Revision:
0:8f0d870509fe
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/grbl/motion_control.c	Mon Sep 04 12:04:13 2017 +0000
@@ -0,0 +1,391 @@
+/*
+  motion_control.c - high level interface for issuing motion commands
+  Part of Grbl
+
+  Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
+  Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+  Grbl is free software: you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation, either version 3 of the License, or
+  (at your option) any later version.
+
+  Grbl is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "grbl.h"
+
+
+// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
+// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
+// (1 minute)/feed_rate time.
+// NOTE: This is the primary gateway to the grbl planner. All line motions, including arc line
+// segments, must pass through this routine before being passed to the planner. The seperation of
+// mc_line and plan_buffer_line is done primarily to place non-planner-type functions from being
+// in the planner and to let backlash compensation or canned cycle integration simple and direct.
+void mc_line(float *target, plan_line_data_t *pl_data)
+{
+  // If enabled, check for soft limit violations. Placed here all line motions are picked up
+  // from everywhere in Grbl.
+  if (bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE)) {
+    // NOTE: Block jog state. Jogging is a special case and soft limits are handled independently.
+    if (sys.state != STATE_JOG) { limits_soft_check(target); }
+  }
+
+  // If in check gcode mode, prevent motion by blocking planner. Soft limits still work.
+  if (sys.state == STATE_CHECK_MODE) { return; }
+
+  // NOTE: Backlash compensation may be installed here. It will need direction info to track when
+  // to insert a backlash line motion(s) before the intended line motion and will require its own
+  // plan_check_full_buffer() and check for system abort loop. Also for position reporting
+  // backlash steps will need to be also tracked, which will need to be kept at a system level.
+  // There are likely some other things that will need to be tracked as well. However, we feel
+  // that backlash compensation should NOT be handled by Grbl itself, because there are a myriad
+  // of ways to implement it and can be effective or ineffective for different CNC machines. This
+  // would be better handled by the interface as a post-processor task, where the original g-code
+  // is translated and inserts backlash motions that best suits the machine.
+  // NOTE: Perhaps as a middle-ground, all that needs to be sent is a flag or special command that
+  // indicates to Grbl what is a backlash compensation motion, so that Grbl executes the move but
+  // doesn't update the machine position values. Since the position values used by the g-code
+  // parser and planner are separate from the system machine positions, this is doable.
+
+  // If the buffer is full: good! That means we are well ahead of the robot.
+  // Remain in this loop until there is room in the buffer.
+  do {
+    protocol_execute_realtime(); // Check for any run-time commands
+    if (sys.abort) { return; } // Bail, if system abort.
+    if ( plan_check_full_buffer() ) { protocol_auto_cycle_start(); } // Auto-cycle start when buffer is full.
+    else { break; }
+  } while (1);
+
+  // Plan and queue motion into planner buffer
+	if (plan_buffer_line(target, pl_data) == PLAN_EMPTY_BLOCK) {
+		if (bit_istrue(settings.flags, BITFLAG_LASER_MODE)) {
+			// Correctly set spindle state, if there is a coincident position passed. Forces a buffer
+			// sync while in M3 laser mode only.
+			if (pl_data->condition & PL_COND_FLAG_SPINDLE_CW) {
+				spindle_sync(PL_COND_FLAG_SPINDLE_CW, pl_data->spindle_speed);
+			}
+		}
+	}
+}
+
+
+// Execute an arc in offset mode format. position == current xyz, target == target xyz,
+// offset == offset from current xyz, axis_X defines circle plane in tool space, axis_linear is
+// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
+// for vector transformation direction.
+// The arc is approximated by generating a huge number of tiny, linear segments. The chordal tolerance
+// of each segment is configured in settings.arc_tolerance, which is defined to be the maximum normal
+// distance from segment to the circle when the end points both lie on the circle.
+void mc_arc(float *target, plan_line_data_t *pl_data, float *position, float *offset, float radius,
+  uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t is_clockwise_arc)
+{
+  float center_axis0 = position[axis_0] + offset[axis_0];
+  float center_axis1 = position[axis_1] + offset[axis_1];
+  float r_axis0 = -offset[axis_0];  // Radius vector from center to current location
+  float r_axis1 = -offset[axis_1];
+  float rt_axis0 = target[axis_0] - center_axis0;
+  float rt_axis1 = target[axis_1] - center_axis1;
+
+  // CCW angle between position and target from circle center. Only one atan2() trig computation required.
