A simple one-level platform game. Developed as part of ELEC2645 at University of Leeds, spring 2015.

Dependencies:   N5110 PinDetect PowerControl mbed

An ARM mbed LPC1768 microcontroller have been used to develop a handheld arcade game in the style of an old-school platformer. This project is entirely my own independent work in all stages of the development; including design, defining project specifications, breadboard prototyping, schematic and PCB layout using CAD, assembly, testing and software development. Due to this being part of the ELEC2645 Embedded Systems Project module at University of Leeds, spring 2015, limitations were given on the available hardware components. Credit is due to the authors of the dependent libraries (N5110, Pin Detect, PowerControl and mbed). I would also like to thank the author of Game Programming Patterns as well as the authors of SFML Game Development for providing me with useful sources for programming design patterns.

/media/uploads/Siriagus/game_assembled.jpg

Project aims

  • Implement simple gameplay:
    • A single, fixed (no scrolling) level.
    • Player can move left to right, jump and shoot.
    • Enemies will drop from the top of the screen.
    • The player gets points for shooting enemies.
    • The player dies when it gets hits by an enemy.
  • Implement a simple menu system.
  • Enable the user to adjust the brightness of the display.
  • Output sound to enhance the user experience.

Software

The program flow is controlled by a finite state machine. The implemented design was inspired by the State design pattern from the books Game Programming Patterns and SFML Game Development. The StateManager class is responsible for updating and rendering the current selected state. It also changes the state based on request from the current state. The framework built for the state machine used in this project makes it easy to add new screens. The different main states (indicated by the background colour) and how the user interaction is shown below: /media/uploads/Siriagus/arcadegameuserinteraction.png

Hardware

Schematic:

/media/uploads/Siriagus/schematic.png

Printed circuit board (PCB):

/media/uploads/Siriagus/pcb.png

Images

A seperate program was written to convert images (png) to text-representation of the maps. Enemies and numbers on the screen are also collected from a sprite-sheet created in the same manner.

/media/uploads/Siriagus/unileeds3.png /media/uploads/Siriagus/newmap2.png

Game.cpp

Committer:
Siriagus
Date:
2015-05-08
Revision:
11:adb68da98262
Parent:
9:da608ae65df9
Child:
12:8178fad5e660

File content as of revision 11:adb68da98262:

#include "Game.h"

Serial pc(USBTX, USBRX); // TO DELETE - DEBUGGING ONLY

void Game::init()
{
    // Player
    player.x = 40;
    player.y = 5; 
    player.width = player.height = 5;
    onGround = false;
}

// Functions
void Game::update(float dt)
{
    // Handle input, should be its own function
    switch(input->joystick->getDirection())
    {
        case LEFT:
        case UP_LEFT:
        case DOWN_LEFT:
            player.vx = -2;
            player.facingLeft = true;
        break;
        
        case RIGHT:
        case UP_RIGHT:
        case DOWN_RIGHT:
            player.vx = 2;
            player.facingLeft = false;
        break;
        
        
        case UP:
            //player.vy = -4;
        break;
        case DOWN:
            player.vy += 1;
        break;
        
        case CENTER:
            player.vx = 0;
        break;
    }
    
    // Ground, temporary solution, to be fixed with real map
    player.vy += 1;
    
    // Check if player is trying to jump. Player can only jump if it's on the ground
    if (input->read(Input::ButtonA) && onGround)
    {
        player.vy = -4;
        onGround = false;
    }
    
    // Terminal velocity 3 px/update
    if (player.vy > 3) player.vy = 3;
    
    // Update player position - should be done step wise! TODO!!
    
    // Find direction of player
    
    // Collision player with map
    
    int x = player.x;
    int y = player.y;
    int steps = abs(player.vx); // how many units (pixels) the player should move in said direction
    bool collision; // true if colliding
    
    // Check x-axis
    if (player.vx > 0) // moving right
    {
        int playerRight = x + player.width - 1; // Need to check right border of player, since it is moving right
        
        while(steps--) // While it still have more movement left
        {
            collision = false;
            for (int i = 0; i < player.height; ++i) // Loop through all vertical points on the right hand side of the player (y+i)
            {
                if (map[y+i][playerRight+1]) // If moving to the right leads to collision for given y+i
                {
                    collision = true; // Then collision is true
                    break;            // Skip the for loop, no need for further testing
                }
            }
            
            if (collision) // If collision
                break;     // skip the while loop, player can not move further, even though its velocity is higher
            else
                ++playerRight;  // Move player one px to the right
        }
        
        player.x = playerRight - (player.width - 1); // Update player's position. Need to set upper-left pixel.
    }
    else // moving left
    {
        while(steps--) // While still movement left
        {
            collision = false;
            
