Replacement for regular GPIO (DigitalIn, DigitalOut, DigitalInOut) classes which has superior speed.

Dependents:   Eavesdropper BitstreamGenerator SimpleDecimationFilter 11U68_MP3Player with TFTLCD ... more

Introduction

FastIO is a library which is largely compatible with standard mbed GPIO functions, but which provides superior speed. The code is based on Igor's earlier work (http://mbed.org/users/igorsk/notebook/fast-gpio-with-c-templates/), with three main differences: port functions are currently not available (this might change in the future), it is ported to many more targets than the original, and instead of only DigitalOut, all options from DigitalInOut are implemented.

FastIO uses a template for the pin number which is connected to the FastInOut object instead of an argument to the constructor like the regular DigitalInOut uses. The important difference between those two is that the value of a template is known by the compiler at compile time, while the supplied pin for regular DigitalInOut is only known at run-time. This allows the compiler to add more optimizations. The only limitations this introduces is that you cannot at run-time choose which pin is used (which would be an extremely rare use case).

You can start by trying out the test bench program, this should work for every supported target (you might need to update the FastIO lib):

Import programFastIO_TestBench

Testbench for FastIO

Currently the following targets are supported:

  • LPC1768
  • LPC11uXX
  • LPC11XX
  • LPC81X
  • KLXXz
  • K20D50M
  • KSDK (K22F, K64F)
  • NUCLEO F401RE/F411RE
  • NUCLEO F030R8
  • EFM32 (Gecko's)
  • NRF51822

Unsupported targets

This library has the nice feature that it also supports unsupported targets. Obviously these do not get the speed advantage of FastIO, but in case your target is not supported, it will automatically use regular DigitalInOut instead. So if you integrate it in another library it will also work on targets which are not supported by FastIO.

A warning message is printed in the compiler if it reverts back to DigitalInOut.

Performance

The main goal is to have a faster, more efficient alternative to regular mbed GPIO functions, so lets compare that. As of library version 86, the mbed library contains extra debug code that is as of yet not possible to be disabled (in the online compiler in a suitable way). This slows DigitalInOut down compared to older versions, but does not affect FastIO. This is, depending on the function, roughly a factor 2 difference: mbed version 86 is twice as slow as version 85.

Five different performance figures are measured:

  • Fixed write(pin.write(1);)
  • Variable write (pin.write(val);)
  • Reading the pin state and comparing it (if (pin.read() == 0) break;)
  • Toggling a pin using operators (pin= !pin;)
  • Switching between input and output (pin.output(); pin.input();)

While there are other use cases, these should cover the most used ones. Storing the read value is not included, but should have a fairly similar result. Just comparing it is an easy way to make sure the operation cannot be (partially) optimized away by the compiler, although it results in a longer time than what is actually used by purely the read operation. The main goal of FastIO is to have fast writing, reading, and toggling between input and output (for bidirectional lines), fast construction and mode switching is preferred, but not as important.

The following table shows the time used by fastIO, and also as percentage compared to regular DigitalInOut, this will scale with your clock frequency:

TargetFixed writeVariable writeReadOperator togglingInput/output mode
LPC1768 (96MHz)21ns (29%)78ns (68%)52ns (100%)52ns (28%)52ns (26%)
LPC11uXX (48MHz)83ns (38%)135ns (39%)208ns (60%)219ns (25%)146ns (19%)
LPC11XX (48MHz)104 ns (16%)177ns (22%)125ns (29%)240ns (18%)156ns (12%)
LPC81X (12MHz)229ns (28%)583ns (31%)583ns (100%)708ns (27%)479ns (20%)
KLXXz (48MHz)78ns (54%)146ns (78%)83ns (100%)187ns (38%)78ns (17%)
K20D50M (48MHz)135ns (41%)188ns (47%)104ns (42%)321ns (37%)156ns (17%)
KSDK (120MHz)33ns (4%)62ns (7%)42ns (14%)117ns (10%)33ns (4%)
NUCLEO F4X1RE (84MHz)24ns (27%)83ns (62%)60ns (100%)60ns (27%)60ns (5%)
NUCLEO F030R8 (48MHz)68ns (33%)115ns (36%)125ns (100%)188ns (39%)141ns (5%)
EFM32 (Wonder Gecko) (48MHz)78ns (22%)146ns (40%)188ns (64%)218ns (23%)250ns (10%)
NRF51822 (16MHz)183ns (20%)339ns (25%)372ns (40%)525ns (21%)183ns (7%)

