test

Dependencies:   mbed BufferedSerial SX1276GenericLib X_NUCLEO_IKS01A2

main.cpp

Committer:
TMRL123
Date:
2019-04-18
Revision:
0:a73914f20498
Child:
1:92160b13f3c3
Child:
2:a0cfe0efcc5e

File content as of revision 0:a73914f20498:

/* Includes */
#include "mbed.h" /* Mbed include */

#include "XNucleoIKS01A2.h" /* Sensors include*/

/* LoRa includes */
#include "PinMap.h" 
#include "sx1276-mbed-hal.h" 

/* LoRa definitions */

/* Set this flag to '1' to display debug messages on the console */
#define DEBUG_MESSAGE   1

/* Set this flag to '1' to use the LoRa modulation or to '0' to use FSK modulation */
#define USE_MODEM_LORA  1
#define USE_MODEM_FSK   !USE_MODEM_LORA
#define RF_FREQUENCY            RF_FREQUENCY_915_0  // Hz
#define TX_OUTPUT_POWER         14                  // 14 dBm

#if USE_MODEM_LORA == 1

#define LORA_BANDWIDTH          125000  // LoRa default, details in SX1276::BandwidthMap
#define LORA_SPREADING_FACTOR   LORA_SF7
#define LORA_CODINGRATE         LORA_ERROR_CODING_RATE_4_5

#define LORA_PREAMBLE_LENGTH    8       // Same for Tx and Rx
#define LORA_SYMBOL_TIMEOUT     5       // Symbols
#define LORA_FIX_LENGTH_PAYLOAD_ON  false
#define LORA_FHSS_ENABLED       false  
#define LORA_NB_SYMB_HOP        4     
#define LORA_IQ_INVERSION_ON    false
#define LORA_CRC_ENABLED        true
    
#endif 


#define RX_TIMEOUT_VALUE    3500    // in ms

//#define BUFFER_SIZE       32        // Define the payload size here
#define BUFFER_SIZE         512       // Define the payload size here

/* Sensors instances */

/* Instantiate the expansion board */
static XNucleoIKS01A2 *mems_expansion_board = XNucleoIKS01A2::instance(D14, D15, D4, D5);

/* Retrieve the composing elements of the expansion board */
static LSM303AGRMagSensor *magnetometer = mems_expansion_board->magnetometer;
static HTS221Sensor *hum_temp = mems_expansion_board->ht_sensor;
static LPS22HBSensor *press_temp = mems_expansion_board->pt_sensor;
static LSM6DSLSensor *acc_gyro = mems_expansion_board->acc_gyro;
static LSM303AGRAccSensor *accelerometer = mems_expansion_board->accelerometer;

char buffer1[32], buffer2[32]; // buffers to help theprinting of doubles

uint32_t dados[16]; //data vector

/* LoRa modem instances and configurations */

static RadioEvents_t RadioEvents; // Calback functions struct

SX1276Generic *Radio; //Defenition of a Radio object

/*Configuration function*/
void SystemClock_Config(void);

 bool transmited = true;

/* Callback functions prototypes */
void OnTxDone(void *radio, void *userThisPtr, void *userData);

void OnRxDone(void *radio, void *userThisPtr, void *userData, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );

void OnTxTimeout(void *radio, void *userThisPtr, void *userData);

void OnRxTimeout(void *radio, void *userThisPtr, void *userData);

void OnRxError(void *radio, void *userThisPtr, void *userData);

void OnFhssChangeChannel(void *radio, void *userThisPtr, void *userData, uint8_t channelIndex);

void OnCadDone(void *radio, void *userThisPtr, void *userData);

/* Serial communication to debug program */

Serial pc(USBTX,USBRX);

int main() {
    /* General Header*/
    
    pc.printf("Telemetry Tx inicial version program\r\n\r\n");
    
    uint8_t id; //Sensor id parameter for debug purpose
    
    /* Enable all sensors */
    hum_temp->enable();
    press_temp->enable();
    magnetometer->enable();
    accelerometer->enable();
    acc_gyro->enable_x();
    acc_gyro->enable_g();
      
    pc.printf("\r\n--- Starting the sensors ---\r\n");
    
    hum_temp->read_id(&id);
    pc.printf("HTS221  humidity & temperature    = 0x%X\r\n", id);
    press_temp->read_id(&id);
    pc.printf("LPS22HB  pressure & temperature   = 0x%X\r\n", id);
    magnetometer->read_id(&id);
    pc.printf("LSM303AGR magnetometer            = 0x%X\r\n", id);
    accelerometer->read_id(&id);
    pc.printf("LSM303AGR accelerometer           = 0x%X\r\n", id);
    acc_gyro->read_id(&id);
    pc.printf("LSM6DSL accelerometer & gyroscope = 0x%X\r\n", id);
    
    pc.printf("\r\n");
    