            
            for (int i = 0; i < player.height; ++i) // Check for all y-positions
            {
                if (map[y+i][x-1])                  // If solid block
                {
                    collision = true;
                    break;                          // Collision detected, no further testing required
                }
            }
            
            if (collision)
                break;
            else
                --x;    // Move to the left if no collision is detected
        }
        
        player.x = x;
    }
    
    // Check collision with map in y-direction - works the same way as the x-axis, except for other axis
    
    x = player.x;
    y = player.y;
    steps = abs(player.vy);
    
    if (player.vy > 0) // downwards
    {
        int playerBottom = y + player.height - 1; // Need to check if bottom part collides
        while(steps--)  // Still movement left
        {
            collision = false;
            for (int i = 0; i < player.width; ++i)  // Loop through all x-position on lower part of player
            {
                if (map[playerBottom+1][x+i])       // If moving the player one step down for a given (x+i)-position gives a collision
                {
                    collision = true;
                    break;                          // No further testing required
                }
            }
            
            if (collision)                          // If collision
            {
                player.vy = 0;                      // Set vertical velocity to 0 (playe
                onGround = true;                    // Player has hit ground
                break;                              // Skip the while loop as the player can not move further downwards
            }
            else                // Can safely move player without collision
                ++playerBottom; // Move player one step down
        }
        
        player.y = playerBottom - (player.height - 1);      // Update position when done moving, remember that player.y refers to upper part of the player
    }
    else // moving up, check collision from top
    {
        while(steps--)  // Still movement left
        {
            collision = false;
            
            for (int i = 0; i < player.width; ++i) // Check for all x-positions
            {
                if (map[y-1][x+i])                  // If moving upwards gives collision for a given x+i
                {
                    collision = true;               // Then we have a collision
                    break;                          // No further testing needed, skip for loop
                }
            }
            
            if (collision)  // If collision was detected
            {
                player.vy = 0;  // Set vertical velocity to zero
                break;          // Skip while loop as player can not move further up
            }
            else            // If safe to move for all x-values
                --y;        // Move player one step up
        }
        
        player.y = y;       // Update vertical position of player
    }    
    
    // Check if bullet should be fired
    if (input->read(Input::ButtonB) && releasedBtnB)
    {
        // Create a new bullet and give it initial values
        Point* bullet = new Point;
        bullet->x = (player.facingLeft) ? (player.x-1) : (player.x + player.width);
        bullet->y = player.y + 2;
        bullet->vx = (player.facingLeft) ? -4 : 4;
        bullet->vy = 0;
        
        bullets.push_back(bullet);
        releasedBtnB = false;
    }
    else if (!input->read(Input::ButtonB))
        releasedBtnB = true;
    
    // Loop through bullets and move them
    for (std::vector<Point*>::iterator it = bullets.begin(); it != bullets.end();)
    {
        (*it)->x += (*it)->vx;
        
        // Check if outside
        int x = (*it)->x;
        if (x < 0 || x > WIDTH)
        {
            delete (*it);
            it = bullets.erase(it); // go to next element
        }
        else
            ++it;   // go to next element
        
        // TODO: Check for collisions
        // TODO: Go both ways
    }
}

void Game::render()
{
    // Draw map
    drawImage(map);
    
    // Draw player - TODO: Make this a part of sprite class (so they can draw themselves)
    int x0, x1, y0, y1;
    x0 = (player.x < 0) ? 0 : player.x;                       // x0 = max(0,x);
    y0 = (player.y < 0) ? 0 : player.y;                       // y0 = max(0,y);
    x1 = (player.width + player.x > WIDTH) ? WIDTH : player.width + player.x;       //x1 = min(WIDTH, width);
    y1 = (player.height + player.y > HEIGHT) ? HEIGHT : player.height + player.y;   //y1 = min(HEIGHT, height);
    
    for (int i = y0; i < y1; ++i)
    {   
        for (int j = x0; j < x1; ++j)
        {
            // If player is going right, obtain data from sprite in reverse order => render in reverse
            int xIndex = (player.facingLeft) ? (j-x0) : (player.width - 1 - (j-x0));
            
            if (Image::Player[i-y0][xIndex])
                lcd->setPixel(j,i);
        }
    }
    
    // Render bullets
    for (std::vector<Point*>::iterator it = bullets.begin(); it != bullets.end(); ++it)
    {
        int x, y;
        x = (*it)->x;
        y = (*it)->y;
        
        if (x >= 0 && x < WIDTH && y >= 0 && y < HEIGHT) // Boundary check
            lcd->setPixel(x,y);
    }
}