Webserver+3d print
Diff: cyclone_crypto/idea.c
- Revision:
- 0:8918a71cdbe9
diff -r 000000000000 -r 8918a71cdbe9 cyclone_crypto/idea.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cyclone_crypto/idea.c Sat Feb 04 18:15:49 2017 +0000 @@ -0,0 +1,320 @@ +/** + * @file idea.c + * @brief IDEA encryption algorithm + * + * @section License + * + * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. + * + * This file is part of CycloneCrypto Open. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software Foundation, + * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + * + * @author Oryx Embedded SARL (www.oryx-embedded.com) + * @version 1.7.6 + **/ + +//Switch to the appropriate trace level +#define TRACE_LEVEL CRYPTO_TRACE_LEVEL + +//Dependencies +#include <string.h> +#include "crypto.h" +#include "idea.h" +#include "debug.h" + +//Check crypto library configuration +#if (IDEA_SUPPORT == ENABLED) + +//Common interface for encryption algorithms +const CipherAlgo ideaCipherAlgo = +{ + "IDEA", + sizeof(IdeaContext), + CIPHER_ALGO_TYPE_BLOCK, + IDEA_BLOCK_SIZE, + (CipherAlgoInit) ideaInit, + NULL, + NULL, + (CipherAlgoEncryptBlock) ideaEncryptBlock, + (CipherAlgoDecryptBlock) ideaDecryptBlock +}; + + +/** + * @brief Modular multiplication + * @param[in] a First operand + * @param[in] b Second operand + * @return Resulting value + **/ + +static uint16_t ideaMul(uint16_t a, uint16_t b) +{ + uint32_t c = a * b; + + if(c) + { + c = (ROL32(c, 16) - c) >> 16; + return (c + 1) & 0xFFFF; + } + else + { + return (1 - a - b) & 0xFFFF; + } +} + + +/** + * @brief Compute modular inverse + * @param[in] a Operand + * @return Resulting value + **/ + +static uint16_t ideaInv(uint16_t a) +{ + uint32_t b; + uint32_t q; + uint32_t r; + int32_t t; + int32_t u; + int32_t v; + + b = 0x10001; + u = 0; + v = 1; + + while(a > 0) + { + q = b / a; + r = b % a; + + b = a; + a = r; + + t = v; + v = u - q * v; + u = t; + } + + if(u < 0) + u += 0x10001; + + return u; +} + + +/** + * @brief Initialize a IDEA context using the supplied key + * @param[in] context Pointer to the IDEA context to initialize + * @param[in] key Pointer to the key + * @param[in] keyLength Length of the key + * @return Error code + **/ + +error_t ideaInit(IdeaContext *context, const uint8_t *key, size_t keyLength) +{ + uint_t i; + uint16_t *ek; + uint16_t *dk; + + //Invalid key length? + if(keyLength != 16) + return ERROR_INVALID_KEY_LENGTH; + + //Point to the encryption and decryption subkeys + ek = context->ek; + dk = context->dk; + + //First, the 128-bit key is partitioned into eight 16-bit sub-blocks + for(i = 0; i < 8; i++) + ek[i] = LOAD16BE(key + i * 2); + + //Expand encryption subkeys + for(i = 8; i < 52; i++) + { + if((i % 8) == 6) + ek[i] = (ek[i - 7] << 9) | (ek[i - 14] >> 7); + else if((i % 8) == 7) + ek[i] = (ek[i - 15] << 9) | (ek[i - 14] >> 7); + else + ek[i] = (ek[i - 7] << 9) | (ek[i - 6] >> 7); + } + + //Generate subkeys for decryption + for(i = 0; i < 52; i += 6) + { + dk[i] = ideaInv(ek[48 - i]); + + if(i == 0 || i == 48) + { + dk[i + 1] = -ek[49 - i]; + dk[i + 2] = -ek[50 - i]; + } + else + { + dk[i + 1] = -ek[50 - i]; + dk[i + 2] = -ek[49 - i]; + } + + dk[i + 3] = ideaInv(ek[51 - i]); + + if(i < 48) + { + dk[i + 4] = ek[46 - i]; + dk[i + 5] = ek[47 - i]; + } + } + + //No error to report + return NO_ERROR; +} + + +/** + * @brief Encrypt a 16-byte block using IDEA algorithm + * @param[in] context Pointer to the IDEA context + * @param[in] input Plaintext block to encrypt + * @param[out] output Ciphertext block resulting from encryption + **/ + +void ideaEncryptBlock(IdeaContext *context, const uint8_t *input, uint8_t *output) +{ + uint_t i; + uint16_t e; + uint16_t f; + uint16_t *k; + + //The plaintext is divided into four 16-bit registers + uint16_t a = LOAD16BE(input + 0); + uint16_t b = LOAD16BE(input + 2); + uint16_t c = LOAD16BE(input + 4); + uint16_t d = LOAD16BE(input + 6); + + //Point to the key schedule + k = context->ek; + + //The process consists of eight identical encryption steps + for(i = 0; i < 8; i++) + { + //Apply a round + a = ideaMul(a, k[0]); + b += k[1]; + c += k[2]; + d = ideaMul(d, k[3]); + + e = a ^ c; + f = b ^ d; + + e = ideaMul(e, k[4]); + f += e; + f = ideaMul(f, k[5]); + e += f; + + a ^= f; + d ^= e; + e ^= b; + f ^= c; + + b = f; + c = e; + + //Advance current location in key schedule + k += 6; + } + + //The four 16-bit values produced at the end of the 8th encryption + //round are combined with the last four of the 52 key sub-blocks + a = ideaMul(a, k[0]); + c += k[1]; + b += k[2]; + d = ideaMul(d, k[3]); + + //The resulting value is the ciphertext + STORE16BE(a, output + 0); + STORE16BE(c, output + 2); + STORE16BE(b, output + 4); + STORE16BE(d, output + 6); +} + + +/** + * @brief Decrypt a 16-byte block using IDEA algorithm + * @param[in] context Pointer to the IDEA context + * @param[in] input Ciphertext block to decrypt + * @param[out] output Plaintext block resulting from decryption + **/ + +void ideaDecryptBlock(IdeaContext *context, const uint8_t *input, uint8_t *output) +{ + uint_t i; + uint16_t e; + uint16_t f; + uint16_t *k; + + //The plaintext is divided into four 16-bit registers + uint16_t a = LOAD16BE(input + 0); + uint16_t b = LOAD16BE(input + 2); + uint16_t c = LOAD16BE(input + 4); + uint16_t d = LOAD16BE(input + 6); + + //Point to the key schedule + k = context->dk; + + //The computational process used for decryption of the ciphertext is + //essentially the same as that used for encryption of the plaintext + for(i = 0; i < 8; i++) + { + //Apply a round + a = ideaMul(a, k[0]); + b += k[1]; + c += k[2]; + d = ideaMul(d, k[3]); + + e = a ^ c; + f = b ^ d; + + e = ideaMul(e, k[4]); + f += e; + f = ideaMul(f, k[5]); + e += f; + + a ^= f; + d ^= e; + e ^= b; + f ^= c; + + b = f; + c = e; + + //Advance current location in key schedule + k += 6; + } + + //The four 16-bit values produced at the end of the 8th encryption + //round are combined with the last four of the 52 key sub-blocks + a = ideaMul(a, k[0]); + c += k[1]; + b += k[2]; + d = ideaMul(d, k[3]); + + //The resulting value is the plaintext + STORE16BE(a, output + 0); + STORE16BE(c, output + 2); + STORE16BE(b, output + 4); + STORE16BE(d, output + 6); +} + +#endif +