Note that these numbers are from the specific testbench, which highly depends on which optimizations the compiler decides to make. So for your situation it can be different, for example I have seen the write speed change after changes to the read code. Mbed standard write speed also depends on the library version. Since not all targets are supported in older versions I stopped tracking that speed (was also too much effort). If you want to know the comparison for a certain library version, run the testbench on that version.

Usage

The library contains three classes you can use:

FastInOut<PinName> your_name;
FastOut<PinName, initial_state> your_name;
FastIn<PinName, initial_mode> your_name;

Initial_state is by default 0 (so output low) and is optional, initial_mode is by default PullDefault, and is optional. Some examples:

FastOut<LED1> led;             //FastOut object for LED1, will default to output low
FastIn<D5, PullUp> input;    //FastIn object for D5, with by default PullUps enabled

Contrary to regular DigitalIn/DigitalOut, FastIn/FastOut can use all functions available to DigitalInOut/FastInOut. The only difference between the three FastIO classes is the initial conditions: FastInOut doesn't set any initial conditions, and the current state of the uC will be maintained. FastOut sets it as output, either high or low, and FastIn as input, with or without pullups/pulldowns enabled. Afterwards you can change your FastIn to an output using simply .output().

For other examples you can look at the test bench code.

Committer:
Sissors
Date:
Thu Jul 17 15:08:03 2014 +0000
Revision:
6:da3730030c07
Parent:
4:6ebbf25b9167
Child:
7:1e784ae11fba
Added F030

