloping y = -x,  y < 0
+    {
+        vx =  0.5f;
+        vy = -0.5f;
+    }
+    else if (Checking_Tri_R && Checking_Tri_L)                                  // sloping y =  x,  y < 0
+    {
+        vx = -0.5f;
+        vy = -0.5f;
+    }
+    else if (Checking_Bi_R)                                                     // y > 0
+    {
+        vx =  0.0f;
+        vy =  0.5f;
+    }
+    else if (Checking_Bi_L)                                                     // x > 0
+    {
+        vx =  0.5f;
+        vy =  0.0f;
+    }
+    else if (Checking_Tri_R)                                                    // y < 0
+    {
+        vx =  0.0f;
+        vy = -0.5f;
+    }
+    else if (Checking_Tri_L)                                                    // y < 0
+    {
+        vx = -0.5f;
+        vy =  0.0f;
+    }        
+}
+
+void Printing()
+{
+    float v1 = PwmPin1 * maxVelocity;
+    float v2 = PwmPin2 * maxVelocity;
+    
+        if (Active_State == Function || Active_State == Homing_M1)
+        {
+            pc.printf("q1    = %f [rad] \r\nq2    = %f [rad] \r\ncount1= %i\r\ncount2= %i\r\nq1dot = %f [rad/s] \r\nq2dot = %f [rad/s] \r\n\r\n\r\n\r\n\r\n", rad_m1, rad_m2,counts1, counts2, v1, v2);
+        }
+        
+        pc.printf("%i \r\n%i \r\n\r\n",counts1,counts2);
+}
+
+void Test()
+{/*
+    if (fabs(rad_m1) == 0.01f)
+    {
+        PwmPin1 = 0.0f;
+    }
+    else if (rad_m1 < 0.01f)
+    {
+        DirectionPin1 = true;
+        PwmPin1=0.5f;
+    }
+    else if (rad_m1 > -0.01f)
+    {
+        DirectionPin1 = false;
+        PwmPin1=0.5f;
+    }
+    if (fabs(rad_m2) == 0.01f)
+    {
+        PwmPin2 = 0.0f;
+    }
+    else if (rad_m2 < 0.01f)
+    {
+        DirectionPin2 = false;
+    }*/   
+   
+   
+    
+    if (counts1 == 0)
+    {
+        PwmPin1 = 0.0f;
+    }
+    else if (counts1 > 0)
+    {
+        DirectionPin1 = true;
+        PwmPin1 = 0.4f * ((float)counts1/1000.0f);
+    }
+    else if (counts1 < 0)
+    {
+        DirectionPin1 = false;
+        PwmPin1 = 0.4f * ((float)counts1/1000.0f);
+    }
+   
+    if (counts2 == 0)
+    {
+        PwmPin2 = 0.0f;
+    }   
+    if (counts2 < 0)
+    {
+        DirectionPin2 = false;
+        PwmPin2 = 0.4f * ((float)counts2/1000.0f);
+    }
+    else if (counts2 > 0)
+    { 
+        DirectionPin2 = true;
+        PwmPin2 = 0.4f * ((float)counts2/1000.0f);
+    }
+
+}
+
+void EMG_test()
+{
+    led_G=led_R=led_B=1;
+     
+    if (Filtered_Bi_R >= Threshold_Bi_R)
+    {
+        i = 1;
+        //led_R = 0;  // rood
+    }
+    if (Filtered_Bi_L >= Threshold_Bi_L)
+    {
+        i = 3;
+        //led_B = 0;  // blauw
+    }
+    if (Filtered_Tri_R >= Threshold_Tri_R)
+    {
+        i = 2;
+        //led_G = 0;  // groen
+    }
+    if (Filtered_Tri_L >= Threshold_Tri_L)
+    {
+        i = 4;
+        //led_B = 0;
+        //led_R = 0;  // paars
+    }
+            
+}
+
+void StateMachine() 
+{
+    switch (Active_State)
+    {
+        case Starting:   
+        Start_Up();
+        OFF_m1();
+        OFF_m2();
+        
+        if (!Knop4 == true)
+        {
+            Active_State = Calibration;
+            pc.printf("Entering Calibration State \r\n");
+        }
+        else if (!Knop3 == true)
+        {
+            Active_State = Homing_M1;
+            pc.printf("Entering Homing State \r\n");
+        }
+                     
+                                   
+        break;
+        
+        case Calibration:
+                
+                Filter();
+                Calibrating();
+                OFF_m1();
+                OFF_m2();
+                BlinkLed();
+                
+                    if (!Knop1 && !Knop2)
+                    {
+                        pc.printf("Switched to Sleeping State\r\n");
+                        Active_State = Starting;
+                        iii = 40001;
+                    }
+                    else if (Knop1==false)
+                    {
+                        pc.printf("Manual switch to Homing state \r\n");
+                        Active_State = Homing_M1;
+                    }
+
+                    
+                Inverse();
+                sample();
+                EMG_Read();
+                Encoding();    
+        break;
+        
+        case Homing_M1:
+
+                Going_Home_Motor1();
+                OFF_m2();
+                
+                    if (fabs(rad_m1)>(pi/6.0f) || fabs(rad_m2)>(pi/6.0f))          // pi/4 is a safe value, can/will be editted
+                    {
+                        pc.printf("SAFE MODUS ACTIVE!\r\n RESET MANDATORY!\r\n");
