d
Dependencies: mbed BufferedSerial SX1276GenericLib2
main.cpp
- Committer:
- TMRL123
- Date:
- 2019-06-05
- Revision:
- 0:fa750b405a24
File content as of revision 0:fa750b405a24:
/* Includes */ #include "mbed.h" /* Mbed include */ /* Lora includes */ #include "PinMap.h" #include "sx1276-mbed-hal.h" /* Serial communication include */ #include "BufferedSerial.h" /* Set this flag to '1' to display debug messages on the console */ #define DEBUG_MESSAGE 1 /* Set this flag to '1' to use the LoRa modulation or to '0' to use FSK modulation */ #define USE_MODEM_LORA 1 #define USE_MODEM_FSK !USE_MODEM_LORA #define RF_FREQUENCY RF_FREQUENCY_915_0 // Hz #define TX_OUTPUT_POWER 14 // 14 dBm #if USE_MODEM_LORA == 1 #define LORA_BANDWIDTH 125000 // LoRa default, details in SX1276::BandwidthMap #define LORA_SPREADING_FACTOR LORA_SF7 #define LORA_CODINGRATE LORA_ERROR_CODING_RATE_4_5 #define LORA_PREAMBLE_LENGTH 8 // Same for Tx and Rx #define LORA_SYMBOL_TIMEOUT 5 // Symbols #define LORA_FIX_LENGTH_PAYLOAD_ON false #define LORA_FHSS_ENABLED false #define LORA_NB_SYMB_HOP 4 #define LORA_IQ_INVERSION_ON false #define LORA_CRC_ENABLED true #endif #define RX_TIMEOUT_VALUE 0 // In ms #define TX_TIMEOUT_VALUE 1000000 // In ms //#define BUFFER_SIZE 32 // Define the payload size here #define BUFFER_SIZE 64 // Define the payload size here typedef struct { float p; // Pressure float temperatureHTS221; // Temperature from HTS221 float humidity; // Humidity float temperatureLPS22HB; // Temperature from LPS22HB int32_t w[3]; // Angular velocity int32_t a[3]; // Acceleration of the accelerometer LSM303AGR int32_t ag[3]; // Acceleration of the accelerometer and gyroscope LSM6DSL int32_t m [3]; // Heading }Dados; // Data struct Dados dados; /* LoRa modem instances and configurations */ static RadioEvents_t RadioEvents; // Calback functions struct SX1276Generic *Radio; // Definition of a Radio object bool received = false; // Flag to indicate the end of reception /* Configuration function */ void SystemClock_Config(void); /* Callback functions prototypes */ // Brief Function to be executed on Radio Tx Done event void OnTxDone(void *radio, void *userThisPtr, void *userData); // Brief Function to be executed on Radio Rx Done event void OnRxDone(void *radio, void *userThisPtr, void *userData, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr ); // Brief Function executed on Radio Tx Timeout event void OnTxTimeout(void *radio, void *userThisPtr, void *userData); // Brief Function executed on Radio Rx Timeout event void OnRxTimeout(void *radio, void *userThisPtr, void *userData); // Brief Function executed on Radio Rx Error event void OnRxError(void *radio, void *userThisPtr, void *userData); // Brief Function executed on Radio Fhss Change Channel event void OnFhssChangeChannel(void *radio, void *userThisPtr, void *userData, uint8_t channelIndex); // Brief Function executed on CAD Done event void OnCadDone(void *radio, void *userThisPtr, void *userData); /* Serial communication to debug program */ BufferedSerial *ser; int main() { SystemClock_Config(); /* Synchronize clock for TX and RX boards */ /* Serial configuration */ if (DEBUG_MESSAGE) { ser = new BufferedSerial(USBTX, USBRX); ser->baud(115200); ser->format(8); } /* General Header*/ if (DEBUG_MESSAGE) ser->printf("Telemetry Rx inicial version program\r\n\r\n"); Radio = new SX1276Generic(NULL, MURATA_SX1276, LORA_SPI_MOSI, LORA_SPI_MISO, LORA_SPI_SCLK, LORA_CS, LORA_RESET, LORA_DIO0, LORA_DIO1, LORA_DIO2, LORA_DIO3, LORA_DIO4, LORA_DIO5, LORA_ANT_RX, LORA_ANT_TX, LORA_ANT_BOOST, LORA_TCXO); if (DEBUG_MESSAGE) { ser->printf("SX1276 Simple receiver aplication\r\n" ); ser->printf("Frequency: %.1f\r\n", (double)RF_FREQUENCY/1000000.0); ser->printf("TXPower: %d dBm\r\n", TX_OUTPUT_POWER); ser->printf("Bandwidth: %d Hz\r\n", LORA_BANDWIDTH); ser->printf("Spreading factor: SF%d\r\n", LORA_SPREADING_FACTOR); } // Initialize Radio driver RadioEvents.TxDone = OnTxDone; RadioEvents.RxDone = OnRxDone; RadioEvents.RxError = OnRxError; RadioEvents.TxTimeout = OnTxTimeout; RadioEvents.RxTimeout = OnRxTimeout; // Initializes the radio while (Radio->Init( &RadioEvents ) == false) { if (DEBUG_MESSAGE) ser->printf("Radio could not be detected!