Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: Encoder MODSERIAL mbed
Fork of motoraansturing_met_EMG by
main.cpp
- Committer:
- jorick92
- Date:
- 2013-11-01
- Revision:
- 0:73dcc8fb9900
- Child:
- 1:1c22ce9f370b
File content as of revision 0:73dcc8fb9900:
#include "mbed.h"
#include "encoder.h"
#include "MODSERIAL.h"
//high pass filter constantes 15Hz cutoff 4e orde
#define NUM0 0.2754 // constante
#define NUM1 -1.1017 // z^-1
#define NUM2 1.6525 // z^-2etc.
#define NUM3 -1.1017
#define NUM4 0.2754
#define DEN0 1 // constante
#define DEN1 -1.5704
#define DEN2 1.2756
#define DEN3 -0.4844
#define DEN4 0.0762
//lowpass filter constantes 40 Hz 4e orde
#define NUM0_2 0.4328 // constante
#define NUM1_2 1.7314 // z^-1
#define NUM2_2 2.5971 // z^-2etc.
#define NUM3_2 1.7314
#define NUM4_2 0.4328
#define DEN0_2 1 // constante
#define DEN1_2 2.3695
#define DEN2_2 2.3140
#define DEN3_2 1.0547
#define DEN4_2 0.1874
//lowpass filter constantes 3Hz 4e orde
#define NUM0_3 0.0000624 // constante
#define NUM1_3 0.0002495 // z^-1
#define NUM2_3 0.0003743 // z^-2etc.
#define NUM3_3 0.0002495
#define NUM4_3 0.0000624
#define DEN0_3 1 // constante
#define DEN1_3 -3.5078
#define DEN2_3 4.6409
#define DEN3_3 -2.7427
#define DEN4_3 0.6105
/*******************************************************************************
* *
* Code can be found at http://mbed.org/users/vsluiter/code/BMT-K9-Regelaar/ *
* *
********************************************************************************/
// dit is voor schakelaar die aan en uit wil gaan
DigitalIn toggle(PTD7);
void toggle_on()
{
}
void toggle_off()
{
// do nothing
}
/** keep_in_range -> float in, and keep_in_range if less than min, or larger than max **/
void keep_in_range(float * in, float min, float max);
/** variable to show when a new loop can be started*/
/** volatile means that it can be changed in an */
/** interrupt routine, and that that change is vis-*/
/** ible in the main loop. */
volatile bool looptimerflag;
/** function called by Ticker "looptimer" */
/** variable 'looptimerflag' is set to 'true' */
/** each time the looptimer expires. */
void setlooptimerflag(void)
{
looptimerflag = true;
}
//emg variabelen
float emg_value_biceps, emg_value_triceps, emg_value_flexoren, emg_value_extensoren, dy;
AnalogIn emg_biceps(PTB0); //Analog input
AnalogIn emg_triceps(PTB1);
AnalogIn emg_flexoren(PTB2);
AnalogIn emg_extensoren(PTB3);
/*
DIT IS DE FILTER FUNCTIE! aanroepen door "filter(signaal nummer)"
filter(1): biceps meten
filter(2): triceps meten
filter(3): flexoren meten
filter(3): extensoren meten
*/
float filter(int sig_number){
float sig_out;
// eerst variabelen definieren
//biceps
//filter 1
float in0_biceps =0;
static float in1_biceps =0, in2_biceps = 0, in3_biceps = 0, in4_biceps = 0;
static float out0_biceps = 0, out1_biceps = 0 , out2_biceps = 0, out3_biceps = 0, out4_biceps = 0;