        /* Radio setup */
     pc.printf("\r\n--- Starting the modem LoRa ---\r\n");
    
    Radio = new SX1276Generic(NULL, MURATA_SX1276,
            LORA_SPI_MOSI, LORA_SPI_MISO, LORA_SPI_SCLK, LORA_CS, LORA_RESET,
            LORA_DIO0, LORA_DIO1, LORA_DIO2, LORA_DIO3, LORA_DIO4, LORA_DIO5,
            LORA_ANT_RX, LORA_ANT_TX, LORA_ANT_BOOST, LORA_TCXO);
    pc.printf("SX1276 Simple transmission aplication\r\n" );
    pc.printf("Frequency: %.1f\r\n", (double)RF_FREQUENCY/1000000.0);
    pc.printf("TXPower: %d dBm\r\n",  TX_OUTPUT_POWER);
    pc.printf("Bandwidth: %d Hz\r\n", LORA_BANDWIDTH);
    pc.printf("Spreading factor: SF%d\r\n", LORA_SPREADING_FACTOR);
    
    // Initialize Radio driver
    RadioEvents.TxDone = OnTxDone;
    RadioEvents.RxDone = OnRxDone;
    RadioEvents.RxError = OnRxError;
    RadioEvents.TxTimeout = OnTxTimeout;
    RadioEvents.RxTimeout = OnRxTimeout;    
    while (Radio->Init( &RadioEvents ) == false) {
        pc.printf("Radio could not be detected!\r\n");
        wait( 1 );
    }
    
    switch(Radio->DetectBoardType()) {
        case SX1276MB1LAS:
            if (DEBUG_MESSAGE)
                pc.printf(" > Board Type: SX1276MB1LAS <\r\n");
            break;
        case SX1276MB1MAS:
            if (DEBUG_MESSAGE)
                pc.printf(" > Board Type: SX1276MB1LAS <\r\n");
        case MURATA_SX1276:
            if (DEBUG_MESSAGE)
                pc.printf(" > Board Type: MURATA_SX1276_STM32L0 <\r\n");
            break;
        case RFM95_SX1276:
            if (DEBUG_MESSAGE)
                pc.printf(" > HopeRF RFM95xx <\r\n");
            break;
        default:
            pc.printf(" > Board Type: unknown <\r\n");
    }
    
    Radio->SetChannel(RF_FREQUENCY );
    
    if (LORA_FHSS_ENABLED)
        pc.printf("             > LORA FHSS Mode <\r\n");
    if (!LORA_FHSS_ENABLED)
        pc.printf("             > LORA Mode <\r\n");
        
    pc.printf("\r\n");
        
    Radio->SetTxConfig( MODEM_LORA, TX_OUTPUT_POWER, 0, LORA_BANDWIDTH,
                         LORA_SPREADING_FACTOR, LORA_CODINGRATE,
                         LORA_PREAMBLE_LENGTH, LORA_FIX_LENGTH_PAYLOAD_ON,
                         LORA_CRC_ENABLED, LORA_FHSS_ENABLED, LORA_NB_SYMB_HOP, 
                         LORA_IQ_INVERSION_ON, 2000 );
    
    Radio->SetRxConfig( MODEM_LORA, LORA_BANDWIDTH, LORA_SPREADING_FACTOR,
                         LORA_CODINGRATE, 0, LORA_PREAMBLE_LENGTH,
                         LORA_SYMBOL_TIMEOUT, LORA_FIX_LENGTH_PAYLOAD_ON, 0,
                         LORA_CRC_ENABLED, LORA_FHSS_ENABLED, LORA_NB_SYMB_HOP, 
                         LORA_IQ_INVERSION_ON, true );
      
    Radio->Tx(1000000);
    
    while(1) {   
        float p; //pressure
        float temperatureHTS221; //temperature from HTS221
        float humidity; //humidity
        float temperatureLPS22HB; //temperature from LPS22HB
        int32_t w[3]; //angular velocity
        int32_t a[3]; //acceleration of the accelerometer LSM303AGR
        int32_t ag[3]; //acceleration of the accelerometer and gyroscope LSM6DSL 
        int32_t m [3]; //heading 
        
        press_temp->get_pressure(&p); //get the pressure
        press_temp->get_temperature(&temperatureLPS22HB); //get temperature from LPS22HB
        accelerometer->get_x_axes(a);//get the acceleration
        acc_gyro->get_x_axes(ag);//get the acceleration
        acc_gyro->get_g_axes(w);//get the angular velocity
        magnetometer->get_m_axes(m); //get the magnetometer heading
        hum_temp->get_temperature(&temperatureHTS221); //get temperature from HTS221
        hum_temp->get_humidity(&humidity); //get humidity
        
