Demo program of sparkfun's low cost 9DoF IMU

Dependencies:   mbed

Fork of SparkfunSensorStick by Tyler Woei-A-Sack

Committer:
TMDub88
Date:
Mon Oct 31 01:44:39 2016 +0000
Revision:
0:10233c4107e1
Tyler Woei-A-Sack

Who changed what in which revision?

UserRevisionLine numberNew contents of line
TMDub88 0:10233c4107e1 1 /******************************************************************************
TMDub88 0:10233c4107e1 2 SFE_LSM9DS1.cpp
TMDub88 0:10233c4107e1 3 SFE_LSM9DS1 Library Source File
TMDub88 0:10233c4107e1 4 Jim Lindblom @ SparkFun Electronics
TMDub88 0:10233c4107e1 5 Original Creation Date: February 27, 2015
TMDub88 0:10233c4107e1 6 https://github.com/sparkfun/LSM9DS1_Breakout
TMDub88 0:10233c4107e1 7
TMDub88 0:10233c4107e1 8 This file implements all functions of the LSM9DS1 class. Functions here range
TMDub88 0:10233c4107e1 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
TMDub88 0:10233c4107e1 10 hardware reads and writes. Both SPI and I2C handler functions can be found
TMDub88 0:10233c4107e1 11 towards the bottom of this file.
TMDub88 0:10233c4107e1 12
TMDub88 0:10233c4107e1 13 Development environment specifics:
TMDub88 0:10233c4107e1 14 IDE: Arduino 1.6
TMDub88 0:10233c4107e1 15 Hardware Platform: Arduino Uno
TMDub88 0:10233c4107e1 16 LSM9DS1 Breakout Version: 1.0
TMDub88 0:10233c4107e1 17
TMDub88 0:10233c4107e1 18 This code is beerware; if you see me (or any other SparkFun employee) at the
TMDub88 0:10233c4107e1 19 local, and you've found our code helpful, please buy us a round!
TMDub88 0:10233c4107e1 20
TMDub88 0:10233c4107e1 21 Distributed as-is; no warranty is given.
TMDub88 0:10233c4107e1 22 ******************************************************************************/
TMDub88 0:10233c4107e1 23
TMDub88 0:10233c4107e1 24 #include "LSM9DS1.h"
TMDub88 0:10233c4107e1 25 #include "LSM9DS1_Registers.h"
TMDub88 0:10233c4107e1 26 #include "LSM9DS1_Types.h"
TMDub88 0:10233c4107e1 27 //#include <Wire.h> // Wire library is used for I2C
TMDub88 0:10233c4107e1 28 //#include <SPI.h> // SPI library is used for...SPI.
TMDub88 0:10233c4107e1 29
TMDub88 0:10233c4107e1 30 //#if defined(ARDUINO) && ARDUINO >= 100
TMDub88 0:10233c4107e1 31 // #include "Arduino.h"
TMDub88 0:10233c4107e1 32 //#else
TMDub88 0:10233c4107e1 33 // #include "WProgram.h"
TMDub88 0:10233c4107e1 34 //#endif
TMDub88 0:10233c4107e1 35
TMDub88 0:10233c4107e1 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
TMDub88 0:10233c4107e1 37
TMDub88 0:10233c4107e1 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
TMDub88 0:10233c4107e1 39 extern Serial pc;
TMDub88 0:10233c4107e1 40
TMDub88 0:10233c4107e1 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
TMDub88 0:10233c4107e1 42 :i2c(sda, scl)
TMDub88 0:10233c4107e1 43 {
TMDub88 0:10233c4107e1 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
TMDub88 0:10233c4107e1 45 }
TMDub88 0:10233c4107e1 46 /*
TMDub88 0:10233c4107e1 47 LSM9DS1::LSM9DS1()
TMDub88 0:10233c4107e1 48 {
TMDub88 0:10233c4107e1 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
TMDub88 0:10233c4107e1 50 }
TMDub88 0:10233c4107e1 51
TMDub88 0:10233c4107e1 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
TMDub88 0:10233c4107e1 53 {
TMDub88 0:10233c4107e1 54 init(interface, xgAddr, mAddr);
TMDub88 0:10233c4107e1 55 }
TMDub88 0:10233c4107e1 56 */
TMDub88 0:10233c4107e1 57
TMDub88 0:10233c4107e1 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
TMDub88 0:10233c4107e1 59 {
TMDub88 0:10233c4107e1 60 settings.device.commInterface = interface;
TMDub88 0:10233c4107e1 61 settings.device.agAddress = xgAddr;
TMDub88 0:10233c4107e1 62 settings.device.mAddress = mAddr;
TMDub88 0:10233c4107e1 63
TMDub88 0:10233c4107e1 64 settings.gyro.enabled = true;
TMDub88 0:10233c4107e1 65 settings.gyro.enableX = true;
TMDub88 0:10233c4107e1 66 settings.gyro.enableY = true;
TMDub88 0:10233c4107e1 67 settings.gyro.enableZ = true;
TMDub88 0:10233c4107e1 68 // gyro scale can be 245, 500, or 2000
TMDub88 0:10233c4107e1 69 settings.gyro.scale = 245;
TMDub88 0:10233c4107e1 70 // gyro sample rate: value between 1-6
TMDub88 0:10233c4107e1 71 // 1 = 14.9 4 = 238
TMDub88 0:10233c4107e1 72 // 2 = 59.5 5 = 476
TMDub88 0:10233c4107e1 73 // 3 = 119 6 = 952
TMDub88 0:10233c4107e1 74 settings.gyro.sampleRate = 6;
TMDub88 0:10233c4107e1 75 // gyro cutoff frequency: value between 0-3
TMDub88 0:10233c4107e1 76 // Actual value of cutoff frequency depends
TMDub88 0:10233c4107e1 77 // on sample rate.
TMDub88 0:10233c4107e1 78 settings.gyro.bandwidth = 0;
TMDub88 0:10233c4107e1 79 settings.gyro.lowPowerEnable = false;
TMDub88 0:10233c4107e1 80 settings.gyro.HPFEnable = false;
TMDub88 0:10233c4107e1 81 // Gyro HPF cutoff frequency: value between 0-9
TMDub88 0:10233c4107e1 82 // Actual value depends on sample rate. Only applies
TMDub88 0:10233c4107e1 83 // if gyroHPFEnable is true.
TMDub88 0:10233c4107e1 84 settings.gyro.HPFCutoff = 0;
TMDub88 0:10233c4107e1 85 settings.gyro.flipX = false;
TMDub88 0:10233c4107e1 86 settings.gyro.flipY = false;
TMDub88 0:10233c4107e1 87 settings.gyro.flipZ = false;
TMDub88 0:10233c4107e1 88 settings.gyro.orientation = 0;
TMDub88 0:10233c4107e1 89 settings.gyro.latchInterrupt = true;
TMDub88 0:10233c4107e1 90
TMDub88 0:10233c4107e1 91 settings.accel.enabled = true;
TMDub88 0:10233c4107e1 92 settings.accel.enableX = true;
TMDub88 0:10233c4107e1 93 settings.accel.enableY = true;
TMDub88 0:10233c4107e1 94 settings.accel.enableZ = true;
TMDub88 0:10233c4107e1 95 // accel scale can be 2, 4, 8, or 16
TMDub88 0:10233c4107e1 96 settings.accel.scale = 2;
TMDub88 0:10233c4107e1 97 // accel sample rate can be 1-6
TMDub88 0:10233c4107e1 98 // 1 = 10 Hz 4 = 238 Hz
TMDub88 0:10233c4107e1 99 // 2 = 50 Hz 5 = 476 Hz
TMDub88 0:10233c4107e1 100 // 3 = 119 Hz 6 = 952 Hz
TMDub88 0:10233c4107e1 101 settings.accel.sampleRate = 6;
TMDub88 0:10233c4107e1 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
TMDub88 0:10233c4107e1 103 // -1 = bandwidth determined by sample rate
TMDub88 0:10233c4107e1 104 // 0 = 408 Hz 2 = 105 Hz
TMDub88 0:10233c4107e1 105 // 1 = 211 Hz 3 = 50 Hz
TMDub88 0:10233c4107e1 106 settings.accel.bandwidth = -1;
TMDub88 0:10233c4107e1 107 settings.accel.highResEnable = false;
TMDub88 0:10233c4107e1 108 // accelHighResBandwidth can be any value between 0-3
TMDub88 0:10233c4107e1 109 // LP cutoff is set to a factor of sample rate
TMDub88 0:10233c4107e1 110 // 0 = ODR/50 2 = ODR/9
TMDub88 0:10233c4107e1 111 // 1 = ODR/100 3 = ODR/400
TMDub88 0:10233c4107e1 112 settings.accel.highResBandwidth = 0;
TMDub88 0:10233c4107e1 113
TMDub88 0:10233c4107e1 114 settings.mag.enabled = true;
TMDub88 0:10233c4107e1 115 // mag scale can be 4, 8, 12, or 16
TMDub88 0:10233c4107e1 116 settings.mag.scale = 4;
TMDub88 0:10233c4107e1 117 // mag data rate can be 0-7
TMDub88 0:10233c4107e1 118 // 0 = 0.625 Hz 4 = 10 Hz
TMDub88 0:10233c4107e1 119 // 1 = 1.25 Hz 5 = 20 Hz
TMDub88 0:10233c4107e1 120 // 2 = 2.5 Hz 6 = 40 Hz
TMDub88 0:10233c4107e1 121 // 3 = 5 Hz 7 = 80 Hz
TMDub88 0:10233c4107e1 122 settings.mag.sampleRate = 7;
TMDub88 0:10233c4107e1 123 settings.mag.tempCompensationEnable = false;
TMDub88 0:10233c4107e1 124 // magPerformance can be any value between 0-3
TMDub88 0:10233c4107e1 125 // 0 = Low power mode 2 = high performance
TMDub88 0:10233c4107e1 126 // 1 = medium performance 3 = ultra-high performance
TMDub88 0:10233c4107e1 127 settings.mag.XYPerformance = 3;
TMDub88 0:10233c4107e1 128 settings.mag.ZPerformance = 3;
TMDub88 0:10233c4107e1 129 settings.mag.lowPowerEnable = false;
TMDub88 0:10233c4107e1 130 // magOperatingMode can be 0-2
TMDub88 0:10233c4107e1 131 // 0 = continuous conversion
TMDub88 0:10233c4107e1 132 // 1 = single-conversion
TMDub88 0:10233c4107e1 133 // 2 = power down
TMDub88 0:10233c4107e1 134 settings.mag.operatingMode = 0;
TMDub88 0:10233c4107e1 135
TMDub88 0:10233c4107e1 136 settings.temp.enabled = true;
TMDub88 0:10233c4107e1 137 for (int i=0; i<3; i++)
TMDub88 0:10233c4107e1 138 {
TMDub88 0:10233c4107e1 139 gBias[i] = 0;
TMDub88 0:10233c4107e1 140 aBias[i] = 0;
TMDub88 0:10233c4107e1 141 mBias[i] = 0;
TMDub88 0:10233c4107e1 142 gBiasRaw[i] = 0;
TMDub88 0:10233c4107e1 143 aBiasRaw[i] = 0;
TMDub88 0:10233c4107e1 144 mBiasRaw[i] = 0;
TMDub88 0:10233c4107e1 145 }
TMDub88 0:10233c4107e1 146 _autoCalc = false;
TMDub88 0:10233c4107e1 147 }
TMDub88 0:10233c4107e1 148
TMDub88 0:10233c4107e1 149
TMDub88 0:10233c4107e1 150 uint16_t LSM9DS1::begin()
TMDub88 0:10233c4107e1 151 {
TMDub88 0:10233c4107e1 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
TMDub88 0:10233c4107e1 153 _xgAddress = settings.device.agAddress;
TMDub88 0:10233c4107e1 154 _mAddress = settings.device.mAddress;
TMDub88 0:10233c4107e1 155
TMDub88 0:10233c4107e1 156 constrainScales();
TMDub88 0:10233c4107e1 157 // Once we have the scale values, we can calculate the resolution
TMDub88 0:10233c4107e1 158 // of each sensor. That's what these functions are for. One for each sensor
TMDub88 0:10233c4107e1 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
TMDub88 0:10233c4107e1 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
TMDub88 0:10233c4107e1 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
TMDub88 0:10233c4107e1 162
TMDub88 0:10233c4107e1 163 // Now, initialize our hardware interface.