+                        Active_State = Safe;
+                    }
+                    else if (!Knop1 && !Knop2)
+                    {
+                        pc.printf("Switched to Sleeping State\r\n");
+                        Active_State = Starting;
+                        iii = 40000;
+                    }
+                    else if (Knop2==false)
+                    {
+                        pc.printf("Manual switch to Funtioning State \r\n");
+                        Active_State = Function;
+                    }
+                    else if (Knop4==false)
+                    {
+                        Active_State = Calibration;
+                        pc.printf("Re-entering Calibration State \r\n");
+                    }
+                
+                
+                Inverse();
+                sample();
+                EMG_Read();
+                Encoding();
+        break;
+        
+        case Homing_M2:
+        
+                    Going_Home_Motor2();
+                    OFF_m1();
+                
+                    if (fabs(rad_m1)>(pi/6.0f) || fabs(rad_m2)>(pi/6.0f))          // pi/4 is a safe value, can/will be editted
+                    {
+                        pc.printf("SAFE MODUS ACTIVE!\r\n RESET MANDATORY!\r\n");
+                        Active_State = Safe;
+                    }
+                    else if (counts2 == 0 && counts1 == 0)
+                    {
+                        Active_State = Post_Homing;
+                    }
+                    
+                
+                Inverse();
+                sample();
+                EMG_Read();
+                Encoding();
+            
+        break;    
+        
+        case Post_Homing:
+        
+                static int mm = 0;
+                mm++;
+                if (mm == 1000);
+                {
+                    Active_State = Function;
+                    pc.printf("Homing was succesfull\r\n\r\nAutomatic switch to Funtioning state\r\n\r\n");
+                    mm=0;                                                           // reseting the state
+                }
+                
+                OFF_m1();
+                OFF_m2();
+        break;
+        
+        case Function:
+                        
+                if (fabs(rad_m1)>(pi/6.0f) || fabs(rad_m2)>(pi/6.0f))          // pi/4 is a safe value, can/will be editted
+                {
+                    pc.printf("SAFE MODUS ACTIVE!\r\n RESET MANDATORY!\r\n");
+                    Active_State = Safe;
+                }
+                else if (Knop4==false)
+                { 
+                    pc.printf("Re-entering Calibration State \r\n");
+                    Active_State = Calibration;
+                    ii=0;
+                }
+                else if (Knop3==false)
+                {
+                    pc.printf("Re-entering Homing State \r\n");
+                    Active_State = Homing_M1;
+                }
+                else if (!Knop1 && !Knop2)
+                {
+                    pc.printf("Switched to Sleeping State\r\n");
+                    Active_State = Starting;
+                    iii = 40000;
+                }
+                
+                
+                EMG_test();                
+                Filter();
+                Inverse();
+                sample();
+                EMG_Read();
+                Encoding();
+                velocity1();
+                velocity2();
+                Checking_EMG();
+                Setting_Movement();
+                PID_controller();
+                motor1();
+                motor2();
+                
+                                
+        break;    
+        
+        case Safe:
+        
+            OFF_m1();
+            OFF_m2();
+            
+        break;
+            
+        default:
+            pc.printf("UNKNOWN COMMAND");
+    }
+}    
+
+int main()
+{
+    pc.baud(115200);    
+    PwmPin1.period_us(30); //60 microseconds pwm period, 16.7 kHz 
+    
+    bqc1.add( &BqNotch1_1 ).add( &BqNotch2_1 ).add( &BqHP1 );                   //Oh wat lelijk...
+    bqc2.add(&BqLP1);
+    bqc3.add( &BqNotch1_2 ).add( &BqNotch2_2 ).add( &BqHP2 );
+    bqc4.add(&BqLP2);
+    bqc5.add( &BqNotch1_3 ).add( &BqNotch2_3 ).add( &BqHP3 );
+    bqc6.add(&BqLP3);
+    bqc7.add( &BqNotch1_4 ).add( &BqNotch2_4 ).add( &BqHP4 );
+    bqc8.add(&BqLP4);
+    
+    StateTicker.attach(&StateMachine, 0.002);
+   
+    printTicker.attach(&Printing, 2);
+     
+    while(true)
+    {
+    }
+}
\ No newline at end of file