new step
Dependencies: mbed Ruche-2 HX711 DHT22 Sigfox
DS1820/DS1820.cpp
- Committer:
- Sidibe
- Date:
- 2019-01-23
- Revision:
- 0:126a8e290bd5
File content as of revision 0:126a8e290bd5:
#include "DS1820.h" #include "mbed.h" // Global variables shared between all DS1820 objects bool DS1820_done_flag; int DS1820_last_descrepancy; char DS1820_search_ROM[8]; DS1820::DS1820 (PinName data_pin, PinName power_pin) : _datapin(data_pin), _parasitepin(power_pin) { int byte_counter; _parasite_power = true; for(byte_counter=0;byte_counter<8;byte_counter++) ROM[byte_counter] = 0xFF; for(byte_counter=0;byte_counter<9;byte_counter++) RAM[byte_counter] = 0x00; } DS1820::DS1820 (PinName data_pin) : _datapin(data_pin), _parasitepin(NC) { int byte_counter; _parasite_power = false; for(byte_counter=0;byte_counter<8;byte_counter++) ROM[byte_counter] = 0xFF; for(byte_counter=0;byte_counter<9;byte_counter++) RAM[byte_counter] = 0x00; } bool DS1820::onewire_reset() { // This will return false if no devices are present on the data bus bool presence=false; _datapin.output(); _datapin.mode(PullUp); _datapin = 0; // bring low for 500 us wait_us(500); _datapin.input(); // let the data line float high _datapin.mode(PullUp); wait_us(90); // wait 90us if (_datapin.read()==0) // see if any devices are pulling the data line low presence=true; wait_us(410); return presence; } void DS1820::onewire_bit_out (bool bit_data) { _datapin.output(); _datapin = 0; wait_us(5); if (bit_data) { _datapin.input(); // bring data line high _datapin.mode(PullUp); wait_us(55); } else { wait_us(55); // keep data line low _datapin.input(); _datapin.mode(PullUp); } } void DS1820::onewire_byte_out(char data) { // output data character (least sig bit first). int n; for (n=0; n<8; n++) { onewire_bit_out(data & 0x01); data = data >> 1; // now the next bit is in the least sig bit position. } } bool DS1820::onewire_bit_in() { bool answer; _datapin.output(); _datapin = 0; wait_us(5); _datapin.input(); _datapin.mode(PullUp); wait_us(5); answer = _datapin.read(); wait_us(50); return answer; } char DS1820::onewire_byte_in() { // read byte, least sig byte first char answer = 0x00; int i; for (i=0; i<8; i++) { answer = answer >> 1; // shift over to make room for the next bit if (onewire_bit_in()) answer = answer | 0x80; // if the data port is high, make this bit a 1 } return answer; } bool DS1820::search_ROM() { return search_ROM_routine(0xF0); // Search ROM command } bool DS1820::search_alarm() { return search_ROM_routine(0xEC); // Search Alarm command } bool DS1820::search_ROM_routine(char command) { extern bool DS1820_done_flag; extern int DS1820_last_descrepancy; extern char DS1820_search_ROM[8]; int descrepancy_marker, ROM_bit_index; bool return_value, Bit_A, Bit_B; char byte_counter, bit_mask; return_value=false; if (!DS1820_done_flag) { if (!onewire_reset()) { DS1820_last_descrepancy = 0; // no devices present } else { ROM_bit_index=1; descrepancy_marker=0; onewire_byte_out(command); // Search ROM command or Search Alarm command byte_counter = 0; bit_mask = 0x01; while (ROM_bit_index<=64) { Bit_A = onewire_bit_in(); Bit_B = onewire_bit_in(); if (Bit_A & Bit_B) { descrepancy_marker = 0; // data read error, this should never happen ROM_bit_index = 0xFF; } else { if (Bit_A | Bit_B) { // Set ROM bit to Bit_A if (Bit_A) { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] | bit_mask; // Set ROM bit to one } else { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] & ~bit_mask; // Set ROM bit to zero } } else { // both bits A and B are low, so there are two or more devices present if ( ROM_bit_index == DS1820_last_descrepancy ) { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] | bit_mask; // Set ROM bit to one } else { if ( ROM_bit_index > DS1820_last_descrepancy ) { DS1820_search_ROM[byte_counter] = DS1820_search_ROM[byte_counter] & ~bit_mask; // Set ROM bit to zero descrepancy_marker = ROM_bit_index; } else { if (( DS1820_search_ROM[byte_counter] & bit_mask) == 0x00 ) descrepancy_marker = ROM_bit_index; } } } onewire_bit_out (DS1820_search_ROM[byte_counter] & bit_mask); ROM_bit_index++; if (bit_mask & 0x80) { byte_counter++; bit_mask = 0x01; } else { bit_mask = bit_mask << 1; } } } DS1820_last_descrepancy = descrepancy_marker; if (ROM_bit_index != 0xFF) { for(byte_counter=0;byte_counter<8;byte_counter++) ROM[byte_counter] = DS1820_search_ROM[byte_counter]; return_value = true; } } if (DS1820_last_descrepancy == 0) DS1820_done_flag = true; } return return_value; } void DS1820::search_ROM_setup() { extern bool DS1820_done_flag; extern int DS1820_last_descrepancy; extern char DS1820_search_ROM[8]; DS1820_done_flag = false; DS1820_last_descrepancy = 0; int i; for (i=0; i<8; i++) DS1820_search_ROM[i]=0x00; } void DS1820::read_ROM() { // NOTE: This command can only be used when there is one DS1820 on the bus. If this command // is used when there is more than one slave present on the bus, a data collision will occur // when all the DS1820s attempt to respond at the same time. int i; onewire_reset(); onewire_byte_out(0x33); // Read ROM id for (i=0; i<8; i++) ROM[i]=onewire_byte_in(); } void DS1820::match_ROM() { // Used to select a specific device int i; onewire_reset(); onewire_byte_out( 0x55); //Match ROM command for (i=0;i<8;i++) onewire_byte_out(ROM[i]); } void DS1820::skip_ROM() { onewire_reset(); onewire_byte_out(0xCC); // Skip ROM command } bool DS1820::ROM_checksum_error() { char xCRC=0x00; int i; for(i=0;i<7;i++) // Only going to shift the lower 7 bytes xCRC = CRC_byte(xCRC, ROM[i]); // After 7 bytes CRC should equal the 8th byte (ROM CRC) return (xCRC!=ROM[7]); // will return true if there is a CRC checksum error } bool DS1820::RAM_checksum_error() { char xCRC=0x00; int i; read_RAM(); for(i=0;i<8;i++) // Only going to shift the lower 8 bytes xCRC = CRC_byte(xCRC, RAM[i]); // After 8 bytes CRC should equal the 9th byte (RAM CRC) return (xCRC!=RAM[8]); // will return true if there is a CRC checksum error } char DS1820::CRC_byte (char xCRC, char byte ) { int j; for(j=0;j<8;j++) { if ((byte & 0x01 ) ^ (xCRC & 0x01)) { // DATA ^ LSB CRC = 1 xCRC = xCRC>>1; // Set the MSB to 1 xCRC = xCRC | 0x80; // Check bit 3 if (xCRC & 0x04) { xCRC = xCRC & 0xFB; // Bit 3 is set, so clear it } else { xCRC = xCRC | 0x04; // Bit 3 is clear, so set it } // Check bit 4 if (xCRC & 0x08) { xCRC = xCRC & 0xF7; // Bit 4 is set, so clear it } else { xCRC = xCRC | 0x08; // Bit 4 is clear, so set it } } else { // DATA ^ LSB xCRC = 0 xCRC = xCRC>>1; // clear MSB xCRC = xCRC & 0x7F; // No need to check bits, with DATA ^ LSB xCRC = 0, they will remain unchanged } byte = byte>>1; } return xCRC; } void DS1820::convert_temperature(devices device) { // Convert temperature into scratchpad RAM for all devices at once int delay_time = 750; // Default delay time char resolution; if (device==all_devices) skip_ROM(); // Skip ROM command, will convert for ALL devices else { match_ROM(); if (FAMILY_CODE == FAMILY_CODE_DS18B20 ) { resolution = RAM[4] & 0x60; if (resolution == 0x00) // 9 bits delay_time = 94; if (resolution == 0x20) // 10 bits delay_time = 188; if (resolution == 0x40) // 11 bits. Note 12bits uses the 750ms default delay_time = 375; } } onewire_byte_out( 0x44); // perform temperature conversion if (_parasite_power) _parasitepin = 1; // Parasite power strong pullup wait_ms(delay_time); if (_parasite_power) _parasitepin = 0; } void DS1820::read_RAM() { // This will copy the DS1820's 9 bytes of RAM data // into the objects RAM array. Functions that use // RAM values will automaticly call this procedure. int i; match_ROM(); // Select this device onewire_byte_out( 0xBE); //Read Scratchpad command for(i=0;i<9;i++) { RAM[i] = onewire_byte_in(); } } bool DS1820::set_configuration_bits(unsigned int resolution) { bool answer = false; resolution = resolution - 9; if (resolution < 4) { resolution = resolution<<5; // align the bits RAM[4] = (RAM[4] & 0x60) | resolution; // mask out old data, insert new write_scratchpad ((RAM[2]<<8) + RAM[3]); // store_scratchpad (DS1820::this_device); // Need to test if this is required answer = true; } return answer; } int DS1820::read_scratchpad() { int answer; read_RAM(); answer = (RAM[2]<<8) + RAM[3]; return answer; } void DS1820::write_scratchpad(int data) { RAM[3] = data; RAM[2] = data>>8; match_ROM(); onewire_byte_out(0x4E); // Copy scratchpad into DS1820 ram memory onewire_byte_out(RAM[2]); // T(H) onewire_byte_out(RAM[3]); // T(L) if ( FAMILY_CODE == FAMILY_CODE_DS18B20 ) { onewire_byte_out(RAM[4]); // Configuration register } } void DS1820::store_scratchpad(devices device) { if (device==all_devices) skip_ROM(); // Skip ROM command, will store for ALL devices else match_ROM(); onewire_byte_out(0x48); // Write scratchpad into E2 command if (_parasite_power) _parasitepin=1; wait_ms(10); // Parasite power strong pullup for 10ms if (_parasite_power) _parasitepin=0; } int DS1820::recall_scratchpad(devices device) { // This copies the E2 values into the DS1820's memory. // If you specify all_devices this will return zero, otherwise // it will return the value of the scratchpad memory. int answer=0; if (device==all_devices) skip_ROM(); // Skip ROM command, will recall for ALL devices else match_ROM(); onewire_byte_out(0xB8); // Recall E2 data to scratchpad command wait_ms(10); // not sure I like polling for completion // it could cause an infinite loop if (device==DS1820::this_device) { read_RAM(); answer = read_scratchpad(); } return answer; } float DS1820::temperature(char scale) { // The data specs state that count_per_degree should be 0x10 (16), I found my devices // to have a count_per_degree of 0x4B (75). With the standard resolution of 1/2 deg C // this allowed an expanded resolution of 1/150th of a deg C. I wouldn't rely on this // being super acurate, but it does allow for a smooth display in the 1/10ths of a // deg C or F scales. float answer, remaining_count, count_per_degree; int reading; read_RAM(); reading = (RAM[1] << 8) + RAM[0]; if (reading & 0x8000) { // negative degrees C reading = 0-((reading ^ 0xffff) + 1); // 2's comp then convert to signed int } answer = reading +0.0; // convert to floating point if ( FAMILY_CODE == FAMILY_CODE_DS18B20 ) { answer = answer / 8.0; } else { remaining_count = RAM[6]; count_per_degree = RAM[7]; answer = answer - 0.25 + (count_per_degree - remaining_count) / count_per_degree; } if (scale=='C' or scale=='c') answer = answer / 2.0; else // Convert to deg F answer = answer * 9.0 / 10.0 + 32.0; return answer; } bool DS1820::read_power_supply(devices device) { // This will return true if the device (or all devices) are Vcc powered // This will return false if the device (or ANY device) is parasite powered if (device==all_devices) skip_ROM(); // Skip ROM command, will poll for any device using parasite power else match_ROM(); onewire_byte_out(0xB4); // Read power supply command return onewire_bit_in(); }