//filter 2
float in0_2_biceps =0;
static float in1_2_biceps =0, in2_2_biceps = 0, in3_2_biceps = 0, in4_2_biceps = 0;
static float out0_2_biceps = 0, out1_2_biceps = 0 , out2_2_biceps = 0, out3_2_biceps = 0, out4_2_biceps = 0;
//filter 3
float in0_3_biceps =0;
static float in1_3_biceps =0, in2_3_biceps = 0, in3_3_biceps = 0, in4_3_biceps = 0;
static float out0_3_biceps = 0, out1_3_biceps = 0 , out2_3_biceps = 0, out3_3_biceps = 0, out4_3_biceps = 0;
//triceps
//filter 1
float in0_triceps =0;
static float in1_triceps =0, in2_triceps = 0, in3_triceps = 0, in4_triceps = 0;
static float out0_triceps = 0, out1_triceps = 0 , out2_triceps = 0, out3_triceps = 0, out4_triceps = 0;
//filter 2
float in0_2_triceps =0;
static float in1_2_triceps =0, in2_2_triceps = 0, in3_2_triceps = 0, in4_2_triceps = 0;
static float out0_2_triceps = 0, out1_2_triceps = 0 , out2_2_triceps = 0, out3_2_triceps = 0, out4_2_triceps = 0;
//filter 3
float in0_3_triceps =0;
static float in1_3_triceps =0, in2_3_triceps = 0, in3_3_triceps = 0, in4_3_triceps = 0;
static float out0_3_triceps = 0, out1_3_triceps = 0 , out2_3_triceps = 0, out3_3_triceps = 0, out4_3_triceps = 0;
//flexoren
//filter 1
float in0_flexoren =0;
static float in1_flexoren =0, in2_flexoren = 0, in3_flexoren = 0, in4_flexoren = 0;
static float out0_flexoren = 0, out1_flexoren = 0 , out2_flexoren = 0, out3_flexoren = 0, out4_flexoren = 0;
//filter 2
float in0_2_flexoren =0;
static float in1_2_flexoren =0, in2_2_flexoren = 0, in3_2_flexoren = 0, in4_2_flexoren = 0;
static float out0_2_flexoren = 0, out1_2_flexoren = 0 , out2_2_flexoren = 0, out3_2_flexoren = 0, out4_2_flexoren = 0;
//filter 3
float in0_3_flexoren =0;
static float in1_3_flexoren =0, in2_3_flexoren = 0, in3_3_flexoren = 0, in4_3_flexoren = 0;
static float out0_3_flexoren = 0, out1_3_flexoren = 0 , out2_3_flexoren = 0, out3_3_flexoren = 0, out4_3_flexoren = 0;
//extensoren
//filter 1
float in0_extensoren =0;
static float in1_extensoren =0, in2_extensoren = 0, in3_extensoren = 0, in4_extensoren = 0;
static float out0_extensoren = 0, out1_extensoren = 0 , out2_extensoren = 0, out3_extensoren = 0, out4_extensoren = 0;
//filter 2
float in0_2_extensoren =0;
static float in1_2_extensoren =0, in2_2_extensoren = 0, in3_2_extensoren = 0, in4_2_extensoren = 0;
static float out0_2_extensoren = 0, out1_2_extensoren = 0 , out2_2_extensoren = 0, out3_2_extensoren = 0, out4_2_extensoren = 0;
//filter 3
float in0_3_extensoren =0;
static float in1_3_extensoren =0, in2_3_extensoren = 0, in3_3_extensoren = 0, in4_3_extensoren = 0;
static float out0_3_extensoren = 0, out1_3_extensoren = 0 , out2_3_extensoren = 0, out3_3_extensoren = 0, out4_3_extensoren = 0;
switch(sig_number){
case 1:
// signaal filteren op 15 Hz HIGHPASS
in4_biceps = in3_biceps; in3_biceps = in2_biceps; in2_biceps = in1_biceps; in1_biceps = in0_biceps;
in0_biceps = emg_biceps.read();
