Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SPI_TFT_ILI9341_V2 by
SPI_TFT_ILI9341.cpp
- Committer:
- dreschpe
- Date:
- 2014-06-22
- Revision:
- 8:07ad6a48a85d
- Parent:
- 7:4c30bea883bc
File content as of revision 8:07ad6a48a85d:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller * Copyright (c) 2013, 2014 Peter Drescher - DC2PD * special version for STM Nucleo -L152 and SPI1 ! * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "SPI_TFT_ILI9341.h" #include "mbed.h" #include "stm32l1xx_dma.h" #include "stm32l1xx_rcc.h" #include "stm32l1xx_spi.h" #define BPP 16 // Bits per pixel //extern Serial pc; //extern DigitalOut xx; // debug !! SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name) : _spi(mosi, miso, sclk), _cs(cs), _reset(reset), _dc(dc), GraphicsDisplay(name) { clk = sclk; orientation = 0; char_x = 0; tft_reset(); } int SPI_TFT_ILI9341::width() { if (orientation == 0 || orientation == 2) return 240; else return 320; } int SPI_TFT_ILI9341::height() { if (orientation == 0 || orientation == 2) return 320; else return 240; } void SPI_TFT_ILI9341::set_orientation(unsigned int o) { orientation = o; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL switch (orientation) { case 0: _spi.write(0x48); break; case 1: _spi.write(0x28); break; case 2: _spi.write(0x88); break; case 3: _spi.write(0xE8); break; } _cs = 1; WindowMax(); } // write command to tft register void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd) { _dc = 0; _cs = 0; SPI1->DR = cmd; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; } void SPI_TFT_ILI9341::wr_dat(unsigned char dat) { SPI1->DR = dat; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send } // the ILI9341 can read char SPI_TFT_ILI9341::rd_byte(unsigned char cmd) { char r; _dc = 0; _cs = 0; SPI1->DR = cmd; do{}while(SPI1->SR & 0x02 == 0); // wait for SPI send SPI1->DR = 0xFF; do{}while(SPI1->SR & 0x02 == 0); // wait for SPI send r = SPI1->DR; _cs = 1; return(r); } // read 32 bit int SPI_TFT_ILI9341::rd_32(unsigned char cmd) { int d; char r; _dc = 0; _cs = 0; d = cmd; d = d << 1; _spi.format(9,3); // we have to add a dummy clock cycle _spi.write(d); _spi.format(8,3); _dc = 1; r = _spi.write(0xff); d = r; r = _spi.write(0xff); d = (d << 8) | r; r = _spi.write(0xff); d = (d << 8) | r; r = _spi.write(0xff); d = (d << 8) | r; _cs = 1; return(d); } int SPI_TFT_ILI9341::Read_ID(void){ int r; r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); return(r); } // Init code based on MI0283QT datasheet // this code is called only at start // no need to be optimized void SPI_TFT_ILI9341::tft_reset() { _spi.format(8,3); // 8 bit spi mode 3 _spi.frequency(8000000); // 8 Mhz SPI clock - 32 / 4 _cs = 1; // cs high _dc = 1; // dc high _reset = 0; // display reset wait_us(50); _reset = 1; // end hardware reset wait_ms(5); wr_cmd(0x01); // SW reset wait_ms(5); wr_cmd(0x28); // display off /* Start Initial Sequence ----------------------------------------------------*/ wr_cmd(0xCF); _spi.write(0x00); _spi.write(0x83); _spi.write(0x30); _cs = 1; wr_cmd(0xED); _spi.write(0x64); _spi.write(0x03); _spi.write(0x12); _spi.write(0x81); _cs = 1; wr_cmd(0xE8); _spi.write(0x85); _spi.write(0x01); _spi.write(0x79); _cs = 1; wr_cmd(0xCB); _spi.write(0x39); _spi.write(0x2C); _spi.write(0x00); _spi.write(0x34); _spi.write(0x02); _cs = 1; wr_cmd(0xF7); _spi.write(0x20); _cs = 1; wr_cmd(0xEA); _spi.write(0x00); _spi.write(0x00); _cs = 1; wr_cmd(0xC0); // POWER_CONTROL_1 _spi.write(0x26); _cs = 1; wr_cmd(0xC1); // POWER_CONTROL_2 _spi.write(0x11); _cs = 1; wr_cmd(0xC5); // VCOM_CONTROL_1 _spi.write(0x35); _spi.write(0x3E); _cs = 1; wr_cmd(0xC7); // VCOM_CONTROL_2 _spi.write(0xBE); _cs = 1; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL _spi.write(0x48); _cs = 1; wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET _spi.write(0x55); // 16 bit pixel _cs = 1; wr_cmd(0xB1); // Frame Rate _spi.write(0x00); _spi.write(0x1B); _cs = 1; wr_cmd(0xF2); // Gamma Function Disable _spi.write(0x08); _cs = 1; wr_cmd(0x26); _spi.write(0x01); // gamma set for curve 01/2/04/08 _cs = 1; wr_cmd(0xE0); // positive gamma correction _spi.write(0x1F); _spi.write(0x1A); _spi.write(0x18); _spi.write(0x0A); _spi.write(0x0F); _spi.write(0x06); _spi.write(0x45); _spi.write(0x87); _spi.write(0x32); _spi.write(0x0A); _spi.write(0x07); _spi.write(0x02); _spi.write(0x07); _spi.write(0x05); _spi.write(0x00); _cs = 1; wr_cmd(0xE1); // negativ gamma correction _spi.write(0x00); _spi.write(0x25); _spi.write(0x27); _spi.write(0x05); _spi.write(0x10); _spi.write(0x09); _spi.write(0x3A); _spi.write(0x78); _spi.write(0x4D); _spi.write(0x05); _spi.write(0x18); _spi.write(0x0D); _spi.write(0x38); _spi.write(0x3A); _spi.write(0x1F); _cs = 1; WindowMax (); //wr_cmd(0x34); // tearing effect off //_cs = 1; //wr_cmd(0x35); // tearing effect on //_cs = 1; wr_cmd(0xB7); // entry mode _spi.write(0x07); _cs = 1; wr_cmd(0xB6); // display function control _spi.write(0x0A); _spi.write(0x82); _spi.write(0x27); _spi.write(0x00); _cs = 1; wr_cmd(0x11); // sleep out _cs = 1; wait_ms(100); wr_cmd(0x29); // display on _cs = 1; wait_ms(100); // Configure the DMA controller init-structure RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // SPI1 is using DMA 1 DMA_StructInit(&DMA_InitStructure); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(SPI1->DR); DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_BufferSize = 0; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_High; } // speed optimized // write direct to SPI1 register ! void SPI_TFT_ILI9341::pixel(int x, int y, int color) { _dc = 0; _cs = 0; SPI1->DR = 0x2A; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode SPI1->DR = x; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _cs = 1; SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode _dc = 0; _cs = 0; SPI1->DR = 0x2B; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode SPI1->DR = y; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _cs = 1; SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode _dc = 0; _cs = 0; SPI1->DR = 0x2C; // send pixel do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode SPI1->DR = color; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _cs = 1; SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode } // optimized // write direct to SPI1 register ! void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h) { _dc = 0; _cs = 0; SPI1->DR = 0x2A; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode SPI1->DR = x ; do{}while((SPI1->SR & 0x02) == 0); // wait for SPI TX buffer free SPI1->DR = (x+w-1); do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _cs = 1; _dc = 0; SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode _cs = 0; SPI1->DR = 0x2B; do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode SPI1->DR = y ; do{}while((SPI1->SR & 0x02) == 0); // wait for SPI TX buffer free SPI1->DR = (y+h-1); do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _cs = 1; SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode } void SPI_TFT_ILI9341::WindowMax (void) { window (0, 0, width(), height()); } // optimized // use DMA to transfer pixel data to the screen void SPI_TFT_ILI9341::cls (void) { int pixel = ( width() * height()); WindowMax(); _dc = 0; _cs = 0; SPI1->DR = 0x2C; // send pixel do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _dc = 1; SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode // set up the DMA structure for single byte DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &_background; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA // we have to send 2 blocks of pixel date, because the DMA counter can only transfer 64k DMA_SetCurrDataCounter(DMA1_Channel3, 38400); // 1.half of screen SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel3, ENABLE); do{ }while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel3, DISABLE); DMA_SetCurrDataCounter(DMA1_Channel3, 38400); // 2.half of screen DMA_Cmd(DMA1_Channel3, ENABLE); do{ }while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel3, DISABLE); do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send _cs = 1; SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode } void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { pixel(x0-x, y0+y,color); pixel(x0+x, y0+y,color); pixel(x0+x, y0-y,color); pixel(x0-x, y0-y,color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { vline(x0-x, y0-y, y0+y, color); vline(x0+x, y0-y, y0+y, color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } // optimized for speed // use SPI1 register access !! void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color) { int w; w = x1 - x0 + 1; window(x0,y,w,1); wr_cmd(0x2C); // send pixel SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode int j; for (j=0; j<w; j++) { SPI1->DR = color; do{}while((SPI1->SR & 0x02) == 0); // wait for SPI TX buffer free } do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color) { int h; h = y1 - y0 + 1; window(x,y0,1,h); wr_cmd(0x2C); // send pixel _spi.format(16,3); // switch to 16 bit Mode 3 for (int y=0; y<h; y++) { _spi.write(color); } SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color) { //WindowMax(); int dx = 0, dy = 0; int dx_sym = 0, dy_sym = 0; int dx_x2 = 0, dy_x2 = 0; int di = 0; dx = x1-x0; dy = y1-y0; if (dx == 0) { /* vertical line */ if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); return; } if (dx > 0) { dx_sym = 1; } else { dx_sym = -1; } if (dy == 0) { /* horizontal line */ if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); return; } if (dy > 0) { dy_sym = 1; } else { dy_sym = -1; } dx = dx_sym*dx; dy = dy_sym*dy; dx_x2 = dx*2; dy_x2 = dy*2; if (dx >= dy) { di = dy_x2 - dx; while (x0 != x1) { pixel(x0, y0, color); x0 += dx_sym; if (di<0) { di += dy_x2; } else { di += dy_x2 - dx_x2; y0 += dy_sym; } } pixel(x0, y0, color); } else { di = dx_x2 - dy; while (y0 != y1) { pixel(x0, y0, color); y0 += dy_sym; if (di < 0) { di += dx_x2; } else { di += dx_x2 - dy_x2; x0 += dx_sym; } } pixel(x0, y0, color); } return; } void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color) { if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); if (x1 > x0) hline(x0,x1,y1,color); else hline(x1,x0,y1,color); if (y1 > y0) vline(x1,y0,y1,color); else vline(x1,y1,y0,color); return; } // optimized for speed // use DMA void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color) { int h = y1 - y0 + 1; int w = x1 - x0 + 1; int pixel = h * w; unsigned int dma_transfer; window(x0,y0,w,h); wr_cmd(0x2C); // send pixel SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &color; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA do{ if(pixel < 0x10000) { dma_transfer = pixel; pixel = 0; } else { dma_transfer = 0xffff; pixel = pixel - 0xffff; } DMA_SetCurrDataCounter(DMA1_Channel3, dma_transfer); SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel3, ENABLE); do{ }while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel3, DISABLE); }while(pixel > 0); do{}while((SPI1->SR & 0x80) == 0x80); // wait for SPI send SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::locate(int x, int y) { char_x = x; char_y = y; } int SPI_TFT_ILI9341::columns() { return width() / font[1]; } int SPI_TFT_ILI9341::rows() { return height() / font[2]; } int SPI_TFT_ILI9341::_putc(int value) { if (value == '\n') { // new line char_x = 0; char_y = char_y + font[2]; if (char_y >= height() - font[2]) { char_y = 0; } } else { character(char_x, char_y, value); } return value; } void SPI_TFT_ILI9341::character(int x, int y, int c) { unsigned int hor,vert,offset,bpl,j,i,b; unsigned char* zeichen; unsigned char z,w; unsigned int pixel; unsigned int p; unsigned int dma_count,dma_off; uint16_t *buffer; if ((c < 31) || (c > 127)) return; // test char range // read font parameter from start of array offset = font[0]; // bytes / char hor = font[1]; // get hor size of font vert = font[2]; // get vert size of font bpl = font[3]; // bytes per line if (char_x + hor > width()) { char_x = 0; char_y = char_y + vert; if (char_y >= height() - font[2]) { char_y = 0; } } window(char_x, char_y,hor,vert); // char box wr_cmd(0x2C); // send pixel pixel = hor * vert; // calculate buffer size SPI1->CR1 |= 1 << 11; // switch