        
        //sensors data
        
        dados[0] = a[0];
        dados[1] = a[1];
        dados[2] = a[2];
        dados[3] = ag[0];
        dados[4] = ag[1];
        dados[5] = ag[2];
        dados[6] = w[0];
        dados[7] = w[1];
        dados[8] = w[2];
        dados[9] = m[0];
        dados[10] = m[1];
        dados[11] = m[2];
        dados[12] = humidity;
        dados[13] = temperatureHTS221;
        dados[14] = temperatureLPS22HB;
        dados[15] = p;
        
        if (transmited==true) {
            transmited = false;
            wait_ms(10);
            Radio->Send( dados, sizeof(dados) );
        }
    }
}

void SystemClock_Config(void)
{
#ifdef B_L072Z_LRWAN1_LORA
    /* 
     * The L072Z_LRWAN1_LORA clock setup is somewhat differnt from the Nucleo board.
     * It has no LSE.
     */
    RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    RCC_OscInitTypeDef RCC_OscInitStruct = {0};

    /* Enable HSE Oscillator and Activate PLL with HSE as source */
    RCC_OscInitStruct.OscillatorType      = RCC_OSCILLATORTYPE_HSI;
    RCC_OscInitStruct.HSEState            = RCC_HSE_OFF;
    RCC_OscInitStruct.HSIState            = RCC_HSI_ON;
    RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
    RCC_OscInitStruct.PLL.PLLState        = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource       = RCC_PLLSOURCE_HSI;
    RCC_OscInitStruct.PLL.PLLMUL          = RCC_PLLMUL_6;
    RCC_OscInitStruct.PLL.PLLDIV          = RCC_PLLDIV_3;

    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
        // Error_Handler();
    }

    /* Set Voltage scale1 as MCU will run at 32MHz */
    __HAL_RCC_PWR_CLK_ENABLE();
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    /* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */
    while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {};

    /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
    clocks dividers */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
        // Error_Handler();
    }
#endif
}

/* Helper function for printing floats & doubles */
static char *print_double(char* str, double v, int decimalDigits=2)
{
  int i = 1;
  int intPart, fractPart;
  int len;
  char *ptr;

  /* prepare decimal digits multiplicator */
  for (;decimalDigits!=0; i*=10, decimalDigits--);

  /* calculate integer & fractinal parts */
  intPart = (int)v;
  fractPart = (int)((v-(double)(int)v)*i);

  /* fill in integer part */
  sprintf(str, "%i.", intPart);

  /* prepare fill in of fractional part */
  len = strlen(str);
  ptr = &str[len];

  /* fill in leading fractional zeros */
  for (i/=10;i>1; i/=10, ptr++) {
    if (fractPart >= i) {
      break;
    }
    *ptr = '0';
  }

  /* fill in (rest of) fractional part */
  sprintf(ptr, "%i", fractPart);

  return str;
}

void OnTxDone(void *radio, void *userThisPtr, void *userData)
{   
    Radio->Sleep( );
    transmited = true;
    if (DEBUG_MESSAGE) {
        pc.printf("> OnTxDone\r\n");
        pc.printf("I transmited %6ld, %6ld, %6ld, %6ld, %6ld, %6ld, %6ld, %6ld, %6ld\r\n", dados[0], dados[1], dados[2], dados[3], dados[4], dados[5], dados[6], dados[7], dados[8]);
        pc.printf("and %6ld, %6ld, %6ld, %s, %7s, %7s %s\r\n", dados[9], dados[10], dados[11], print_double(buffer2, dados[12]), print_double(buffer1, dados[13]), print_double(buffer1, dados[14]), print_double(buffer2, dados[15]));
    }    
}

void OnRxDone(void *radio, void *userThisPtr, void *userData, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr)
{
    Radio->Sleep( );
    if (DEBUG_MESSAGE)
        pc.printf("> OnRxDone: RssiValue=%d dBm, SnrValue=%d\r\n", rssi, snr);
}

void OnTxTimeout(void *radio, void *userThisPtr, void *userData)
{
    Radio->Sleep( );
    if(DEBUG_MESSAGE)
        pc.printf("> OnTxTimeout\r\n");
}

void OnRxTimeout(void *radio, void *userThisPtr, void *userData)
{
    Radio->Sleep( );
    if (DEBUG_MESSAGE)
        pc.printf("> OnRxTimeout\r\n");
}

void OnRxError(void *radio, void *userThisPtr, void *userData)
{
    Radio->Sleep( );
    if (DEBUG_MESSAGE)
        pc.printf("> OnRxError\r\n");
}