TMDub88 0:10233c4107e1 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
TMDub88 0:10233c4107e1 165 initI2C(); // Initialize I2C
TMDub88 0:10233c4107e1 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
TMDub88 0:10233c4107e1 167 initSPI(); // Initialize SPI
TMDub88 0:10233c4107e1 168
TMDub88 0:10233c4107e1 169 // To verify communication, we can read from the WHO_AM_I register of
TMDub88 0:10233c4107e1 170 // each device. Store those in a variable so we can return them.
TMDub88 0:10233c4107e1 171 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
TMDub88 0:10233c4107e1 172 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
TMDub88 0:10233c4107e1 173 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
TMDub88 0:10233c4107e1 174 uint16_t whoAmICombined = (xgTest << 8) | mTest;
TMDub88 0:10233c4107e1 175
TMDub88 0:10233c4107e1 176 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
TMDub88 0:10233c4107e1 177 return 0;
TMDub88 0:10233c4107e1 178
TMDub88 0:10233c4107e1 179 // Gyro initialization stuff:
TMDub88 0:10233c4107e1 180 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
TMDub88 0:10233c4107e1 181
TMDub88 0:10233c4107e1 182 // Accelerometer initialization stuff:
TMDub88 0:10233c4107e1 183 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
TMDub88 0:10233c4107e1 184
TMDub88 0:10233c4107e1 185 // Magnetometer initialization stuff:
TMDub88 0:10233c4107e1 186 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
TMDub88 0:10233c4107e1 187
TMDub88 0:10233c4107e1 188 // Once everything is initialized, return the WHO_AM_I registers we read:
TMDub88 0:10233c4107e1 189 return whoAmICombined;
TMDub88 0:10233c4107e1 190 }
TMDub88 0:10233c4107e1 191
TMDub88 0:10233c4107e1 192 void LSM9DS1::initGyro()
TMDub88 0:10233c4107e1 193 {
TMDub88 0:10233c4107e1 194 uint8_t tempRegValue = 0;
TMDub88 0:10233c4107e1 195
TMDub88 0:10233c4107e1 196 // CTRL_REG1_G (Default value: 0x00)
TMDub88 0:10233c4107e1 197 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
TMDub88 0:10233c4107e1 198 // ODR_G[2:0] - Output data rate selection
TMDub88 0:10233c4107e1 199 // FS_G[1:0] - Gyroscope full-scale selection
TMDub88 0:10233c4107e1 200 // BW_G[1:0] - Gyroscope bandwidth selection
TMDub88 0:10233c4107e1 201
TMDub88 0:10233c4107e1 202 // To disable gyro, set sample rate bits to 0. We'll only set sample
TMDub88 0:10233c4107e1 203 // rate if the gyro is enabled.
TMDub88 0:10233c4107e1 204 if (settings.gyro.enabled)
TMDub88 0:10233c4107e1 205 {
TMDub88 0:10233c4107e1 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
TMDub88 0:10233c4107e1 207 }
TMDub88 0:10233c4107e1 208 switch (settings.gyro.scale)
TMDub88 0:10233c4107e1 209 {
TMDub88 0:10233c4107e1 210 case 500:
TMDub88 0:10233c4107e1 211 tempRegValue |= (0x1 << 3);
TMDub88 0:10233c4107e1 212 break;
TMDub88 0:10233c4107e1 213 case 2000:
TMDub88 0:10233c4107e1 214 tempRegValue |= (0x3 << 3);
TMDub88 0:10233c4107e1 215 break;
TMDub88 0:10233c4107e1 216 // Otherwise we'll set it to 245 dps (0x0 << 4)
TMDub88 0:10233c4107e1 217 }
TMDub88 0:10233c4107e1 218 tempRegValue |= (settings.gyro.bandwidth & 0x3);
TMDub88 0:10233c4107e1 219 xgWriteByte(CTRL_REG1_G, tempRegValue);
TMDub88 0:10233c4107e1 220
TMDub88 0:10233c4107e1 221 // CTRL_REG2_G (Default value: 0x00)
TMDub88 0:10233c4107e1 222 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
TMDub88 0:10233c4107e1 223 // INT_SEL[1:0] - INT selection configuration
TMDub88 0:10233c4107e1 224 // OUT_SEL[1:0] - Out selection configuration
TMDub88 0:10233c4107e1 225 xgWriteByte(CTRL_REG2_G, 0x00);
TMDub88 0:10233c4107e1 226
TMDub88 0:10233c4107e1 227 // CTRL_REG3_G (Default value: 0x00)
TMDub88 0:10233c4107e1 228 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
TMDub88 0:10233c4107e1 229 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
TMDub88 0:10233c4107e1 230 // HP_EN - HPF enable (0:disabled, 1: enabled)
TMDub88 0:10233c4107e1 231 // HPCF_G[3:0] - HPF cutoff frequency
TMDub88 0:10233c4107e1 232 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
TMDub88 0:10233c4107e1 233 if (settings.gyro.HPFEnable)
TMDub88 0:10233c4107e1 234 {
TMDub88 0:10233c4107e1 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
TMDub88 0:10233c4107e1 236 }
TMDub88 0:10233c4107e1 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
TMDub88 0:10233c4107e1 238
TMDub88 0:10233c4107e1 239 // CTRL_REG4 (Default value: 0x38)
TMDub88 0:10233c4107e1 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
TMDub88 0:10233c4107e1 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
TMDub88 0:10233c4107e1 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
TMDub88 0:10233c4107e1 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
TMDub88 0:10233c4107e1 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
TMDub88 0:10233c4107e1 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
TMDub88 0:10233c4107e1 246 tempRegValue = 0;
TMDub88 0:10233c4107e1 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
TMDub88 0:10233c4107e1 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
TMDub88 0:10233c4107e1 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
TMDub88 0:10233c4107e1 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
TMDub88 0:10233c4107e1 251 xgWriteByte(CTRL_REG4, tempRegValue);
TMDub88 0:10233c4107e1 252
TMDub88 0:10233c4107e1 253 // ORIENT_CFG_G (Default value: 0x00)
TMDub88 0:10233c4107e1 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
TMDub88 0:10233c4107e1 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
TMDub88 0:10233c4107e1 256 // Orient [2:0] - Directional user orientation selection
TMDub88 0:10233c4107e1 257 tempRegValue = 0;
TMDub88 0:10233c4107e1 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
TMDub88 0:10233c4107e1 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
TMDub88 0:10233c4107e1 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
TMDub88 0:10233c4107e1 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
TMDub88 0:10233c4107e1 262 }
TMDub88 0:10233c4107e1 263
TMDub88 0:10233c4107e1 264 void LSM9DS1::initAccel()
TMDub88 0:10233c4107e1 265 {
TMDub88 0:10233c4107e1 266 uint8_t tempRegValue = 0;
TMDub88 0:10233c4107e1 267
TMDub88 0:10233c4107e1 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
TMDub88 0:10233c4107e1 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
TMDub88 0:10233c4107e1 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
TMDub88 0:10233c4107e1 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
TMDub88 0:10233c4107e1 272 // Zen_XL - Z-axis output enabled
TMDub88 0:10233c4107e1 273 // Yen_XL - Y-axis output enabled
TMDub88 0:10233c4107e1 274 // Xen_XL - X-axis output enabled
TMDub88 0:10233c4107e1 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
TMDub88 0:10233c4107e1 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
TMDub88 0:10233c4107e1 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
TMDub88 0:10233c4107e1 278
TMDub88 0:10233c4107e1 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
TMDub88 0:10233c4107e1 280
TMDub88 0:10233c4107e1 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
TMDub88 0:10233c4107e1 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
TMDub88 0:10233c4107e1 283 // ODR_XL[2:0] - Output data rate & power mode selection
TMDub88 0:10233c4107e1 284 // FS_XL[1:0] - Full-scale selection
TMDub88 0:10233c4107e1 285 // BW_SCAL_ODR - Bandwidth selection
TMDub88 0:10233c4107e1 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
TMDub88 0:10233c4107e1 287 tempRegValue = 0;
TMDub88 0:10233c4107e1 288 // To disable the accel, set the sampleRate bits to 0.