+  float angular_travel = atan2f(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
+  if (is_clockwise_arc) { // Correct atan2 output per direction
+    if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= 2*M_PI; }
+  } else {
+    if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += 2*M_PI; }
+  }
+
+  // NOTE: Segment end points are on the arc, which can lead to the arc diameter being smaller by up to
+  // (2x) settings.arc_tolerance. For 99% of users, this is just fine. If a different arc segment fit
+  // is desired, i.e. least-squares, midpoint on arc, just change the mm_per_arc_segment calculation.
+  // For the intended uses of Grbl, this value shouldn't exceed 2000 for the strictest of cases.
+  uint16_t segments = (uint16_t)floorf(fabsf(0.5f*angular_travel*radius) /
+                          sqrtf(settings.arc_tolerance*(2*radius - settings.arc_tolerance)) );
+
+  if (segments) {
+    // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
+    // by a number of discrete segments. The inverse feed_rate should be correct for the sum of
+    // all segments.
+    if (pl_data->condition & PL_COND_FLAG_INVERSE_TIME) { 
+      pl_data->feed_rate *= segments; 
+      bit_false(pl_data->condition,PL_COND_FLAG_INVERSE_TIME); // Force as feed absolute mode over arc segments.
+    }
+    
+    float theta_per_segment = angular_travel/segments;
+    float linear_per_segment = (target[axis_linear] - position[axis_linear])/segments;
+
+    /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+       and phi is the angle of rotation. Solution approach by Jens Geisler.
+           r_T = [cos(phi) -sin(phi);
+                  sin(phi)  cos(phi] * r ;
+
+       For arc generation, the center of the circle is the axis of rotation and the radius vector is
+       defined from the circle center to the initial position. Each line segment is formed by successive
+       vector rotations. Single precision values can accumulate error greater than tool precision in rare
+       cases. So, exact arc path correction is implemented. This approach avoids the problem of too many very
+       expensive trig operations [sin(),cos(),tan()] which can take 100-200 usec each to compute.
+
+       Small angle approximation may be used to reduce computation overhead further. A third-order approximation
+       (second order sin() has too much error) holds for most, if not, all CNC applications. Note that this
+       approximation will begin to accumulate a numerical drift error when theta_per_segment is greater than
+       ~0.25 rad(14 deg) AND the approximation is successively used without correction several dozen times. This
+       scenario is extremely unlikely, since segment lengths and theta_per_segment are automatically generated
+       and scaled by the arc tolerance setting. Only a very large arc tolerance setting, unrealistic for CNC
+       applications, would cause this numerical drift error. However, it is best to set N_ARC_CORRECTION from a
+       low of ~4 to a high of ~20 or so to avoid trig operations while keeping arc generation accurate.
+
+       This approximation also allows mc_arc to immediately insert a line segment into the planner
+       without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
+       a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
+       This is important when there are successive arc motions.
+    */
+    // Computes: cos_T = 1 - theta_per_segment^2/2, sin_T = theta_per_segment - theta_per_segment^3/6) in ~52usec
+    float cos_T = 2.0f - theta_per_segment*theta_per_segment;
+    float sin_T = theta_per_segment*0.16666667f*(cos_T + 4.0f);
+    cos_T *= 0.5;
+
+    float sin_Ti;
+    float cos_Ti;
+    float r_axisi;
+    uint16_t i;
+    uint8_t count = 0;
+
+    for (i = 1; i<segments; i++) { // Increment (segments-1).
+
+      if (count < N_ARC_CORRECTION) {
+        // Apply vector rotation matrix. ~40 usec
+        r_axisi = r_axis0*sin_T + r_axis1*cos_T;
+        r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
+        r_axis1 = r_axisi;
+        count++;
+      } else {
+        // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. ~375 usec
+        // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
+        cos_Ti = cosf(i*theta_per_segment);
+        sin_Ti = sinf(i*theta_per_segment);
+        r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
+        r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
+        count = 0;
+      }
+
+      // Update arc_target location
+      position[axis_0] = center_axis0 + r_axis0;
+      position[axis_1] = center_axis1 + r_axis1;
+      position[axis_linear] += linear_per_segment;
+
+      mc_line(position, pl_data);
+
+      // Bail mid-circle on system abort. Runtime command check already performed by mc_line.
+      if (sys.abort) { return; }
+    }
+  }
+  // Ensure last segment arrives at target location.
+  mc_line(target, pl_data);
+}
+
+
+// Execute dwell in seconds.
+void mc_dwell(float seconds)
+{
+  if (sys.state == STATE_CHECK_MODE) { return; }
+  protocol_buffer_synchronize();
+  delay_sec(seconds, DELAY_MODE_DWELL);
+}
+
+
+// Perform homing cycle to locate and set machine zero. Only '$H' executes this command.