out4_biceps = out3_biceps; out3_biceps = out2_biceps; out2_biceps = out1_biceps; out1_biceps = out0_biceps;
out0_biceps = (NUM0*in0_biceps + NUM1*in1_biceps + NUM2*in2_biceps + NUM3*in3_biceps + NUM4*in4_biceps - DEN1*out1_biceps - DEN2*out2_biceps - DEN3*out3_biceps - DEN4*out4_biceps ) / DEN0;
//signaal filteren op 40 HZ LOWPASS
in4_2_biceps = in3_2_biceps; in3_2_biceps = in2_2_biceps; in2_2_biceps = in1_2_biceps; in1_2_biceps = in0_2_biceps;
in0_2_biceps = out0_biceps;
out4_2_biceps = out3_2_biceps; out3_2_biceps = out2_2_biceps; out2_2_biceps = out1_2_biceps; out1_2_biceps = out0_2_biceps;
out0_2_biceps = (NUM0_2*in0_2_biceps + NUM1_2*in1_2_biceps + NUM2_2*in2_2_biceps + NUM3_2*in3_2_biceps + NUM4_2*in4_2_biceps - DEN1_2*out1_2_biceps - DEN2_2*out2_2_biceps - DEN3_2*out3_2_biceps - DEN4_2*out4_2_biceps ) / DEN0_2;
//signaal filteren op 5Hz LOWPASS
in4_3_biceps = in3_3_biceps; in3_3_biceps = in2_3_biceps; in2_3_biceps = in1_3_biceps; in1_3_biceps = in0_3_biceps;
in0_3_biceps = abs(out0_2_biceps);
out4_3_biceps = out3_3_biceps; out3_3_biceps = out2_3_biceps; out2_3_biceps = out1_3_biceps; out1_3_biceps = out0_3_biceps;
out0_3_biceps = (NUM0_3*in0_3_biceps + NUM1_3*in1_3_biceps + NUM2_3*in2_3_biceps + NUM3_3*in3_3_biceps + NUM4_3*in4_3_biceps - DEN1_3*out1_3_biceps - DEN2_3*out2_3_biceps - DEN3_3*out3_3_biceps - DEN4_3*out4_3_biceps ) / DEN0_3;
sig_out = out0_3_biceps;
break;
case 2:
// signaal filteren op 15 Hz HIGHPASS
in4_triceps = in3_triceps; in3_triceps = in2_triceps; in2_triceps = in1_triceps; in1_triceps = in0_triceps;
in0_triceps = emg_triceps.read();
out4_triceps = out3_triceps; out3_triceps = out2_triceps; out2_triceps = out1_triceps; out1_triceps = out0_triceps;
out0_triceps = (NUM0*in0_triceps + NUM1*in1_triceps + NUM2*in2_triceps + NUM3*in3_triceps + NUM4*in4_triceps - DEN1*out1_triceps - DEN2*out2_triceps - DEN3*out3_triceps - DEN4*out4_triceps ) / DEN0;
//signaal filteren op 40 HZ LOWPASS
in4_2_triceps = in3_2_triceps; in3_2_triceps = in2_2_triceps; in2_2_triceps = in1_2_triceps; in1_2_triceps = in0_2_triceps;
in0_2_triceps = out0_triceps;
out4_2_triceps = out3_2_triceps; out3_2_triceps = out2_2_triceps; out2_2_triceps = out1_2_triceps; out1_2_triceps = out0_2_triceps;
out0_2_triceps = (NUM0_2*in0_2_triceps + NUM1_2*in1_2_triceps + NUM2_2*in2_2_triceps + NUM3_2*in3_2_triceps + NUM4_2*in4_2_triceps - DEN1_2*out1_2_triceps - DEN2_2*out2_2_triceps - DEN3_2*out3_2_triceps - DEN4_2*out4_2_triceps ) / DEN0_2;
//signaal filteren op 5Hz LOWPASS
in4_3_triceps = in3_3_triceps; in3_3_triceps = in2_3_triceps; in2_3_triceps = in1_3_triceps; in1_3_triceps = in0_3_triceps;
in0_3_triceps = abs(out0_2_triceps);
out4_3_triceps = out3_3_triceps; out3_3_triceps = out2_3_triceps; out2_3_triceps = out1_3_triceps; out1_3_triceps = out0_3_triceps;