TMDub88 0:10233c4107e1 289 if (settings.accel.enabled)
TMDub88 0:10233c4107e1 290 {
TMDub88 0:10233c4107e1 291 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
TMDub88 0:10233c4107e1 292 }
TMDub88 0:10233c4107e1 293 switch (settings.accel.scale)
TMDub88 0:10233c4107e1 294 {
TMDub88 0:10233c4107e1 295 case 4:
TMDub88 0:10233c4107e1 296 tempRegValue |= (0x2 << 3);
TMDub88 0:10233c4107e1 297 break;
TMDub88 0:10233c4107e1 298 case 8:
TMDub88 0:10233c4107e1 299 tempRegValue |= (0x3 << 3);
TMDub88 0:10233c4107e1 300 break;
TMDub88 0:10233c4107e1 301 case 16:
TMDub88 0:10233c4107e1 302 tempRegValue |= (0x1 << 3);
TMDub88 0:10233c4107e1 303 break;
TMDub88 0:10233c4107e1 304 // Otherwise it'll be set to 2g (0x0 << 3)
TMDub88 0:10233c4107e1 305 }
TMDub88 0:10233c4107e1 306 if (settings.accel.bandwidth >= 0)
TMDub88 0:10233c4107e1 307 {
TMDub88 0:10233c4107e1 308 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
TMDub88 0:10233c4107e1 309 tempRegValue |= (settings.accel.bandwidth & 0x03);
TMDub88 0:10233c4107e1 310 }
TMDub88 0:10233c4107e1 311 xgWriteByte(CTRL_REG6_XL, tempRegValue);
TMDub88 0:10233c4107e1 312
TMDub88 0:10233c4107e1 313 // CTRL_REG7_XL (0x21) (Default value: 0x00)
TMDub88 0:10233c4107e1 314 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
TMDub88 0:10233c4107e1 315 // HR - High resolution mode (0: disable, 1: enable)
TMDub88 0:10233c4107e1 316 // DCF[1:0] - Digital filter cutoff frequency
TMDub88 0:10233c4107e1 317 // FDS - Filtered data selection
TMDub88 0:10233c4107e1 318 // HPIS1 - HPF enabled for interrupt function
TMDub88 0:10233c4107e1 319 tempRegValue = 0;
TMDub88 0:10233c4107e1 320 if (settings.accel.highResEnable)
TMDub88 0:10233c4107e1 321 {
TMDub88 0:10233c4107e1 322 tempRegValue |= (1<<7); // Set HR bit
TMDub88 0:10233c4107e1 323 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
TMDub88 0:10233c4107e1 324 }
TMDub88 0:10233c4107e1 325 xgWriteByte(CTRL_REG7_XL, tempRegValue);
TMDub88 0:10233c4107e1 326 }
TMDub88 0:10233c4107e1 327
TMDub88 0:10233c4107e1 328 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
TMDub88 0:10233c4107e1 329 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
TMDub88 0:10233c4107e1 330 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
TMDub88 0:10233c4107e1 331 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
TMDub88 0:10233c4107e1 332 // subtract the biases ourselves. This results in a more accurate measurement in general and can
TMDub88 0:10233c4107e1 333 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
TMDub88 0:10233c4107e1 334 // is good practice.
TMDub88 0:10233c4107e1 335 void LSM9DS1::calibrate(bool autoCalc)
TMDub88 0:10233c4107e1 336 {
TMDub88 0:10233c4107e1 337 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
TMDub88 0:10233c4107e1 338 uint8_t samples = 0;
TMDub88 0:10233c4107e1 339 int ii;
TMDub88 0:10233c4107e1 340 int32_t aBiasRawTemp[3] = {0, 0, 0};
TMDub88 0:10233c4107e1 341 int32_t gBiasRawTemp[3] = {0, 0, 0};
TMDub88 0:10233c4107e1 342
TMDub88 0:10233c4107e1 343 // Turn on FIFO and set threshold to 32 samples
TMDub88 0:10233c4107e1 344 enableFIFO(true);
TMDub88 0:10233c4107e1 345 setFIFO(FIFO_THS, 0x1F);
TMDub88 0:10233c4107e1 346 while (samples < 0x1F)
TMDub88 0:10233c4107e1 347 {
TMDub88 0:10233c4107e1 348 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
TMDub88 0:10233c4107e1 349 }
TMDub88 0:10233c4107e1 350 for(ii = 0; ii < samples ; ii++)
TMDub88 0:10233c4107e1 351 { // Read the gyro data stored in the FIFO
TMDub88 0:10233c4107e1 352 readGyro();
TMDub88 0:10233c4107e1 353 gBiasRawTemp[0] += gx;
TMDub88 0:10233c4107e1 354 gBiasRawTemp[1] += gy;
TMDub88 0:10233c4107e1 355 gBiasRawTemp[2] += gz;
TMDub88 0:10233c4107e1 356 readAccel();
TMDub88 0:10233c4107e1 357 aBiasRawTemp[0] += ax;
TMDub88 0:10233c4107e1 358 aBiasRawTemp[1] += ay;
TMDub88 0:10233c4107e1 359 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
TMDub88 0:10233c4107e1 360 }
TMDub88 0:10233c4107e1 361 for (ii = 0; ii < 3; ii++)
TMDub88 0:10233c4107e1 362 {
TMDub88 0:10233c4107e1 363 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
TMDub88 0:10233c4107e1 364 gBias[ii] = calcGyro(gBiasRaw[ii]);
TMDub88 0:10233c4107e1 365 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
TMDub88 0:10233c4107e1 366 aBias[ii] = calcAccel(aBiasRaw[ii]);
TMDub88 0:10233c4107e1 367 }
TMDub88 0:10233c4107e1 368
TMDub88 0:10233c4107e1 369 enableFIFO(false);
TMDub88 0:10233c4107e1 370 setFIFO(FIFO_OFF, 0x00);
TMDub88 0:10233c4107e1 371
TMDub88 0:10233c4107e1 372 if (autoCalc) _autoCalc = true;
TMDub88 0:10233c4107e1 373 }
TMDub88 0:10233c4107e1 374
TMDub88 0:10233c4107e1 375 void LSM9DS1::calibrateMag(bool loadIn)
TMDub88 0:10233c4107e1 376 {
TMDub88 0:10233c4107e1 377 int i, j;
TMDub88 0:10233c4107e1 378 int16_t magMin[3] = {0, 0, 0};
TMDub88 0:10233c4107e1 379 int16_t magMax[3] = {0, 0, 0}; // The road warrior
TMDub88 0:10233c4107e1 380
TMDub88 0:10233c4107e1 381 for (i=0; i<128; i++)
TMDub88 0:10233c4107e1 382 {
TMDub88 0:10233c4107e1 383 while (!magAvailable())
TMDub88 0:10233c4107e1 384 ;
TMDub88 0:10233c4107e1 385 readMag();
TMDub88 0:10233c4107e1 386 int16_t magTemp[3] = {0, 0, 0};
TMDub88 0:10233c4107e1 387 magTemp[0] = mx;
TMDub88 0:10233c4107e1 388 magTemp[1] = my;
TMDub88 0:10233c4107e1 389 magTemp[2] = mz;
TMDub88 0:10233c4107e1 390 for (j = 0; j < 3; j++)
TMDub88 0:10233c4107e1 391 {
TMDub88 0:10233c4107e1 392 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
TMDub88 0:10233c4107e1 393 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
TMDub88 0:10233c4107e1 394 }
TMDub88 0:10233c4107e1 395 }
TMDub88 0:10233c4107e1 396 for (j = 0; j < 3; j++)
TMDub88 0:10233c4107e1 397 {
TMDub88 0:10233c4107e1 398 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
TMDub88 0:10233c4107e1 399 mBias[j] = calcMag(mBiasRaw[j]);
TMDub88 0:10233c4107e1 400 if (loadIn)
TMDub88 0:10233c4107e1 401 magOffset(j, mBiasRaw[j]);
TMDub88 0:10233c4107e1 402 }
TMDub88 0:10233c4107e1 403
TMDub88 0:10233c4107e1 404 }
TMDub88 0:10233c4107e1 405 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
TMDub88 0:10233c4107e1 406 {
TMDub88 0:10233c4107e1 407 if (axis > 2)
TMDub88 0:10233c4107e1 408 return;
TMDub88 0:10233c4107e1 409 uint8_t msb, lsb;
TMDub88 0:10233c4107e1 410 msb = (offset & 0xFF00) >> 8;
TMDub88 0:10233c4107e1 411 lsb = offset & 0x00FF;
TMDub88 0:10233c4107e1 412 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
TMDub88 0:10233c4107e1 413 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
TMDub88 0:10233c4107e1 414 }
TMDub88 0:10233c4107e1 415
TMDub88 0:10233c4107e1 416 void LSM9DS1::initMag()
TMDub88 0:10233c4107e1 417 {
TMDub88 0:10233c4107e1 418 uint8_t tempRegValue = 0;
TMDub88 0:10233c4107e1 419
TMDub88 0:10233c4107e1 420 // CTRL_REG1_M (Default value: 0x10)
TMDub88 0:10233c4107e1 421 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
TMDub88 0:10233c4107e1 422 // TEMP_COMP - Temperature compensation
TMDub88 0:10233c4107e1 423 // OM[1:0] - X & Y axes op mode selection
TMDub88 0:10233c4107e1 424 // 00:low-power, 01:medium performance
TMDub88 0:10233c4107e1 425 // 10: high performance, 11:ultra-high performance
TMDub88 0:10233c4107e1 426 // DO[2:0] - Output data rate selection
TMDub88 0:10233c4107e1 427 // ST - Self-test enable
TMDub88 0:10233c4107e1 428 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
TMDub88 0:10233c4107e1 429 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
TMDub88 0:10233c4107e1 430 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
TMDub88 0:10233c4107e1 431 mWriteByte(CTRL_REG1_M, tempRegValue);
TMDub88 0:10233c4107e1 432
TMDub88 0:10233c4107e1 433 // CTRL_REG2_M (Default value 0x00)
TMDub88 0:10233c4107e1 434 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
TMDub88 0:10233c4107e1 435 // FS[1:0] - Full-scale configuration
TMDub88 0:10233c4107e1 436 // REBOOT - Reboot memory content (0:normal, 1:reboot)
TMDub88 0:10233c4107e1 437 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
TMDub88 0:10233c4107e1 438 tempRegValue = 0;
TMDub88 0:10233c4107e1 439 switch (settings.mag.scale)
TMDub88 0:10233c4107e1 440 {
TMDub88 0:10233c4107e1 441 case 8:
TMDub88 0:10233c4107e1 442 tempRegValue |= (0x1 << 5);
TMDub88 0:10233c4107e1 443 break;
TMDub88 0:10233c4107e1 444 case 12:
TMDub88 0:10233c4107e1 445 tempRegValue |= (0x2 << 5);
TMDub88 0:10233c4107e1 446 break;
TMDub88 0:10233c4107e1 447 case 16:
TMDub88 0:10233c4107e1 448 tempRegValue |= (0x3 << 5);
TMDub88 0:10233c4107e1 449 break;