+// NOTE: There should be no motions in the buffer and Grbl must be in an idle state before
+// executing the homing cycle. This prevents incorrect buffered plans after homing.
+void mc_homing_cycle(uint8_t cycle_mask)
+{
+  // Check and abort homing cycle, if hard limits are already enabled. Helps prevent problems
+  // with machines with limits wired on both ends of travel to one limit pin.
+  // TODO: Move the pin-specific LIMIT_PIN call to limits.c as a function.
+  #ifdef LIMITS_TWO_SWITCHES_ON_AXES
+    if (limits_get_state()) {
+      mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
+      system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT);
+      return;
+    }
+  #endif
+
+  limits_disable(); // Disable hard limits pin change register for cycle duration
+
+  // -------------------------------------------------------------------------------------
+  // Perform homing routine. NOTE: Special motion case. Only system reset works.
+  
+  #ifdef HOMING_SINGLE_AXIS_COMMANDS
+    if (cycle_mask) { limits_go_home(cycle_mask); } // Perform homing cycle based on mask.
+    else
+  #endif
+  {
+    // Search to engage all axes limit switches at faster homing seek rate.
+    limits_go_home(HOMING_CYCLE_0);  // Homing cycle 0
+    #ifdef HOMING_CYCLE_1
+      limits_go_home(HOMING_CYCLE_1);  // Homing cycle 1
+    #endif
+    #ifdef HOMING_CYCLE_2
+      limits_go_home(HOMING_CYCLE_2);  // Homing cycle 2
+    #endif
+  }
+
+  protocol_execute_realtime(); // Check for reset and set system abort.
+  if (sys.abort) { return; } // Did not complete. Alarm state set by mc_alarm.
+
+  // Homing cycle complete! Setup system for normal operation.
+  // -------------------------------------------------------------------------------------
+
+  // Sync gcode parser and planner positions to homed position.
+  gc_sync_position();
+  plan_sync_position();
+
+  // If hard limits feature enabled, re-enable hard limits pin change register after homing cycle.
+#ifdef STM32F103C8
+	EXTI_ClearITPendingBit((1 << X_LIMIT_BIT) | (1 << Y_LIMIT_BIT) | (1 << Z_LIMIT_BIT));
+	NVIC_ClearPendingIRQ(EXTI15_10_IRQn);
+	NVIC_EnableIRQ(EXTI15_10_IRQn);
+#else
+	limits_init();
+#endif
+}
+
+
+// Perform tool length probe cycle. Requires probe switch.
+// NOTE: Upon probe failure, the program will be stopped and placed into ALARM state.
+uint8_t mc_probe_cycle(float *target, plan_line_data_t *pl_data, uint8_t parser_flags)
+{
+  // TODO: Need to update this cycle so it obeys a non-auto cycle start.
+  if (sys.state == STATE_CHECK_MODE) { return(GC_PROBE_CHECK_MODE); }
+
+  // Finish all queued commands and empty planner buffer before starting probe cycle.
+  protocol_buffer_synchronize();
+  if (sys.abort) { return(GC_PROBE_ABORT); } // Return if system reset has been issued.
+
+  // Initialize probing control variables
+  uint8_t is_probe_away = bit_istrue(parser_flags, GC_PARSER_PROBE_IS_AWAY);
+  uint8_t is_no_error = bit_istrue(parser_flags, GC_PARSER_PROBE_IS_NO_ERROR);
+  sys.probe_succeeded = false; // Re-initialize probe history before beginning cycle.
+  probe_configure_invert_mask(is_probe_away);
+
+  // After syncing, check if probe is already triggered. If so, halt and issue alarm.
+  // NOTE: This probe initialization error applies to all probing cycles.
+  if ( probe_get_state() ) { // Check probe pin state.
+    system_set_exec_alarm(EXEC_ALARM_PROBE_FAIL_INITIAL);
+    protocol_execute_realtime();
+    probe_configure_invert_mask(false); // Re-initialize invert mask before returning.
+    return(GC_PROBE_FAIL_INIT); // Nothing else to do but bail.
+  }
+
+  // Setup and queue probing motion. Auto cycle-start should not start the cycle.
+  mc_line(target, pl_data);
+
+  // Activate the probing state monitor in the stepper module.
+  sys_probe_state = PROBE_ACTIVE;
+
+  // Perform probing cycle. Wait here until probe is triggered or motion completes.