to 16 bit Mode buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the 16 bit if (buffer == NULL) { // there is no space zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { _spi.write(_background); } else { _spi.write(_foreground); } } } _cs = 1; _spi.format(8,3); } else{ // malloc ok, we can use DMA zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char p = 0; // construct the char into the buffer for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { buffer[p] = _background; } else { buffer[p] = _foreground; } p++; } } // copy the buffer with DMA SPI to display dma_off = 0; // offset for DMA transfer DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) (buffer + dma_off); DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_Init(DMA1_Channel3, &DMA_InitStructure); // init the DMA // start DMA do { if (pixel > 0X10000) { // this is a giant font ! dma_count = 0Xffff; pixel = pixel - 0Xffff; } else { dma_count = pixel; pixel = 0; } DMA_SetCurrDataCounter(DMA1_Channel3, dma_count); SPI_I2S_DMACmd(SPI1, SPI_I2S_DMAReq_Tx,ENABLE); DMA_Cmd(DMA1_Channel3, ENABLE); do{ }while(DMA_GetCurrDataCounter(DMA1_Channel3) != 0); // wait for end of transfer DMA_Cmd(DMA1_Channel3, DISABLE); }while(pixel > 0); do{}while(SPI1->SR & 0x80 == 1); // wait for SPI send free ((uint16_t *) buffer); SPI1->CR1 &= ~(1 << 11); // switch to 8 bit Mode } _cs = 1; WindowMax(); if ((w + 2) < hor) { // x offset to next char char_x += w + 2; } else char_x += hor; } void SPI_TFT_ILI9341::set_font(unsigned char* f) { font = f; } void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap) { unsigned int j; int padd; unsigned short *bitmap_ptr = (unsigned short *)bitmap; unsigned int i; // the lines are padded to multiple of 4 bytes in a bitmap padd = -1; do { padd ++; } while (2*(w + padd)%4 != 0); window(x, y, w, h); bitmap_ptr += ((h - 1)* (w + padd)); wr_cmd(0x2C); // send pixel _spi.format(16,3); for (j = 0; j < h; j++) { //Lines for (i = 0; i < w; i++) { // one line _spi.write(*bitmap_ptr); // one line bitmap_ptr++; } bitmap_ptr -= 2*w; bitmap_ptr -= padd; } _cs = 1; _spi.format(8,3); WindowMax(); } // local filesystem is not implemented in kinetis board , but you can add a SD card int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP) { #define OffsetPixelWidth 18 #define OffsetPixelHeigh 22 #define OffsetFileSize 34 #define OffsetPixData 10 #define OffsetBPP 28 char filename[50]; unsigned char BMP_Header[54]; unsigned short BPP_t; unsigned int PixelWidth,PixelHeigh,start_data; unsigned int i,off; int padd,j; unsigned short *line; // get the filename i=0; while (*Name_BMP!='\0') { filename[i++]=*Name_BMP++; } filename[i] = 0; FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file if (!Image) { return(0); // error file not found ! } fread(&BMP_Header[0],1,54,Image); // get the BMP Header if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte fclose(Image); return(-1); // error no BMP file } BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8); if (BPP_t != 0x0010) { fclose(Image); return(-2); // error no 16 bit BMP } PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24); PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24); if (PixelHeigh > height() + y || PixelWidth > width() + x) { fclose(Image); return(-3); // to big } start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24); line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line if (line == NULL) { return(-4); // error no memory } // the bmp lines are padded to multiple of 4 bytes padd = -1; do { padd ++; } while ((PixelWidth * 2 + padd)%4 != 0); window(x, y,PixelWidth ,PixelHeigh); wr_cmd(0x2C); // send pixel _spi.format(16,3); for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up off = j * (PixelWidth * 2 + padd) + start_data; // start of line fseek(Image, off ,SEEK_SET); fread(line,1,PixelWidth * 2,Image); // read a line - slow for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT _spi.write(line[i]); // one 16 bit pixel } } _cs = 1; _spi.format(8,3); free (line); fclose(Image); WindowMax(); return(1); }