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Sissors 0:d394ebd01052 1 #ifndef __FAST_IO_H
Sissors 0:d394ebd01052 2 #define __FAST_IO_H
Sissors 0:d394ebd01052 3
Sissors 0:d394ebd01052 4 #include "FastIO_LPC1768.h"
Sissors 0:d394ebd01052 5 #include "FastIO_LPC11UXX.h"
Sissors 1:85a4a54f15e3 6 #include "FastIO_LPC81X.h"
Sissors 0:d394ebd01052 7 #include "FastIO_KLXX.h"
Sissors 3:3dd9466e73fc 8 #include "FastIO_K20D50M.h"
Sissors 4:6ebbf25b9167 9 #include "FastIO_NUCLEO_F401.h"
Sissors 6:da3730030c07 10 #include "FastIO_NUCLEO_F030.h"
Sissors 0:d394ebd01052 11
Sissors 0:d394ebd01052 12 #ifndef INIT_PIN
Sissors 2:1a6ed4b84590 13 #warning Target is not supported by FastIO
Sissors 2:1a6ed4b84590 14 #warning Reverting to regular DigitalInOut
Sissors 2:1a6ed4b84590 15 #include "FastIO_Unsupported.h"
Sissors 0:d394ebd01052 16 #endif
Sissors 0:d394ebd01052 17
Sissors 0:d394ebd01052 18 #include "mbed.h"
Sissors 0:d394ebd01052 19
Sissors 0:d394ebd01052 20 /**
Sissors 0:d394ebd01052 21 * Faster alternative compared to regular DigitalInOut
Sissors 0:d394ebd01052 22 *
Sissors 0:d394ebd01052 23 * Except the constructor it is compatible with regular DigitalInOut.
Sissors 0:d394ebd01052 24 * Code is based on Igor Skochinsky's code (http://mbed.org/users/igorsk/code/FastIO/)
Sissors 0:d394ebd01052 25 */
Sissors 0:d394ebd01052 26 template <PinName pin> class FastInOut
Sissors 0:d394ebd01052 27 {
Sissors 0:d394ebd01052 28 public:
Sissors 0:d394ebd01052 29 /**
Sissors 0:d394ebd01052 30 * Construct new FastInOut object
Sissors 0:d394ebd01052 31 *
Sissors 0:d394ebd01052 32 * @code
Sissors 0:d394ebd01052 33 * FastInOut<LED1> led1;
Sissors 0:d394ebd01052 34 * @endcode
Sissors 0:d394ebd01052 35 *
Sissors 0:d394ebd01052 36 * No initialization is done regarding input/output mode,
Sissors 0:d394ebd01052 37 * FastIn/FastOut can be used if that is required
Sissors 0:d394ebd01052 38 *
Sissors 0:d394ebd01052 39 * @param pin pin the FastOut object should be used for
Sissors 0:d394ebd01052 40 */
Sissors 0:d394ebd01052 41 FastInOut() {
Sissors 0:d394ebd01052 42 INIT_PIN;
Sissors 0:d394ebd01052 43 }
Sissors 2:1a6ed4b84590 44
Sissors 2:1a6ed4b84590 45 ~FastInOut() {
Sissors 2:1a6ed4b84590 46 DESTROY_PIN;
Sissors 2:1a6ed4b84590 47 }
Sissors 0:d394ebd01052 48
Sissors 0:d394ebd01052 49 void write(int value) {
Sissors 0:d394ebd01052 50 if ( value )
Sissors 0:d394ebd01052 51 WRITE_PIN_SET;
Sissors 0:d394ebd01052 52 else
Sissors 0:d394ebd01052 53 WRITE_PIN_CLR;
Sissors 0:d394ebd01052 54 }
Sissors 0:d394ebd01052 55 int read() {
Sissors 0:d394ebd01052 56 return READ_PIN;
Sissors 0:d394ebd01052 57 }
Sissors 0:d394ebd01052 58
Sissors 0:d394ebd01052 59 void mode(PinMode pull) {
Sissors 0:d394ebd01052 60 SET_MODE(pull);
Sissors 0:d394ebd01052 61 }
Sissors 0:d394ebd01052 62
Sissors 0:d394ebd01052 63 void output() {
Sissors 0:d394ebd01052 64 SET_DIR_OUTPUT;
Sissors 0:d394ebd01052 65 }
Sissors 0:d394ebd01052 66
Sissors 0:d394ebd01052 67 void input() {
Sissors 0:d394ebd01052 68 SET_DIR_INPUT;
Sissors 0:d394ebd01052 69 }
Sissors 0:d394ebd01052 70
Sissors 0:d394ebd01052 71 FastInOut& operator= (int value) {
Sissors 0:d394ebd01052 72 write(value);
Sissors 0:d394ebd01052 73 return *this;
Sissors 0:d394ebd01052 74 };
Sissors 0:d394ebd01052 75 FastInOut& operator= (FastInOut& rhs) {
Sissors 0:d394ebd01052 76 return write(rhs.read());
Sissors 0:d394ebd01052 77 };
Sissors 0:d394ebd01052 78 operator int() {
Sissors 0:d394ebd01052 79 return read();
Sissors 0:d394ebd01052 80 };
Sissors 0:d394ebd01052 81
Sissors 0:d394ebd01052 82 private:
Sissors 0:d394ebd01052 83 fastio_vars container;
Sissors 0:d394ebd01052 84 };
Sissors 0:d394ebd01052 85
Sissors 0:d394ebd01052 86 /**
Sissors 0:d394ebd01052 87 * Faster alternative compared to regular DigitalOut