\r\n"); wait( 1 ); } // Display the board type switch(Radio->DetectBoardType()) { case SX1276MB1LAS: if (DEBUG_MESSAGE) ser->printf(" > Board Type: SX1276MB1LAS <\r\n"); break; case SX1276MB1MAS: if (DEBUG_MESSAGE) ser->printf(" > Board Type: SX1276MB1LAS <\r\n"); case MURATA_SX1276: if (DEBUG_MESSAGE) ser->printf(" > Board Type: MURATA_SX1276_STM32L0 <\r\n"); break; case RFM95_SX1276: if (DEBUG_MESSAGE) ser->printf(" > HopeRF RFM95xx <\r\n"); break; default: if (DEBUG_MESSAGE) ser->printf(" > Board Type: unknown <\r\n"); } Radio->SetChannel(RF_FREQUENCY ); // Sets the frequency of the communication // Debug message of the state of fhss if (LORA_FHSS_ENABLED) { if (DEBUG_MESSAGE) ser->printf(" > LORA FHSS Mode <\r\n"); } if (!LORA_FHSS_ENABLED) { if (DEBUG_MESSAGE) ser->printf(" > LORA Mode <\r\n"); } // Sets the configuration of the transmission Radio->SetTxConfig( MODEM_LORA, TX_OUTPUT_POWER, 0, LORA_BANDWIDTH, LORA_SPREADING_FACTOR, LORA_CODINGRATE, LORA_PREAMBLE_LENGTH, LORA_FIX_LENGTH_PAYLOAD_ON, LORA_CRC_ENABLED, LORA_FHSS_ENABLED, LORA_NB_SYMB_HOP, LORA_IQ_INVERSION_ON, 2000 ); // Sets the configuration of the reception Radio->SetRxConfig( MODEM_LORA, LORA_BANDWIDTH, LORA_SPREADING_FACTOR, LORA_CODINGRATE, 0, LORA_PREAMBLE_LENGTH, LORA_SYMBOL_TIMEOUT, LORA_FIX_LENGTH_PAYLOAD_ON, 0, LORA_CRC_ENABLED, LORA_FHSS_ENABLED, LORA_NB_SYMB_HOP, LORA_IQ_INVERSION_ON, true ); if (DEBUG_MESSAGE) ser->printf("Starting Receive loop\r\n"); Radio->Rx(RX_TIMEOUT_VALUE); // Puts the device in reception mode continuously while( 1 ) { //After the receiving, puts the device again in receive mode if (received == true) { received = false; Radio->Rx(RX_TIMEOUT_VALUE); } } } void SystemClock_Config(void) { #ifdef B_L072Z_LRWAN1_LORA /* * The L072Z_LRWAN1_LORA clock setup is somewhat differnt from the Nucleo board. * It has no LSE. */ RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_OscInitTypeDef RCC_OscInitStruct = {0}; /* Enable HSE Oscillator and Activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSEState = RCC_HSE_OFF; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_6; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_3; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { // Error_Handler(); } /* Set Voltage scale1 as MCU will run at 32MHz */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */ while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {}; /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { // Error_Handler(); } #endif } void OnTxDone(void *radio, void *userThisPtr, void *userData) { Radio->Sleep( ); if (DEBUG_MESSAGE) ser->printf("> OnTxDone\r\n"); } void OnRxDone(void *radio, void *userThisPtr, void *userData, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr) { Radio->Sleep( ); received = true; memcpy(&dados, payload, sizeof(dados)); if (DEBUG_MESSAGE) { ser->printf("> OnRxDone: RssiValue=%d dBm, SnrValue=%d\r\n", rssi, snr); ser->printf("I received %d mg, %d mg, %d mg, %d mg, %d mg, %d mg, %d mdps, %d mdps, %d mdps\r\n", dados.a[0], dados.a[1], dados.a[2], dados.ag[0], dados.ag[1], dados.ag[2], dados.w[0], dados.w[1], dados.w[2]); ser->printf("and %d mG, %d mG, %d mG, %g %%, %g C, %g C, %g mBar\r\n", dados.m[0], dados.m[1], dados.m[2], dados.humidity, dados.temperatureHTS221, dados.temperatureLPS22HB, dados.p); } } void OnTxTimeout(void *radio, void *userThisPtr, void *userData) { Radio->Sleep( ); if(DEBUG_MESSAGE) ser->printf("> OnTxTimeout\r\n"); } void OnRxTimeout(void *radio, void *userThisPtr, void *userData) { Radio->Sleep( ); if (DEBUG_MESSAGE) ser->printf("> OnRxTimeout\r\n"); } void OnRxError(void *radio, void *userThisPtr, void *userData) { Radio->Sleep( ); received = true; if (DEBUG_MESSAGE) ser->printf("> OnRxError\r\n"); }