TMDub88 0:10233c4107e1 450 // Otherwise we'll default to 4 gauss (00)
TMDub88 0:10233c4107e1 451 }
TMDub88 0:10233c4107e1 452 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
TMDub88 0:10233c4107e1 453
TMDub88 0:10233c4107e1 454 // CTRL_REG3_M (Default value: 0x03)
TMDub88 0:10233c4107e1 455 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
TMDub88 0:10233c4107e1 456 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
TMDub88 0:10233c4107e1 457 // LP - Low-power mode cofiguration (1:enable)
TMDub88 0:10233c4107e1 458 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
TMDub88 0:10233c4107e1 459 // MD[1:0] - Operating mode
TMDub88 0:10233c4107e1 460 // 00:continuous conversion, 01:single-conversion,
TMDub88 0:10233c4107e1 461 // 10,11: Power-down
TMDub88 0:10233c4107e1 462 tempRegValue = 0;
TMDub88 0:10233c4107e1 463 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
TMDub88 0:10233c4107e1 464 tempRegValue |= (settings.mag.operatingMode & 0x3);
TMDub88 0:10233c4107e1 465 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
TMDub88 0:10233c4107e1 466
TMDub88 0:10233c4107e1 467 // CTRL_REG4_M (Default value: 0x00)
TMDub88 0:10233c4107e1 468 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
TMDub88 0:10233c4107e1 469 // OMZ[1:0] - Z-axis operative mode selection
TMDub88 0:10233c4107e1 470 // 00:low-power mode, 01:medium performance
TMDub88 0:10233c4107e1 471 // 10:high performance, 10:ultra-high performance
TMDub88 0:10233c4107e1 472 // BLE - Big/little endian data
TMDub88 0:10233c4107e1 473 tempRegValue = 0;
TMDub88 0:10233c4107e1 474 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
TMDub88 0:10233c4107e1 475 mWriteByte(CTRL_REG4_M, tempRegValue);
TMDub88 0:10233c4107e1 476
TMDub88 0:10233c4107e1 477 // CTRL_REG5_M (Default value: 0x00)
TMDub88 0:10233c4107e1 478 // [0][BDU][0][0][0][0][0][0]
TMDub88 0:10233c4107e1 479 // BDU - Block data update for magnetic data
TMDub88 0:10233c4107e1 480 // 0:continuous, 1:not updated until MSB/LSB are read
TMDub88 0:10233c4107e1 481 tempRegValue = 0;
TMDub88 0:10233c4107e1 482 mWriteByte(CTRL_REG5_M, tempRegValue);
TMDub88 0:10233c4107e1 483 }
TMDub88 0:10233c4107e1 484
TMDub88 0:10233c4107e1 485 uint8_t LSM9DS1::accelAvailable()
TMDub88 0:10233c4107e1 486 {
TMDub88 0:10233c4107e1 487 uint8_t status = xgReadByte(STATUS_REG_1);
TMDub88 0:10233c4107e1 488
TMDub88 0:10233c4107e1 489 return (status & (1<<0));
TMDub88 0:10233c4107e1 490 }
TMDub88 0:10233c4107e1 491
TMDub88 0:10233c4107e1 492 uint8_t LSM9DS1::gyroAvailable()
TMDub88 0:10233c4107e1 493 {
TMDub88 0:10233c4107e1 494 uint8_t status = xgReadByte(STATUS_REG_1);
TMDub88 0:10233c4107e1 495
TMDub88 0:10233c4107e1 496 return ((status & (1<<1)) >> 1);
TMDub88 0:10233c4107e1 497 }
TMDub88 0:10233c4107e1 498
TMDub88 0:10233c4107e1 499 uint8_t LSM9DS1::tempAvailable()
TMDub88 0:10233c4107e1 500 {
TMDub88 0:10233c4107e1 501 uint8_t status = xgReadByte(STATUS_REG_1);
TMDub88 0:10233c4107e1 502
TMDub88 0:10233c4107e1 503 return ((status & (1<<2)) >> 2);
TMDub88 0:10233c4107e1 504 }
TMDub88 0:10233c4107e1 505
TMDub88 0:10233c4107e1 506 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
TMDub88 0:10233c4107e1 507 {
TMDub88 0:10233c4107e1 508 uint8_t status;
TMDub88 0:10233c4107e1 509 status = mReadByte(STATUS_REG_M);
TMDub88 0:10233c4107e1 510
TMDub88 0:10233c4107e1 511 return ((status & (1<<axis)) >> axis);
TMDub88 0:10233c4107e1 512 }
TMDub88 0:10233c4107e1 513
TMDub88 0:10233c4107e1 514 void LSM9DS1::readAccel()
TMDub88 0:10233c4107e1 515 {
TMDub88 0:10233c4107e1 516 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
TMDub88 0:10233c4107e1 517 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
TMDub88 0:10233c4107e1 518 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
TMDub88 0:10233c4107e1 519 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
TMDub88 0:10233c4107e1 520 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
TMDub88 0:10233c4107e1 521 if (_autoCalc)
TMDub88 0:10233c4107e1 522 {
TMDub88 0:10233c4107e1 523 ax -= aBiasRaw[X_AXIS];
TMDub88 0:10233c4107e1 524 ay -= aBiasRaw[Y_AXIS];
TMDub88 0:10233c4107e1 525 az -= aBiasRaw[Z_AXIS];
TMDub88 0:10233c4107e1 526 }
TMDub88 0:10233c4107e1 527 }
TMDub88 0:10233c4107e1 528
TMDub88 0:10233c4107e1 529 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
TMDub88 0:10233c4107e1 530 {
TMDub88 0:10233c4107e1 531 uint8_t temp[2];
TMDub88 0:10233c4107e1 532 int16_t value;
TMDub88 0:10233c4107e1 533 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
TMDub88 0:10233c4107e1 534 value = (temp[1] << 8) | temp[0];
TMDub88 0:10233c4107e1 535
TMDub88 0:10233c4107e1 536 if (_autoCalc)
TMDub88 0:10233c4107e1 537 value -= aBiasRaw[axis];
TMDub88 0:10233c4107e1 538
TMDub88 0:10233c4107e1 539 return value;
TMDub88 0:10233c4107e1 540 }
TMDub88 0:10233c4107e1 541
TMDub88 0:10233c4107e1 542 void LSM9DS1::readMag()
TMDub88 0:10233c4107e1 543 {
TMDub88 0:10233c4107e1 544 uint8_t temp[6]; // We'll read six bytes from the mag into temp
TMDub88 0:10233c4107e1 545 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
TMDub88 0:10233c4107e1 546 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
TMDub88 0:10233c4107e1 547 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
TMDub88 0:10233c4107e1 548 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
TMDub88 0:10233c4107e1 549 }
TMDub88 0:10233c4107e1 550
TMDub88 0:10233c4107e1 551 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
TMDub88 0:10233c4107e1 552 {
TMDub88 0:10233c4107e1 553 uint8_t temp[2];
TMDub88 0:10233c4107e1 554 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
TMDub88 0:10233c4107e1 555 return (temp[1] << 8) | temp[0];
TMDub88 0:10233c4107e1 556 }
TMDub88 0:10233c4107e1 557
TMDub88 0:10233c4107e1 558 void LSM9DS1::readTemp()
TMDub88 0:10233c4107e1 559 {
TMDub88 0:10233c4107e1 560 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
TMDub88 0:10233c4107e1 561 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
TMDub88 0:10233c4107e1 562 temperature = ((int16_t)temp[1] << 8) | temp[0];
TMDub88 0:10233c4107e1 563 }
TMDub88 0:10233c4107e1 564
TMDub88 0:10233c4107e1 565 void LSM9DS1::readGyro()
TMDub88 0:10233c4107e1 566 {
TMDub88 0:10233c4107e1 567 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
TMDub88 0:10233c4107e1 568 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
TMDub88 0:10233c4107e1 569 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
TMDub88 0:10233c4107e1 570 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
TMDub88 0:10233c4107e1 571 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
TMDub88 0:10233c4107e1 572 if (_autoCalc)
TMDub88 0:10233c4107e1 573 {
TMDub88 0:10233c4107e1 574 gx -= gBiasRaw[X_AXIS];
TMDub88 0:10233c4107e1 575 gy -= gBiasRaw[Y_AXIS];
TMDub88 0:10233c4107e1 576 gz -= gBiasRaw[Z_AXIS];
TMDub88 0:10233c4107e1 577 }
TMDub88 0:10233c4107e1 578 }
TMDub88 0:10233c4107e1 579
TMDub88 0:10233c4107e1 580 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
TMDub88 0:10233c4107e1 581 {
TMDub88 0:10233c4107e1 582 uint8_t temp[2];
TMDub88 0:10233c4107e1 583 int16_t value;
TMDub88 0:10233c4107e1 584
TMDub88 0:10233c4107e1 585 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
TMDub88 0:10233c4107e1 586
TMDub88 0:10233c4107e1 587 value = (temp[1] << 8) | temp[0];
TMDub88 0:10233c4107e1 588
TMDub88 0:10233c4107e1 589 if (_autoCalc)
TMDub88 0:10233c4107e1 590 value -= gBiasRaw[axis];
TMDub88 0:10233c4107e1 591
TMDub88 0:10233c4107e1 592 return value;
TMDub88 0:10233c4107e1 593 }
TMDub88 0:10233c4107e1 594
TMDub88 0:10233c4107e1 595 float LSM9DS1::calcGyro(int16_t gyro)
TMDub88 0:10233c4107e1 596 {
TMDub88 0:10233c4107e1 597 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
TMDub88 0:10233c4107e1 598 return gRes * gyro;
TMDub88 0:10233c4107e1 599 }
TMDub88 0:10233c4107e1 600
TMDub88 0:10233c4107e1 601 float LSM9DS1::calcAccel(int16_t accel)
TMDub88 0:10233c4107e1 602 {
TMDub88 0:10233c4107e1 603 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
TMDub88 0:10233c4107e1 604 return aRes * accel;
TMDub88 0:10233c4107e1 605 }
TMDub88 0:10233c4107e1 606
TMDub88 0:10233c4107e1 607 float LSM9DS1::calcMag(int16_t mag)
TMDub88 0:10233c4107e1 608 {
TMDub88 0:10233c4107e1 609 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
TMDub88 0:10233c4107e1 610 return mRes * mag;
TMDub88 0:10233c4107e1 611 }
TMDub88 0:10233c4107e1 612
TMDub88 0:10233c4107e1 613 void LSM9DS1::setGyroScale(uint16_t gScl)
TMDub88 0:10233c4107e1 614 {
TMDub88 0:10233c4107e1 615 // Read current value of CTRL_REG1_G:
TMDub88 0:10233c4107e1 616 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
TMDub88 0:10233c4107e1 617 // Mask out scale bits (3 & 4):
TMDub88 0:10233c4107e1 618 ctrl1RegValue &= 0xE7;
TMDub88 0:10233c4107e1 619 switch (gScl)
TMDub88 0:10233c4107e1 620 {
TMDub88 0:10233c4107e1 621 case 500:
TMDub88 0:10233c4107e1 622 ctrl1RegValue |= (0x1 << 3);
TMDub88 0:10233c4107e1 623 settings.gyro.scale = 500;
TMDub88 0:10233c4107e1 624 break;
TMDub88 0:10233c4107e1 625 case 2000:
TMDub88 0:10233c4107e1 626 ctrl1RegValue |= (0x3 << 3);
TMDub88 0:10233c4107e1 627 settings.gyro.scale = 2000;
TMDub88 0:10233c4107e1 628 break;
TMDub88 0:10233c4107e1 629 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
TMDub88 0:10233c4107e1 630 settings.gyro.scale = 245;
TMDub88 0:10233c4107e1 631 break;
TMDub88 0:10233c4107e1 632 }
TMDub88 0:10233c4107e1 633 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
TMDub88 0:10233c4107e1 634
TMDub88 0:10233c4107e1 635 calcgRes();
TMDub88 0:10233c4107e1 636 }
TMDub88 0:10233c4107e1 637
TMDub88 0:10233c4107e1 638 void LSM9DS1::setAccelScale(uint8_t aScl)
TMDub88 0:10233c4107e1 639 {
TMDub88 0:10233c4107e1 640 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
TMDub88 0:10233c4107e1 641 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
TMDub88 0:10233c4107e1 642 // Mask out accel scale bits:
TMDub88 0:10233c4107e1 643 tempRegValue &= 0xE7;
TMDub88 0:10233c4107e1 644
TMDub88 0:10233c4107e1 645 switch (aScl)
TMDub88 0:10233c4107e1 646 {
TMDub88 0:10233c4107e1 647 case 4:
TMDub88 0:10233c4107e1 648 tempRegValue |= (0x2 << 3);
TMDub88 0:10233c4107e1 649 settings.accel.scale = 4;
TMDub88 0:10233c4107e1 650 break;
TMDub88 0:10233c4107e1 651 case 8:
TMDub88 0:10233c4107e1 652 tempRegValue |= (0x3 << 3);
TMDub88 0:10233c4107e1 653 settings.accel.scale = 8;
TMDub88 0:10233c4107e1 654 break;
TMDub88 0:10233c4107e1 655 case 16:
TMDub88 0:10233c4107e1 656 tempRegValue |= (0x1 << 3);
TMDub88 0:10233c4107e1 657 settings.accel.scale = 16;
TMDub88 0:10233c4107e1 658 break;
TMDub88 0:10233c4107e1 659 default: // Otherwise it'll be set to 2g (0x0 << 3)
TMDub88 0:10233c4107e1 660 settings.accel.scale = 2;
TMDub88 0:10233c4107e1 661 break;
TMDub88 0:10233c4107e1 662 }
TMDub88 0:10233c4107e1 663 xgWriteByte(CTRL_REG6_XL, tempRegValue);
TMDub88 0:10233c4107e1 664
TMDub88 0:10233c4107e1 665 // Then calculate a new aRes, which relies on aScale being set correctly:
TMDub88 0:10233c4107e1 666 calcaRes();
TMDub88 0:10233c4107e1 667 }
TMDub88 0:10233c4107e1 668
TMDub88 0:10233c4107e1 669 void LSM9DS1::setMagScale(uint8_t mScl)
TMDub88 0:10233c4107e1 670 {
TMDub88 0:10233c4107e1 671 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
TMDub88 0:10233c4107e1 672 uint8_t temp = mReadByte(CTRL_REG2_M);
TMDub88 0:10233c4107e1 673 // Then mask out the mag scale bits:
TMDub88 0:10233c4107e1 674 temp &= 0xFF^(0x3 << 5);
TMDub88 0:10233c4107e1 675
TMDub88 0:10233c4107e1 676 switch (mScl)
TMDub88 0:10233c4107e1 677 {
TMDub88 0:10233c4107e1 678 case 8:
TMDub88 0:10233c4107e1 679 temp |= (0x1 << 5);
TMDub88 0:10233c4107e1 680 settings.mag.scale = 8;
TMDub88 0:10233c4107e1 681 break;
TMDub88 0:10233c4107e1 682 case 12:
TMDub88 0:10233c4107e1 683 temp |= (0x2 << 5);
TMDub88 0:10233c4107e1 684 settings.mag.scale = 12;
TMDub88 0:10233c4107e1 685 break;
TMDub88 0:10233c4107e1 686 case 16:
TMDub88 0:10233c4107e1 687 temp |= (0x3 << 5);
TMDub88 0:10233c4107e1 688 settings.mag.scale = 16;
TMDub88 0:10233c4107e1 689 break;
TMDub88 0:10233c4107e1 690 default: // Otherwise we'll default to 4 gauss (00)
TMDub88 0:10233c4107e1 691 settings.mag.scale = 4;
TMDub88 0:10233c4107e1 692 break;
TMDub88 0:10233c4107e1 693 }
TMDub88 0:10233c4107e1 694
TMDub88 0:10233c4107e1 695 // And write the new register value back into CTRL_REG6_XM:
TMDub88 0:10233c4107e1 696 mWriteByte(CTRL_REG2_M, temp);
TMDub88 0:10233c4107e1 697
TMDub88 0:10233c4107e1 698 // We've updated the sensor, but we also need to update our class variables
TMDub88 0:10233c4107e1 699 // First update mScale:
TMDub88 0:10233c4107e1 700 //mScale = mScl;
TMDub88 0:10233c4107e1 701 // Then calculate a new mRes, which relies on mScale being set correctly:
TMDub88 0:10233c4107e1 702 calcmRes();
TMDub88 0:10233c4107e1 703 }
TMDub88 0:10233c4107e1 704
TMDub88 0:10233c4107e1 705 void LSM9DS1::setGyroODR(uint8_t gRate)
TMDub88 0:10233c4107e1 706 {
TMDub88 0:10233c4107e1 707 // Only do this if gRate is not 0 (which would disable the gyro)
TMDub88 0:10233c4107e1 708 if ((gRate & 0x07) != 0)
TMDub88 0:10233c4107e1 709 {
TMDub88 0:10233c4107e1 710 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
TMDub88 0:10233c4107e1 711 uint8_t temp = xgReadByte(CTRL_REG1_G);
TMDub88 0:10233c4107e1 712 // Then mask out the gyro ODR bits:
TMDub88 0:10233c4107e1 713 temp &= 0xFF^(0x7 << 5);
TMDub88 0:10233c4107e1 714 temp |= (gRate & 0x07) << 5;
TMDub88 0:10233c4107e1 715 // Update our settings struct
TMDub88 0:10233c4107e1 716 settings.gyro.sampleRate = gRate & 0x07;
TMDub88 0:10233c4107e1 717 // And write the new register value back into CTRL_REG1_G:
TMDub88 0:10233c4107e1 718 xgWriteByte(CTRL_REG1_G, temp);
TMDub88 0:10233c4107e1 719 }
TMDub88 0:10233c4107e1 720 }
TMDub88 0:10233c4107e1 721
TMDub88 0:10233c4107e1 722 void LSM9DS1::setAccelODR(uint8_t aRate)
TMDub88 0:10233c4107e1 723 {
TMDub88 0:10233c4107e1 724 // Only do this if aRate is not 0 (which would disable the accel)
TMDub88 0:10233c4107e1 725 if ((aRate & 0x07) != 0)
TMDub88 0:10233c4107e1 726 {
TMDub88 0:10233c4107e1 727 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
TMDub88 0:10233c4107e1 728 uint8_t temp = xgReadByte(CTRL_REG6_XL);
TMDub88 0:10233c4107e1 729 // Then mask out the accel ODR bits:
TMDub88 0:10233c4107e1 730 temp &= 0x1F;
TMDub88 0:10233c4107e1 731 // Then shift in our new ODR bits:
TMDub88 0:10233c4107e1 732 temp |= ((aRate & 0x07) << 5);
TMDub88 0:10233c4107e1 733 settings.accel.sampleRate = aRate & 0x07;
TMDub88 0:10233c4107e1 734 // And write the new register value back into CTRL_REG1_XM:
TMDub88 0:10233c4107e1 735 xgWriteByte(CTRL_REG6_XL, temp);
TMDub88 0:10233c4107e1 736 }
TMDub88 0:10233c4107e1 737 }
TMDub88 0:10233c4107e1 738
TMDub88 0:10233c4107e1 739 void LSM9DS1::setMagODR(uint8_t mRate)
TMDub88 0:10233c4107e1 740 {
TMDub88 0:10233c4107e1 741 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
TMDub88 0:10233c4107e1 742 uint8_t temp = mReadByte(CTRL_REG1_M);
TMDub88 0:10233c4107e1 743 // Then mask out the mag ODR bits:
TMDub88 0:10233c4107e1 744 temp &= 0xFF^(0x7 << 2);
TMDub88 0:10233c4107e1 745 // Then shift in our new ODR bits:
TMDub88 0:10233c4107e1 746 temp |= ((mRate & 0x07) << 2);
TMDub88 0:10233c4107e1 747 settings.mag.sampleRate = mRate & 0x07;
TMDub88 0:10233c4107e1 748 // And write the new register value back into CTRL_REG5_XM:
TMDub88 0:10233c4107e1 749 mWriteByte(CTRL_REG1_M, temp);
TMDub88 0:10233c4107e1 750 }
TMDub88 0:10233c4107e1 751
TMDub88 0:10233c4107e1 752 void LSM9DS1::calcgRes()
TMDub88 0:10233c4107e1 753 {
TMDub88 0:10233c4107e1 754 gRes = ((float) settings.gyro.scale) / 32768.0;
TMDub88 0:10233c4107e1 755 }
TMDub88 0:10233c4107e1 756
TMDub88 0:10233c4107e1 757 void LSM9DS1::calcaRes()
TMDub88 0:10233c4107e1 758 {
TMDub88 0:10233c4107e1 759 aRes = ((float) settings.accel.scale) / 32768.0;
TMDub88 0:10233c4107e1 760 }
TMDub88 0:10233c4107e1 761
TMDub88 0:10233c4107e1 762 void LSM9DS1::calcmRes()
TMDub88 0:10233c4107e1 763 {
TMDub88 0:10233c4107e1 764 //mRes = ((float) settings.mag.scale) / 32768.0;
TMDub88 0:10233c4107e1 765 switch (settings.mag.scale)
TMDub88 0:10233c4107e1 766 {
TMDub88 0:10233c4107e1 767 case 4:
TMDub88 0:10233c4107e1 768 mRes = magSensitivity[0];
TMDub88 0:10233c4107e1 769 break;
TMDub88 0:10233c4107e1 770 case 8:
TMDub88 0:10233c4107e1 771 mRes = magSensitivity[1];
TMDub88 0:10233c4107e1 772 break;
TMDub88 0:10233c4107e1 773 case 12:
TMDub88 0:10233c4107e1 774 mRes = magSensitivity[2];
TMDub88 0:10233c4107e1 775 break;
TMDub88 0:10233c4107e1 776 case 16:
TMDub88 0:10233c4107e1 777 mRes = magSensitivity[3];
TMDub88 0:10233c4107e1 778 break;
TMDub88 0:10233c4107e1 779 }
TMDub88 0:10233c4107e1 780
TMDub88 0:10233c4107e1 781 }
TMDub88 0:10233c4107e1 782
TMDub88 0:10233c4107e1 783 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
TMDub88 0:10233c4107e1 784 h_lactive activeLow, pp_od pushPull)
TMDub88 0:10233c4107e1 785 {
TMDub88 0:10233c4107e1 786 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
TMDub88 0:10233c4107e1 787 // those two values.