out0_3_triceps = (NUM0_3*in0_3_triceps + NUM1_3*in1_3_triceps + NUM2_3*in2_3_triceps + NUM3_3*in3_3_triceps + NUM4_3*in4_3_triceps - DEN1_3*out1_3_triceps - DEN2_3*out2_3_triceps - DEN3_3*out3_3_triceps - DEN4_3*out4_3_triceps ) / DEN0_3;
sig_out = out0_3_triceps;
break;
case 3:
// signaal filteren op 15 Hz HIGHPASS
in4_flexoren = in3_flexoren; in3_flexoren = in2_flexoren; in2_flexoren = in1_flexoren; in1_flexoren = in0_flexoren;
in0_flexoren = emg_flexoren.read();
out4_flexoren = out3_flexoren; out3_flexoren = out2_flexoren; out2_flexoren = out1_flexoren; out1_flexoren = out0_flexoren;
out0_flexoren = (NUM0*in0_flexoren + NUM1*in1_flexoren + NUM2*in2_flexoren + NUM3*in3_flexoren + NUM4*in4_flexoren - DEN1*out1_flexoren - DEN2*out2_flexoren - DEN3*out3_flexoren - DEN4*out4_flexoren ) / DEN0;
//signaal filteren op 40 HZ LOWPASS
in4_2_flexoren = in3_2_flexoren; in3_2_flexoren = in2_2_flexoren; in2_2_flexoren = in1_2_flexoren; in1_2_flexoren = in0_2_flexoren;
in0_2_flexoren = out0_flexoren;
out4_2_flexoren = out3_2_flexoren; out3_2_flexoren = out2_2_flexoren; out2_2_flexoren = out1_2_flexoren; out1_2_flexoren = out0_2_flexoren;
out0_2_flexoren = (NUM0_2*in0_2_flexoren + NUM1_2*in1_2_flexoren + NUM2_2*in2_2_flexoren + NUM3_2*in3_2_flexoren + NUM4_2*in4_2_flexoren - DEN1_2*out1_2_flexoren - DEN2_2*out2_2_flexoren - DEN3_2*out3_2_flexoren - DEN4_2*out4_2_flexoren ) / DEN0_2;
//signaal filteren op 5Hz LOWPASS
in4_3_flexoren = in3_3_flexoren; in3_3_flexoren = in2_3_flexoren; in2_3_flexoren = in1_3_flexoren; in1_3_flexoren = in0_3_flexoren;
in0_3_flexoren = abs(out0_2_flexoren);
out4_3_flexoren = out3_3_flexoren; out3_3_flexoren = out2_3_flexoren; out2_3_flexoren = out1_3_flexoren; out1_3_flexoren = out0_3_flexoren;
out0_3_flexoren = (NUM0_3*in0_3_flexoren + NUM1_3*in1_3_flexoren + NUM2_3*in2_3_flexoren + NUM3_3*in3_3_flexoren + NUM4_3*in4_3_flexoren - DEN1_3*out1_3_flexoren - DEN2_3*out2_3_flexoren - DEN3_3*out3_3_flexoren - DEN4_3*out4_3_flexoren ) / DEN0_3;
sig_out = out0_3_flexoren;
break;
case 4:
// signaal filteren op 15 Hz HIGHPASS
in4_extensoren = in3_extensoren; in3_extensoren = in2_extensoren; in2_extensoren = in1_extensoren; in1_extensoren = in0_extensoren;
in0_extensoren = emg_extensoren.read();
out4_extensoren = out3_extensoren; out3_extensoren = out2_extensoren; out2_extensoren = out1_extensoren; out1_extensoren = out0_extensoren;
out0_extensoren = (NUM0*in0_extensoren + NUM1*in1_extensoren + NUM2*in2_extensoren + NUM3*in3_extensoren + NUM4*in4_extensoren - DEN1*out1_extensoren - DEN2*out2_extensoren - DEN3*out3_extensoren - DEN4*out4_extensoren ) / DEN0;
//signaal filteren op 40 HZ LOWPASS
in4_2_extensoren = in3_2_extensoren; in3_2_extensoren = in2_2_extensoren; in2_2_extensoren = in1_2_extensoren; in1_2_extensoren = in0_2_extensoren;
in0_2_extensoren = out0_extensoren;
out4_2_extensoren = out3_2_extensoren; out3_2_extensoren = out2_2_extensoren; out2_2_extensoren = out1_2_extensoren; out1_2_extensoren = out0_2_extensoren;