+  system_set_exec_state_flag(EXEC_CYCLE_START);
+  do {
+    protocol_execute_realtime();
+    if (sys.abort) { return(GC_PROBE_ABORT); } // Check for system abort
+  } while (sys.state != STATE_IDLE);
+
+  // Probing cycle complete!
+
+  // Set state variables and error out, if the probe failed and cycle with error is enabled.
+  if (sys_probe_state == PROBE_ACTIVE) {
+    if (is_no_error) { memcpy(sys_probe_position, sys_position, sizeof(sys_position)); }
+    else { system_set_exec_alarm(EXEC_ALARM_PROBE_FAIL_CONTACT); }
+  } else {
+    sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
+  }
+  sys_probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
+  probe_configure_invert_mask(false); // Re-initialize invert mask.
+  protocol_execute_realtime();   // Check and execute run-time commands
+
+  // Reset the stepper and planner buffers to remove the remainder of the probe motion.
+  st_reset(); // Reset step segment buffer.
+  plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
+  plan_sync_position(); // Sync planner position to current machine position.
+
+  #ifdef MESSAGE_PROBE_COORDINATES
+    // All done! Output the probe position as message.
+    report_probe_parameters();
+  #endif
+
+  if (sys.probe_succeeded) { return(GC_PROBE_FOUND); } // Successful probe cycle.
+  else { return(GC_PROBE_FAIL_END); } // Failed to trigger probe within travel. With or without error.
+}
+
+#ifdef PARKING_ENABLE
+	void mc_parking_motion(float *parking_target, plan_line_data_t *pl_data)
+	{
+		if (sys.abort) { return; } // Block during abort.
+
+		uint8_t plan_status = plan_buffer_line(parking_target, pl_data);
+
+		if (plan_status) {
+			bit_true(sys.step_control, STEP_CONTROL_EXECUTE_SYS_MOTION);
+			bit_false(sys.step_control, STEP_CONTROL_END_MOTION); // Allow parking motion to execute, if feed hold is active.
+			st_parking_setup_buffer(); // Setup step segment buffer for special parking motion case
+			st_prep_buffer();
+			st_wake_up();
+			do {
+				protocol_exec_rt_system();
+				if (sys.abort) { return; }
+			} while (sys.step_control & STEP_CONTROL_EXECUTE_SYS_MOTION);
+			st_parking_restore_buffer(); // Restore step segment buffer to normal run state.
+		}
+		else {
+			bit_false(sys.step_control, STEP_CONTROL_EXECUTE_SYS_MOTION);
+			protocol_exec_rt_system();
+		}
+
+	}
+#endif
+
+
+#ifdef ENABLE_PARKING_OVERRIDE_CONTROL
+void mc_override_ctrl_update(uint8_t override_state)
+{
+	// Finish all queued commands before altering override control state
+	protocol_buffer_synchronize();
+	if (sys.abort) { return; }
+	sys.override_ctrl = override_state;
+}
+#endif
+// Method to ready the system to reset by setting the realtime reset command and killing any
+// active processes in the system. This also checks if a system reset is issued while Grbl
+// is in a motion state. If so, kills the steppers and sets the system alarm to flag position
+// lost, since there was an abrupt uncontrolled deceleration. Called at an interrupt level by
+// realtime abort command and hard limits. So, keep to a minimum.
+void mc_reset()
+{
+  // Only this function can set the system reset. Helps prevent multiple kill calls.
+  if (bit_isfalse(sys_rt_exec_state, EXEC_RESET)) {
+    system_set_exec_state_flag(EXEC_RESET);
+
+    // Kill spindle and coolant.
+    spindle_stop();
+    coolant_stop();
+
+    // Kill steppers only if in any motion state, i.e. cycle, actively holding, or homing.
+    // NOTE: If steppers are kept enabled via the step idle delay setting, this also keeps
+    // the steppers enabled by avoiding the go_idle call altogether, unless the motion state is
+    // violated, by which, all bets are off.
+    if ((sys.state & (STATE_CYCLE | STATE_HOMING | STATE_JOG)) ||
+    		(sys.step_control & (STEP_CONTROL_EXECUTE_HOLD | STEP_CONTROL_EXECUTE_SYS_MOTION))) {
+      if (sys.state == STATE_HOMING) {
+        if (!sys_rt_exec_alarm) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_RESET); }
+      }
+      else { system_set_exec_alarm(EXEC_ALARM_ABORT_CYCLE); }
+      st_go_idle(); // Force kill steppers. Position has likely been lost.
+    }
+  }
+}