TMDub88 0:10233c4107e1 788 // [generator] should be an OR'd list of values from the interrupt_generators enum
TMDub88 0:10233c4107e1 789 xgWriteByte(interrupt, generator);
TMDub88 0:10233c4107e1 790
TMDub88 0:10233c4107e1 791 // Configure CTRL_REG8
TMDub88 0:10233c4107e1 792 uint8_t temp;
TMDub88 0:10233c4107e1 793 temp = xgReadByte(CTRL_REG8);
TMDub88 0:10233c4107e1 794
TMDub88 0:10233c4107e1 795 if (activeLow) temp |= (1<<5);
TMDub88 0:10233c4107e1 796 else temp &= ~(1<<5);
TMDub88 0:10233c4107e1 797
TMDub88 0:10233c4107e1 798 if (pushPull) temp &= ~(1<<4);
TMDub88 0:10233c4107e1 799 else temp |= (1<<4);
TMDub88 0:10233c4107e1 800
TMDub88 0:10233c4107e1 801 xgWriteByte(CTRL_REG8, temp);
TMDub88 0:10233c4107e1 802 }
TMDub88 0:10233c4107e1 803
TMDub88 0:10233c4107e1 804 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
TMDub88 0:10233c4107e1 805 {
TMDub88 0:10233c4107e1 806 uint8_t temp = 0;
TMDub88 0:10233c4107e1 807
TMDub88 0:10233c4107e1 808 temp = threshold & 0x7F;
TMDub88 0:10233c4107e1 809 if (sleepOn) temp |= (1<<7);
TMDub88 0:10233c4107e1 810 xgWriteByte(ACT_THS, temp);
TMDub88 0:10233c4107e1 811
TMDub88 0:10233c4107e1 812 xgWriteByte(ACT_DUR, duration);
TMDub88 0:10233c4107e1 813 }
TMDub88 0:10233c4107e1 814
TMDub88 0:10233c4107e1 815 uint8_t LSM9DS1::getInactivity()
TMDub88 0:10233c4107e1 816 {
TMDub88 0:10233c4107e1 817 uint8_t temp = xgReadByte(STATUS_REG_0);
TMDub88 0:10233c4107e1 818 temp &= (0x10);
TMDub88 0:10233c4107e1 819 return temp;
TMDub88 0:10233c4107e1 820 }
TMDub88 0:10233c4107e1 821
TMDub88 0:10233c4107e1 822 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
TMDub88 0:10233c4107e1 823 {
TMDub88 0:10233c4107e1 824 // Use variables from accel_interrupt_generator, OR'd together to create
TMDub88 0:10233c4107e1 825 // the [generator]value.
TMDub88 0:10233c4107e1 826 uint8_t temp = generator;
TMDub88 0:10233c4107e1 827 if (andInterrupts) temp |= 0x80;
TMDub88 0:10233c4107e1 828 xgWriteByte(INT_GEN_CFG_XL, temp);
TMDub88 0:10233c4107e1 829 }
TMDub88 0:10233c4107e1 830
TMDub88 0:10233c4107e1 831 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
TMDub88 0:10233c4107e1 832 {
TMDub88 0:10233c4107e1 833 // Write threshold value to INT_GEN_THS_?_XL.
TMDub88 0:10233c4107e1 834 // axis will be 0, 1, or 2 (x, y, z respectively)
TMDub88 0:10233c4107e1 835 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
TMDub88 0:10233c4107e1 836
TMDub88 0:10233c4107e1 837 // Write duration and wait to INT_GEN_DUR_XL
TMDub88 0:10233c4107e1 838 uint8_t temp;
TMDub88 0:10233c4107e1 839 temp = (duration & 0x7F);
TMDub88 0:10233c4107e1 840 if (wait) temp |= 0x80;
TMDub88 0:10233c4107e1 841 xgWriteByte(INT_GEN_DUR_XL, temp);
TMDub88 0:10233c4107e1 842 }
TMDub88 0:10233c4107e1 843
TMDub88 0:10233c4107e1 844 uint8_t LSM9DS1::getAccelIntSrc()
TMDub88 0:10233c4107e1 845 {
TMDub88 0:10233c4107e1 846 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
TMDub88 0:10233c4107e1 847
TMDub88 0:10233c4107e1 848 // Check if the IA_XL (interrupt active) bit is set
TMDub88 0:10233c4107e1 849 if (intSrc & (1<<6))
TMDub88 0:10233c4107e1 850 {
TMDub88 0:10233c4107e1 851 return (intSrc & 0x3F);
TMDub88 0:10233c4107e1 852 }
TMDub88 0:10233c4107e1 853
TMDub88 0:10233c4107e1 854 return 0;
TMDub88 0:10233c4107e1 855 }
TMDub88 0:10233c4107e1 856
TMDub88 0:10233c4107e1 857 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
TMDub88 0:10233c4107e1 858 {
TMDub88 0:10233c4107e1 859 // Use variables from accel_interrupt_generator, OR'd together to create
TMDub88 0:10233c4107e1 860 // the [generator]value.
TMDub88 0:10233c4107e1 861 uint8_t temp = generator;
TMDub88 0:10233c4107e1 862 if (aoi) temp |= 0x80;
TMDub88 0:10233c4107e1 863 if (latch) temp |= 0x40;
TMDub88 0:10233c4107e1 864 xgWriteByte(INT_GEN_CFG_G, temp);
TMDub88 0:10233c4107e1 865 }
TMDub88 0:10233c4107e1 866
TMDub88 0:10233c4107e1 867 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
TMDub88 0:10233c4107e1 868 {
TMDub88 0:10233c4107e1 869 uint8_t buffer[2];
TMDub88 0:10233c4107e1 870 buffer[0] = (threshold & 0x7F00) >> 8;
TMDub88 0:10233c4107e1 871 buffer[1] = (threshold & 0x00FF);
TMDub88 0:10233c4107e1 872 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
TMDub88 0:10233c4107e1 873 // axis will be 0, 1, or 2 (x, y, z respectively)
TMDub88 0:10233c4107e1 874 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
TMDub88 0:10233c4107e1 875 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
TMDub88 0:10233c4107e1 876
TMDub88 0:10233c4107e1 877 // Write duration and wait to INT_GEN_DUR_XL
TMDub88 0:10233c4107e1 878 uint8_t temp;
TMDub88 0:10233c4107e1 879 temp = (duration & 0x7F);
TMDub88 0:10233c4107e1 880 if (wait) temp |= 0x80;
TMDub88 0:10233c4107e1 881 xgWriteByte(INT_GEN_DUR_G, temp);
TMDub88 0:10233c4107e1 882 }
TMDub88 0:10233c4107e1 883
TMDub88 0:10233c4107e1 884 uint8_t LSM9DS1::getGyroIntSrc()
TMDub88 0:10233c4107e1 885 {
TMDub88 0:10233c4107e1 886 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
TMDub88 0:10233c4107e1 887
TMDub88 0:10233c4107e1 888 // Check if the IA_G (interrupt active) bit is set
TMDub88 0:10233c4107e1 889 if (intSrc & (1<<6))
TMDub88 0:10233c4107e1 890 {
TMDub88 0:10233c4107e1 891 return (intSrc & 0x3F);
TMDub88 0:10233c4107e1 892 }
TMDub88 0:10233c4107e1 893
TMDub88 0:10233c4107e1 894 return 0;
TMDub88 0:10233c4107e1 895 }
TMDub88 0:10233c4107e1 896
TMDub88 0:10233c4107e1 897 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
TMDub88 0:10233c4107e1 898 {
TMDub88 0:10233c4107e1 899 // Mask out non-generator bits (0-4)
TMDub88 0:10233c4107e1 900 uint8_t config = (generator & 0xE0);
TMDub88 0:10233c4107e1 901 // IEA bit is 0 for active-low, 1 for active-high.