out0_2_extensoren = (NUM0_2*in0_2_extensoren + NUM1_2*in1_2_extensoren + NUM2_2*in2_2_extensoren + NUM3_2*in3_2_extensoren + NUM4_2*in4_2_extensoren - DEN1_2*out1_2_extensoren - DEN2_2*out2_2_extensoren - DEN3_2*out3_2_extensoren - DEN4_2*out4_2_extensoren ) / DEN0_2;
//signaal filteren op 5Hz LOWPASS
in4_3_extensoren = in3_3_extensoren; in3_3_extensoren = in2_3_extensoren; in2_3_extensoren = in1_3_extensoren; in1_3_extensoren = in0_3_extensoren;
in0_3_extensoren = abs(out0_2_extensoren);
out4_3_extensoren = out3_3_extensoren; out3_3_extensoren = out2_3_extensoren; out2_3_extensoren = out1_3_extensoren; out1_3_extensoren = out0_3_extensoren;
out0_3_extensoren = (NUM0_3*in0_3_extensoren + NUM1_3*in1_3_extensoren + NUM2_3*in2_3_extensoren + NUM3_3*in3_3_extensoren + NUM4_3*in4_3_extensoren - DEN1_3*out1_3_extensoren - DEN2_3*out2_3_extensoren - DEN3_3*out3_3_extensoren - DEN4_3*out4_3_extensoren ) / DEN0_3;
sig_out = out0_3_extensoren;
break;
}
return sig_out;
}
int main()
{
//LOCAL VARIABLES
/*Potmeter input*/
AnalogIn potmeterA(PTC2);
AnalogIn potmeterB(PTB2);
/* Encoder, using my encoder library */
/* First pin should be PTDx or PTAx */
/* because those pins can be used as */
/* InterruptIn */
Encoder motorA(PTD4,PTC8);
Encoder motorB(PTD0,PTD2);
/* MODSERIAL to get non-blocking Serial*/
MODSERIAL pc(USBTX,USBRX);
/* PWM control to motor */
PwmOut pwm_motorA(PTA12);
PwmOut pwm_motorB(PTA5);
/* Direction pin */
DigitalOut motordirA(PTD3);
DigitalOut motordirB(PTD1);
/* variable to store setpoint in */
float setpointA;
float setpointB;
float setpoint_beginA;
float setpoint_beginB;
float setpoint_rechtsonderA;
float setpoint_rechtsonderB;
/* variable to store pwm value in*/
float pwm_to_motorA;
float pwm_to_begin_motorA = 0;
float pwm_to_begin_motorB = 0;
float pwm_to_motorB;
float pwm_to_rechtsonder_motorA;
float pwm_to_rechtsonder_motorB;
const float dt = 0.002;
float Kp = 0.001; //0.0113
float Ki = 0.0759;
float Kd = 0.0004342;
float error_t0_A = 0;
float error_t0_B = 0;
float error_ti_A;
float error_ti_B;
float error_t_1_A;
float error_t_1_B;
float P_regelaar_A;
float P_regelaar_B;
float I_regelaar_A;
float I_regelaar_B;
float D_regelaar_A;
float D_regelaar_B;
float output_regelaar_A;
float output_regelaar_B;
float integral_i_A;
float integral_i_B;
float integral_0_A = 0;
float integral_0_B = 0;
int32_t positionmotorA_t0;
int32_t positionmotorB_t0;
int32_t positionmotorA_t_1;
int32_t positionmotorB_t_1;
int32_t positiondifference_motorA;
int32_t positiondifference_motorB;
//START OF CODE
while(1) {
while(!toggle);
{ // wait while toggle == 0
toggle_on();
/*Set the baudrate (use this number in RealTerm too!) */
pc.baud(115200);
// in dit stukje code zorgen we ervoor dat de arm gaat draaien naar rechts en stopt als het tegen het frame komt. Eerst motor B botsen dan motor A botsen.