Sissors 0:d394ebd01052 88 *
Sissors 0:d394ebd01052 89 * Except the constructor it is compatible with regular DigitalOut. Aditionally all
Sissors 0:d394ebd01052 90 * functions from DigitalInOut are also available (only initialization is different)
Sissors 0:d394ebd01052 91 * Code is based on Igor Skochinsky's code (http://mbed.org/users/igorsk/code/FastIO/)
Sissors 0:d394ebd01052 92 */
Sissors 0:d394ebd01052 93 template <PinName pin, int initial = 0> class FastOut : public FastInOut<pin>
Sissors 0:d394ebd01052 94 {
Sissors 0:d394ebd01052 95 public:
Sissors 0:d394ebd01052 96 /**
Sissors 0:d394ebd01052 97 * Construct new FastOut object
Sissors 0:d394ebd01052 98 *
Sissors 0:d394ebd01052 99 * @code
Sissors 0:d394ebd01052 100 * FastOut<LED1> led1;
Sissors 0:d394ebd01052 101 * @endcode
Sissors 0:d394ebd01052 102 *
Sissors 0:d394ebd01052 103 * @param pin pin the FastOut object should be used for
Sissors 0:d394ebd01052 104 * @param initial (optional) initial state of the pin after construction: default is 0 (low)
Sissors 0:d394ebd01052 105 */
Sissors 0:d394ebd01052 106 FastOut() {
Sissors 0:d394ebd01052 107 FastInOut<pin>::FastInOut();
Sissors 0:d394ebd01052 108 write(initial);
Sissors 0:d394ebd01052 109 SET_DIR_OUTPUT;
Sissors 0:d394ebd01052 110 }
Sissors 0:d394ebd01052 111
Sissors 0:d394ebd01052 112 FastOut& operator= (int value) {
Sissors 0:d394ebd01052 113 this->write(value);
Sissors 0:d394ebd01052 114 return *this;
Sissors 0:d394ebd01052 115 };
Sissors 0:d394ebd01052 116 FastOut& operator= (FastOut& rhs) {
Sissors 0:d394ebd01052 117 return this->write(rhs.read());
Sissors 0:d394ebd01052 118 };
Sissors 0:d394ebd01052 119 operator int() {
Sissors 0:d394ebd01052 120 return this->read();
Sissors 0:d394ebd01052 121 };
Sissors 0:d394ebd01052 122 };
Sissors 0:d394ebd01052 123
Sissors 0:d394ebd01052 124 /**
Sissors 0:d394ebd01052 125 * Faster alternative compared to regular DigitalIn
Sissors 0:d394ebd01052 126 *
Sissors 0:d394ebd01052 127 * Except the constructor it is compatible with regular DigitalIn. Aditionally all
Sissors 0:d394ebd01052 128 * functions from DigitalInOut are also available (only initialization is different)
Sissors 0:d394ebd01052 129 * Code is based on Igor Skochinsky's code (http://mbed.org/users/igorsk/code/FastIO/)
Sissors 0:d394ebd01052 130 */
Sissors 0:d394ebd01052 131 template <PinName pin, PinMode mode = PullDefault> class FastIn : public FastInOut<pin>
Sissors 0:d394ebd01052 132 {
Sissors 0:d394ebd01052 133 public:
Sissors 0:d394ebd01052 134 /**
Sissors 0:d394ebd01052 135 * Construct new FastIn object
Sissors 0:d394ebd01052 136 *
Sissors 0:d394ebd01052 137 * @code
Sissors 0:d394ebd01052 138 * FastIn<LED1> led1;
Sissors 0:d394ebd01052 139 * @endcode
Sissors 0:d394ebd01052 140 *
Sissors 0:d394ebd01052 141 * @param pin pin the FastIn object should be used for
Sissors 0:d394ebd01052 142 * @param mode (optional) initial mode of the pin after construction: default is PullDefault
Sissors 0:d394ebd01052 143 */
Sissors 0:d394ebd01052 144 FastIn() {
Sissors 0:d394ebd01052 145 FastInOut::FastInOut();
Sissors 0:d394ebd01052 146 SET_MODE(mode);
Sissors 0:d394ebd01052 147 SET_DIR_INPUT;
Sissors 0:d394ebd01052 148 }
Sissors 0:d394ebd01052 149
Sissors 0:d394ebd01052 150 FastIn& operator= (int value) {
Sissors 0:d394ebd01052 151 this->write(value);
Sissors 0:d394ebd01052 152 return *this;
Sissors 0:d394ebd01052 153 };
Sissors 0:d394ebd01052 154 FastIn& operator= (FastIn& rhs) {
Sissors 0:d394ebd01052 155 return this->write(rhs.read());
Sissors 0:d394ebd01052 156 };
Sissors 0:d394ebd01052 157 operator int() {
Sissors 0:d394ebd01052 158 return this->read();
Sissors 0:d394ebd01052 159 };
Sissors 0:d394ebd01052 160 };
Sissors 0:d394ebd01052 161
Sissors 0:d394ebd01052 162 #endif