TMDub88 0:10233c4107e1 902 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
TMDub88 0:10233c4107e1 903 // IEL bit is 0 for latched, 1 for not-latched
TMDub88 0:10233c4107e1 904 if (!latch) config |= (1<<1);
TMDub88 0:10233c4107e1 905 // As long as we have at least 1 generator, enable the interrupt
TMDub88 0:10233c4107e1 906 if (generator != 0) config |= (1<<0);
TMDub88 0:10233c4107e1 907
TMDub88 0:10233c4107e1 908 mWriteByte(INT_CFG_M, config);
TMDub88 0:10233c4107e1 909 }
TMDub88 0:10233c4107e1 910
TMDub88 0:10233c4107e1 911 void LSM9DS1::configMagThs(uint16_t threshold)
TMDub88 0:10233c4107e1 912 {
TMDub88 0:10233c4107e1 913 // Write high eight bits of [threshold] to INT_THS_H_M
TMDub88 0:10233c4107e1 914 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
TMDub88 0:10233c4107e1 915 // Write low eight bits of [threshold] to INT_THS_L_M
TMDub88 0:10233c4107e1 916 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
TMDub88 0:10233c4107e1 917 }
TMDub88 0:10233c4107e1 918
TMDub88 0:10233c4107e1 919 uint8_t LSM9DS1::getMagIntSrc()
TMDub88 0:10233c4107e1 920 {
TMDub88 0:10233c4107e1 921 uint8_t intSrc = mReadByte(INT_SRC_M);
TMDub88 0:10233c4107e1 922
TMDub88 0:10233c4107e1 923 // Check if the INT (interrupt active) bit is set
TMDub88 0:10233c4107e1 924 if (intSrc & (1<<0))
TMDub88 0:10233c4107e1 925 {
TMDub88 0:10233c4107e1 926 return (intSrc & 0xFE);
TMDub88 0:10233c4107e1 927 }
TMDub88 0:10233c4107e1 928
TMDub88 0:10233c4107e1 929 return 0;
TMDub88 0:10233c4107e1 930 }
TMDub88 0:10233c4107e1 931
TMDub88 0:10233c4107e1 932 void LSM9DS1::sleepGyro(bool enable)
TMDub88 0:10233c4107e1 933 {
TMDub88 0:10233c4107e1 934 uint8_t temp = xgReadByte(CTRL_REG9);
TMDub88 0:10233c4107e1 935 if (enable) temp |= (1<<6);
TMDub88 0:10233c4107e1 936 else temp &= ~(1<<6);
TMDub88 0:10233c4107e1 937 xgWriteByte(CTRL_REG9, temp);
TMDub88 0:10233c4107e1 938 }
TMDub88 0:10233c4107e1 939
TMDub88 0:10233c4107e1 940 void LSM9DS1::enableFIFO(bool enable)
TMDub88 0:10233c4107e1 941 {
TMDub88 0:10233c4107e1 942 uint8_t temp = xgReadByte(CTRL_REG9);
TMDub88 0:10233c4107e1 943 if (enable) temp |= (1<<1);
TMDub88 0:10233c4107e1 944 else temp &= ~(1<<1);
TMDub88 0:10233c4107e1 945 xgWriteByte(CTRL_REG9, temp);
TMDub88 0:10233c4107e1 946 }
TMDub88 0:10233c4107e1 947
TMDub88 0:10233c4107e1 948 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
TMDub88 0:10233c4107e1 949 {
TMDub88 0:10233c4107e1 950 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
TMDub88 0:10233c4107e1 951 // limit it to the maximum.
TMDub88 0:10233c4107e1 952 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
TMDub88 0:10233c4107e1 953 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
TMDub88 0:10233c4107e1 954 }
TMDub88 0:10233c4107e1 955
TMDub88 0:10233c4107e1 956 uint8_t LSM9DS1::getFIFOSamples()
TMDub88 0:10233c4107e1 957 {
TMDub88 0:10233c4107e1 958 return (xgReadByte(FIFO_SRC) & 0x3F);
TMDub88 0:10233c4107e1 959 }
TMDub88 0:10233c4107e1 960
TMDub88 0:10233c4107e1 961 void LSM9DS1::constrainScales()
TMDub88 0:10233c4107e1 962 {
TMDub88 0:10233c4107e1 963 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
TMDub88 0:10233c4107e1 964 (settings.gyro.scale != 2000))
TMDub88 0:10233c4107e1 965 {
TMDub88 0:10233c4107e1 966 settings.gyro.scale = 245;
TMDub88 0:10233c4107e1 967 }
TMDub88 0:10233c4107e1 968
TMDub88 0:10233c4107e1 969 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
TMDub88 0:10233c4107e1 970 (settings.accel.scale != 8) && (settings.accel.scale != 16))
TMDub88 0:10233c4107e1 971 {
TMDub88 0:10233c4107e1 972 settings.accel.scale = 2;
TMDub88 0:10233c4107e1 973 }
TMDub88 0:10233c4107e1 974
TMDub88 0:10233c4107e1 975 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
TMDub88 0:10233c4107e1 976 (settings.mag.scale != 12) && (settings.mag.scale != 16))
TMDub88 0:10233c4107e1 977 {
TMDub88 0:10233c4107e1 978 settings.mag.scale = 4;
TMDub88 0:10233c4107e1 979 }
TMDub88 0:10233c4107e1 980 }
TMDub88 0:10233c4107e1 981
TMDub88 0:10233c4107e1 982 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
TMDub88 0:10233c4107e1 983 {
TMDub88 0:10233c4107e1 984 // Whether we're using I2C or SPI, write a byte using the
TMDub88 0:10233c4107e1 985 // gyro-specific I2C address or SPI CS pin.
TMDub88 0:10233c4107e1 986 if (settings.device.commInterface == IMU_MODE_I2C) {
TMDub88 0:10233c4107e1 987 printf("yo");
TMDub88 0:10233c4107e1 988 I2CwriteByte(_xgAddress, subAddress, data);
TMDub88 0:10233c4107e1 989 } else if (settings.device.commInterface == IMU_MODE_SPI) {
TMDub88 0:10233c4107e1 990 SPIwriteByte(_xgAddress, subAddress, data);
TMDub88 0:10233c4107e1 991 }
TMDub88 0:10233c4107e1 992 }
TMDub88 0:10233c4107e1 993
TMDub88 0:10233c4107e1 994 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
TMDub88 0:10233c4107e1 995 {
TMDub88 0:10233c4107e1 996 // Whether we're using I2C or SPI, write a byte using the
TMDub88 0:10233c4107e1 997 // accelerometer-specific I2C address or SPI CS pin.
TMDub88 0:10233c4107e1 998 if (settings.device.commInterface == IMU_MODE_I2C)
TMDub88 0:10233c4107e1 999 return I2CwriteByte(_mAddress, subAddress, data);
TMDub88 0:10233c4107e1 1000 else if (settings.device.commInterface == IMU_MODE_SPI)
TMDub88 0:10233c4107e1 1001 return SPIwriteByte(_mAddress, subAddress, data);
TMDub88 0:10233c4107e1 1002 }
TMDub88 0:10233c4107e1 1003
TMDub88 0:10233c4107e1 1004 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
TMDub88 0:10233c4107e1 1005 {
TMDub88 0:10233c4107e1 1006 // Whether we're using I2C or SPI, read a byte using the
TMDub88 0:10233c4107e1 1007 // gyro-specific I2C address or SPI CS pin.
TMDub88 0:10233c4107e1 1008 if (settings.device.commInterface == IMU_MODE_I2C)
TMDub88 0:10233c4107e1 1009 return I2CreadByte(_xgAddress, subAddress);
TMDub88 0:10233c4107e1 1010 else if (settings.device.commInterface == IMU_MODE_SPI)
TMDub88 0:10233c4107e1 1011 return SPIreadByte(_xgAddress, subAddress);
TMDub88 0:10233c4107e1 1012 }
TMDub88 0:10233c4107e1 1013
TMDub88 0:10233c4107e1 1014 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
TMDub88 0:10233c4107e1 1015 {
TMDub88 0:10233c4107e1 1016 // Whether we're using I2C or SPI, read multiple bytes using the
TMDub88 0:10233c4107e1 1017 // gyro-specific I2C address or SPI CS pin.
TMDub88 0:10233c4107e1 1018 if (settings.device.commInterface == IMU_MODE_I2C) {
TMDub88 0:10233c4107e1 1019 I2CreadBytes(_xgAddress, subAddress, dest, count);
TMDub88 0:10233c4107e1 1020 } else if (settings.device.commInterface == IMU_MODE_SPI) {
TMDub88 0:10233c4107e1 1021 SPIreadBytes(_xgAddress, subAddress, dest, count);
TMDub88 0:10233c4107e1 1022 }
TMDub88 0:10233c4107e1 1023 }
TMDub88 0:10233c4107e1 1024
TMDub88 0:10233c4107e1 1025 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
TMDub88 0:10233c4107e1 1026 {
TMDub88 0:10233c4107e1 1027 // Whether we're using I2C or SPI, read a byte using the
TMDub88 0:10233c4107e1 1028 // accelerometer-specific I2C address or SPI CS pin.
TMDub88 0:10233c4107e1 1029 if (settings.device.commInterface == IMU_MODE_I2C)
TMDub88 0:10233c4107e1 1030 return I2CreadByte(_mAddress, subAddress);
TMDub88 0:10233c4107e1 1031 else if (settings.device.commInterface == IMU_MODE_SPI)
TMDub88 0:10233c4107e1 1032 return SPIreadByte(_mAddress, subAddress);
TMDub88 0:10233c4107e1 1033 }
TMDub88 0:10233c4107e1 1034
TMDub88 0:10233c4107e1 1035 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
TMDub88 0:10233c4107e1 1036 {
TMDub88 0:10233c4107e1 1037 // Whether we're using I2C or SPI, read multiple bytes using the
TMDub88 0:10233c4107e1 1038 // accelerometer-specific I2C address or SPI CS pin.
TMDub88 0:10233c4107e1 1039 if (settings.device.commInterface == IMU_MODE_I2C)
TMDub88 0:10233c4107e1 1040 I2CreadBytes(_mAddress, subAddress, dest, count);
TMDub88 0:10233c4107e1 1041 else if (settings.device.commInterface == IMU_MODE_SPI)
TMDub88 0:10233c4107e1 1042 SPIreadBytes(_mAddress, subAddress, dest, count);
TMDub88 0:10233c4107e1 1043 }
TMDub88 0:10233c4107e1 1044
TMDub88 0:10233c4107e1 1045 void LSM9DS1::initSPI()
TMDub88 0:10233c4107e1 1046 {
TMDub88 0:10233c4107e1 1047 /*
TMDub88 0:10233c4107e1 1048 pinMode(_xgAddress, OUTPUT);
TMDub88 0:10233c4107e1 1049 digitalWrite(_xgAddress, HIGH);
TMDub88 0:10233c4107e1 1050 pinMode(_mAddress, OUTPUT);
TMDub88 0:10233c4107e1 1051 digitalWrite(_mAddress, HIGH);
TMDub88 0:10233c4107e1 1052
TMDub88 0:10233c4107e1 1053 SPI.begin();
TMDub88 0:10233c4107e1 1054 // Maximum SPI frequency is 10MHz, could divide by 2 here:
TMDub88 0:10233c4107e1 1055 SPI.setClockDivider(SPI_CLOCK_DIV2);
TMDub88 0:10233c4107e1 1056 // Data is read and written MSb first.