// motor B zit onder en motor A zit boven en dus op zijn kop (en dus setpoint moet - zijn).
motordirB.write(0);
pwm_motorB.write(.08);
positionmotorB_t0 = motorB.getPosition();
do {
wait(0.2);
positionmotorB_t_1 = positionmotorB_t0 ;
positionmotorB_t0 = motorB.getPosition();
positiondifference_motorB = abs(positionmotorB_t0 - positionmotorB_t_1);
} while(positiondifference_motorB > 10);
motorB.setPosition(0);
pwm_motorB.write(0);
wait(1); // willen nu even dat tussen ene actie en andere actie 1 seconde wacht.
motordirA.write(1);
pwm_motorA.write(.08);
positionmotorA_t0 = motorA.getPosition();
do {
wait(0.2);
positionmotorA_t_1 = positionmotorA_t0 ;
positionmotorA_t0 = motorA.getPosition();
positiondifference_motorA = abs(positionmotorA_t0 - positionmotorA_t_1);
} while(positiondifference_motorA > 10);
motorA.setPosition(0);
pwm_motorA.write(0);
wait(1); // willen nu even dat tussen ene actie en andere actie 1 seconde wacht.
// Hierna willen we de motor van zijn alleruiterste positie naar de x-as hebben. Hiervoor moet motor A eerst op de x-as worden gezet. Hiervoor moet motor A 4.11 graden (63) naar links.
motordirA.write(0);
pwm_motorA.write(.08);
do {
setpoint_beginA = -63; // x-as
pwm_to_begin_motorA = abs((setpoint_beginA + motorA.getPosition()) *.001); // + omdat men met een negatieve hoekverdraaiing werkt.
wait(0.2);
keep_in_range(&pwm_to_begin_motorA, -1, 1 );
motordirA.write(0);
pwm_motorA.write(pwm_to_begin_motorA);
} while(pwm_to_begin_motorA <= 0);
motorA.setPosition(0);
pwm_motorA.write(0);
wait(1); // willen nu even dat tussen ene actie en andere actie 1 seconde wacht.
// hierna moet motor A naar de rechtsonder A4. Motor A 532.
motordirA.write(0);
pwm_motorA.write(0.08);
do {
setpoint_beginA = -532; // rechtsonder positie A4
pwm_to_begin_motorA = abs((setpoint_beginA + motorA.getPosition()) *.001);
wait(0.2);
keep_in_range(&pwm_to_begin_motorA, -1, 1 );
motordirA.write(0);
pwm_motorA.write(pwm_to_begin_motorA);
} while(pwm_to_begin_motorA <= 0);
pwm_motorA.write(0);
wait(1);
// Hierna moet motor B 21.6 (192) graden naar links om naar x-as te gaan.
motordirB.write(1);
pwm_motorB.write(.08);
do {
setpoint_beginB = 192; // x-as
pwm_to_begin_motorB = abs((setpoint_beginB - motorB.getPosition()) *.001);
wait(0.2);
keep_in_range(&pwm_to_begin_motorB, -1, 1 );
motordirB.write(1);
pwm_motorB.write(pwm_to_begin_motorB);
} while(pwm_to_begin_motorB <= 0);
motorB.setPosition(0);
pwm_motorB.write(0);
wait(1); // willen nu even dat tussen ene actie en andere actie 1 seconde wacht.
// Hierna moet motor B van x-as naar de rechtsonder A4 positie. Motor B 460.
motordirB.write(1);
pwm_motorB.write(0.08);
do {
setpoint_beginB = 460; // rechtsonder positie A4
pwm_to_begin_motorB = abs((setpoint_beginB - motorB.getPosition()) *.001);
wait(0.2);
keep_in_range(&pwm_to_begin_motorB, -1, 1 );
motordirB.write(1);
pwm_motorB.write(pwm_to_begin_motorB);
} while(pwm_to_begin_motorB <= 0);
pwm_motorB.write(0);
wait(1);
// Nu zijn de motoren gekalibreed en staan ze op de startpositie.
// Hierna het script dat EMG wordt omgezet in een positie verandering
/*Create a ticker, and let it call the */
/*function 'setlooptimerflag' every 0.01s */
Ticker looptimer;
looptimer.attach(setlooptimerflag,0.01);
//INFINITE LOOP
while(1) {
while(looptimerflag != true);
looptimerflag = false;
// HIER EMG!!
float emg_value_biceps;
float emg_value_triceps;
float emg_value_flexoren;
float emg_value_extensoren;
float dy;
emg_value_biceps = ((100*(filter(1))-0.18)/0.49);
emg_value_triceps = ((100*(filter(2))-0.18)/0.35);
//emg_value_flexoren = 100*filter(3);
//emg_value_extensoren = 100*filter(4);
if(emg_value_biceps < 0.10){
emg_value_biceps=0;
}
else {
emg_value_biceps = emg_value_biceps;
}
if(emg_value_triceps < 0.20){
emg_value_triceps=0;
}
else {
emg_value_triceps=emg_value_triceps;
}
dy = emg_value_biceps-emg_value_triceps;
dy=dy*10;
if(pc.rxBufferGetSize(0)-pc.rxBufferGetCount() > 30)
pc.printf("%.6f\n",dy);
//setpointA = (potmeterA.read()-0.09027)*(631); // bereik van 71 graden dit afhankelijk van waar nul punt zit en waar heel wil. Dus afh. van EMG lezen bij EMG wordt 0.5 - 0.09027
//setpointB = (potmeterB.read())*(415); // bereik van 46.7 graden
//pc.printf("s: %f, %d ", setpointA, motorA.getPosition());
//pc.printf("s: %f, %d ", setpointB, motorB.getPosition());
setpointB = (dy);
//setpointB = (potmeterB.read() - 0.5) * (871/2);
// motor A moet de hoek altijd binnen 53.4 tot en met 124.3 graden liggen
// motor B moet de hoek altijd binnen 30.2 tot en met -16.5 graden liggen
keep_in_range(&setpointA, -1105, -474); // voor motor moet bereik zijn -1105 tot -474
keep_in_range(&setpointB, -147, 269); // voor motor moet bereik zijn -147 tot 269
// PID regelaar voor motor A
//wait(dt);
//error_ti_A = setpointA - motorA.getPosition();
//P_regelaar_A = Kp * error_ti_A;
//D_regelaar_A = Kd * ((error_ti_A - error_t0_A) / dt);
//integral_i_A = integral_0_A + (error_ti_A * dt);
//I_regelaar_A = Ki * integral_i_A;
//integral_0_A = integral_i_A;
//error_t0_A = error_ti_A;
//output_regelaar_A = P_regelaar_A;
// PID regelaar voor motor B
//wait(dt);
//error_ti_B = setpointB - motorB.getPosition();
//P_regelaar_B = Kp * error_ti_B;
//D_regelaar_B = Kd * ((error_ti_B - error_t0_B) / dt);
//integral_i_B = integral_0_B + (error_ti_B * dt);
//I_regelaar_B = Ki * integral_i_B;
//integral_0_B = integral_i_B;
//error_t0_B = error_ti_B;
//output_regelaar_B = P_regelaar_B;
/* This is a PID-action! store in pwm_to_motor */
pwm_to_motorA = (setpointA - motorA.getPosition())*.001; //output_regelaar_A;
pwm_to_motorB = (setpointB); //- motorB.getPosition())*.001; //output_regelaar_B;
keep_in_range(&pwm_to_motorA, -1,1);
keep_in_range(&pwm_to_motorB, -1,1);
if(pwm_to_motorA > 0)
motordirA.write(1);
else
motordirA.write(0);
if(pwm_to_motorB > 0)
motordirB.write(1);
else
motordirB.write(0);
pwm_motorA.write(abs(pwm_to_motorA));
pwm_motorB.write(abs(pwm_to_motorB));
}
}
while(toggle);
{ // wait while toggle == 1
toggle_off();
pwm_motorA.write(0);
pwm_motorB.write(0);
}
}
}
void keep_in_range(float * in, float min, float max)
{
*in > min ? *in < max? : *in = max: *in = min;
}