TMDub88 0:10233c4107e1 1057 SPI.setBitOrder(MSBFIRST);
TMDub88 0:10233c4107e1 1058 // Data is captured on rising edge of clock (CPHA = 0)
TMDub88 0:10233c4107e1 1059 // Base value of the clock is HIGH (CPOL = 1)
TMDub88 0:10233c4107e1 1060 SPI.setDataMode(SPI_MODE0);
TMDub88 0:10233c4107e1 1061 */
TMDub88 0:10233c4107e1 1062 }
TMDub88 0:10233c4107e1 1063
TMDub88 0:10233c4107e1 1064 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
TMDub88 0:10233c4107e1 1065 {
TMDub88 0:10233c4107e1 1066 /*
TMDub88 0:10233c4107e1 1067 digitalWrite(csPin, LOW); // Initiate communication
TMDub88 0:10233c4107e1 1068
TMDub88 0:10233c4107e1 1069 // If write, bit 0 (MSB) should be 0
TMDub88 0:10233c4107e1 1070 // If single write, bit 1 should be 0
TMDub88 0:10233c4107e1 1071 SPI.transfer(subAddress & 0x3F); // Send Address
TMDub88 0:10233c4107e1 1072 SPI.transfer(data); // Send data
TMDub88 0:10233c4107e1 1073
TMDub88 0:10233c4107e1 1074 digitalWrite(csPin, HIGH); // Close communication
TMDub88 0:10233c4107e1 1075 */
TMDub88 0:10233c4107e1 1076 }
TMDub88 0:10233c4107e1 1077
TMDub88 0:10233c4107e1 1078 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
TMDub88 0:10233c4107e1 1079 {
TMDub88 0:10233c4107e1 1080 uint8_t temp;
TMDub88 0:10233c4107e1 1081 // Use the multiple read function to read 1 byte.
TMDub88 0:10233c4107e1 1082 // Value is returned to `temp`.
TMDub88 0:10233c4107e1 1083 SPIreadBytes(csPin, subAddress, &temp, 1);
TMDub88 0:10233c4107e1 1084 return temp;
TMDub88 0:10233c4107e1 1085 }
TMDub88 0:10233c4107e1 1086
TMDub88 0:10233c4107e1 1087 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
TMDub88 0:10233c4107e1 1088 uint8_t * dest, uint8_t count)
TMDub88 0:10233c4107e1 1089 {
TMDub88 0:10233c4107e1 1090 // To indicate a read, set bit 0 (msb) of first byte to 1
TMDub88 0:10233c4107e1 1091 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
TMDub88 0:10233c4107e1 1092 // Mag SPI port is different. If we're reading multiple bytes,
TMDub88 0:10233c4107e1 1093 // set bit 1 to 1. The remaining six bytes are the address to be read
TMDub88 0:10233c4107e1 1094 if ((csPin == _mAddress) && count > 1)
TMDub88 0:10233c4107e1 1095 rAddress |= 0x40;
TMDub88 0:10233c4107e1 1096
TMDub88 0:10233c4107e1 1097 /*
TMDub88 0:10233c4107e1 1098 digitalWrite(csPin, LOW); // Initiate communication
TMDub88 0:10233c4107e1 1099 SPI.transfer(rAddress);
TMDub88 0:10233c4107e1 1100 for (int i=0; i<count; i++)
TMDub88 0:10233c4107e1 1101 {
TMDub88 0:10233c4107e1 1102 dest[i] = SPI.transfer(0x00); // Read into destination array
TMDub88 0:10233c4107e1 1103 }
TMDub88 0:10233c4107e1 1104 digitalWrite(csPin, HIGH); // Close communication
TMDub88 0:10233c4107e1 1105 */
TMDub88 0:10233c4107e1 1106 }
TMDub88 0:10233c4107e1 1107
TMDub88 0:10233c4107e1 1108 void LSM9DS1::initI2C()
TMDub88 0:10233c4107e1 1109 {
TMDub88 0:10233c4107e1 1110 /*
TMDub88 0:10233c4107e1 1111 Wire.begin(); // Initialize I2C library
TMDub88 0:10233c4107e1 1112 */
TMDub88 0:10233c4107e1 1113
TMDub88 0:10233c4107e1 1114 //already initialized in constructor!
TMDub88 0:10233c4107e1 1115 }
TMDub88 0:10233c4107e1 1116
TMDub88 0:10233c4107e1 1117 // Wire.h read and write protocols
TMDub88 0:10233c4107e1 1118 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
TMDub88 0:10233c4107e1 1119 {
TMDub88 0:10233c4107e1 1120 /*
TMDub88 0:10233c4107e1 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
TMDub88 0:10233c4107e1 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
TMDub88 0:10233c4107e1 1123 Wire.write(data); // Put data in Tx buffer
TMDub88 0:10233c4107e1 1124 Wire.endTransmission(); // Send the Tx buffer
TMDub88 0:10233c4107e1 1125 */
TMDub88 0:10233c4107e1 1126 char temp_data[2] = {subAddress, data};
TMDub88 0:10233c4107e1 1127 i2c.write(address, temp_data, 2);
TMDub88 0:10233c4107e1 1128 }
TMDub88 0:10233c4107e1 1129
TMDub88 0:10233c4107e1 1130 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
TMDub88 0:10233c4107e1 1131 {
TMDub88 0:10233c4107e1 1132 /*
TMDub88 0:10233c4107e1 1133 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
TMDub88 0:10233c4107e1 1134 uint8_t data; // `data` will store the register data
TMDub88 0:10233c4107e1 1135
TMDub88 0:10233c4107e1 1136 Wire.beginTransmission(address); // Initialize the Tx buffer
TMDub88 0:10233c4107e1 1137 Wire.write(subAddress); // Put slave register address in Tx buffer
TMDub88 0:10233c4107e1 1138 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
TMDub88 0:10233c4107e1 1139 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
TMDub88 0:10233c4107e1 1140 while ((Wire.available() < 1) && (timeout-- > 0))
TMDub88 0:10233c4107e1 1141 delay(1);
TMDub88 0:10233c4107e1 1142
TMDub88 0:10233c4107e1 1143 if (timeout <= 0)
TMDub88 0:10233c4107e1 1144 return 255; //! Bad! 255 will be misinterpreted as a good value.
TMDub88 0:10233c4107e1 1145
TMDub88 0:10233c4107e1 1146 data = Wire.read(); // Fill Rx buffer with result
TMDub88 0:10233c4107e1 1147 return data; // Return data read from slave register
TMDub88 0:10233c4107e1 1148 */
TMDub88 0:10233c4107e1 1149 char data;
TMDub88 0:10233c4107e1 1150 char temp[1] = {subAddress};
TMDub88 0:10233c4107e1 1151
TMDub88 0:10233c4107e1 1152 i2c.write(address, temp, 1);
TMDub88 0:10233c4107e1 1153 //i2c.write(address & 0xFE);
TMDub88 0:10233c4107e1 1154 temp[1] = 0x00;
TMDub88 0:10233c4107e1 1155 i2c.write(address, temp, 1);
TMDub88 0:10233c4107e1 1156 //i2c.write( address | 0x01);
TMDub88 0:10233c4107e1 1157 int a = i2c.read(address, &data, 1);
TMDub88 0:10233c4107e1 1158 return data;
TMDub88 0:10233c4107e1 1159 }
TMDub88 0:10233c4107e1 1160
TMDub88 0:10233c4107e1 1161 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
TMDub88 0:10233c4107e1 1162 {
TMDub88 0:10233c4107e1 1163 /*
TMDub88 0:10233c4107e1 1164 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
TMDub88 0:10233c4107e1 1165 Wire.beginTransmission(address); // Initialize the Tx buffer
TMDub88 0:10233c4107e1 1166 // Next send the register to be read. OR with 0x80 to indicate multi-read.
TMDub88 0:10233c4107e1 1167 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
TMDub88 0:10233c4107e1 1168
TMDub88 0:10233c4107e1 1169 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
TMDub88 0:10233c4107e1 1170 uint8_t i = 0;
TMDub88 0:10233c4107e1 1171 Wire.requestFrom(address, count); // Read bytes from slave register address
TMDub88 0:10233c4107e1 1172 while ((Wire.available() < count) && (timeout-- > 0))
TMDub88 0:10233c4107e1 1173 delay(1);
TMDub88 0:10233c4107e1 1174 if (timeout <= 0)
TMDub88 0:10233c4107e1 1175 return -1;
TMDub88 0:10233c4107e1 1176
TMDub88 0:10233c4107e1 1177 for (int i=0; i<count;)
TMDub88 0:10233c4107e1 1178 {
TMDub88 0:10233c4107e1 1179 if (Wire.available())
TMDub88 0:10233c4107e1 1180 {
TMDub88 0:10233c4107e1 1181 dest[i++] = Wire.read();
TMDub88 0:10233c4107e1 1182 }
TMDub88 0:10233c4107e1 1183 }
TMDub88 0:10233c4107e1 1184 return count;
TMDub88 0:10233c4107e1 1185 */
TMDub88 0:10233c4107e1 1186 int i;
TMDub88 0:10233c4107e1 1187 char temp_dest[count];
TMDub88 0:10233c4107e1 1188 char temp[1] = {subAddress};
TMDub88 0:10233c4107e1 1189 i2c.write(address, temp, 1);
TMDub88 0:10233c4107e1 1190 i2c.read(address, temp_dest, count);
TMDub88 0:10233c4107e1 1191
TMDub88 0:10233c4107e1 1192 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
TMDub88 0:10233c4107e1 1193 for (i=0; i < count; i++) {
TMDub88 0:10233c4107e1 1194 dest[i] = temp_dest[i];
TMDub88 0:10233c4107e1 1195 }
TMDub88 0:10233c4107e1 1196 return count;
TMDub88 0:10233c4107e1 1197 }