Webserver+3d print
cyclone_tcp/drivers/stm32f7xx_eth.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file stm32f7xx_eth.c * @brief STM32F746/756 Ethernet MAC controller * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This file is part of CycloneTCP Open. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL NIC_TRACE_LEVEL //Dependencies #include "stm32f7xx.h" #include "core/net.h" #include "drivers/stm32f7xx_eth.h" #include "debug.h" //Underlying network interface static NetInterface *nicDriverInterface; //IAR EWARM compiler? #if defined(__ICCARM__) //Transmit buffer #pragma data_alignment = 4 #pragma location = ".ram_no_cache" static uint8_t txBuffer[STM32F7XX_ETH_TX_BUFFER_COUNT][STM32F7XX_ETH_TX_BUFFER_SIZE]; //Receive buffer #pragma data_alignment = 4 #pragma location = ".ram_no_cache" static uint8_t rxBuffer[STM32F7XX_ETH_RX_BUFFER_COUNT][STM32F7XX_ETH_RX_BUFFER_SIZE]; //Transmit DMA descriptors #pragma data_alignment = 4 #pragma location = ".ram_no_cache" static Stm32f7xxTxDmaDesc txDmaDesc[STM32F7XX_ETH_TX_BUFFER_COUNT]; //Receive DMA descriptors #pragma data_alignment = 4 #pragma location = ".ram_no_cache" static Stm32f7xxRxDmaDesc rxDmaDesc[STM32F7XX_ETH_RX_BUFFER_COUNT]; //Keil MDK-ARM or GCC compiler? #else //Transmit buffer static uint8_t txBuffer[STM32F7XX_ETH_TX_BUFFER_COUNT][STM32F7XX_ETH_TX_BUFFER_SIZE] __attribute__((aligned(4), __section__(".ram_no_cache"))); //Receive buffer static uint8_t rxBuffer[STM32F7XX_ETH_RX_BUFFER_COUNT][STM32F7XX_ETH_RX_BUFFER_SIZE] __attribute__((aligned(4), __section__(".ram_no_cache"))); //Transmit DMA descriptors static Stm32f7xxTxDmaDesc txDmaDesc[STM32F7XX_ETH_TX_BUFFER_COUNT] __attribute__((aligned(4), __section__(".ram_no_cache"))); //Receive DMA descriptors static Stm32f7xxRxDmaDesc rxDmaDesc[STM32F7XX_ETH_RX_BUFFER_COUNT] __attribute__((aligned(4), __section__(".ram_no_cache"))); #endif //Pointer to the current TX DMA descriptor static Stm32f7xxTxDmaDesc *txCurDmaDesc; //Pointer to the current RX DMA descriptor static Stm32f7xxRxDmaDesc *rxCurDmaDesc; /** * @brief STM32F746/756 Ethernet MAC driver **/ const NicDriver stm32f7xxEthDriver = { NIC_TYPE_ETHERNET, ETH_MTU, stm32f7xxEthInit, stm32f7xxEthTick, stm32f7xxEthEnableIrq, stm32f7xxEthDisableIrq, stm32f7xxEthEventHandler, stm32f7xxEthSendPacket, stm32f7xxEthSetMulticastFilter, stm32f7xxEthUpdateMacConfig, stm32f7xxEthWritePhyReg, stm32f7xxEthReadPhyReg, TRUE, TRUE, TRUE, FALSE }; /** * @brief STM32F746/756 Ethernet MAC initialization * @param[in] interface Underlying network interface * @return Error code **/ error_t stm32f7xxEthInit(NetInterface *interface) { error_t error; //Debug message TRACE_INFO("Initializing STM32F7xx Ethernet MAC...\r\n"); //Save underlying network interface nicDriverInterface = interface; //GPIO configuration stm32f7xxEthInitGpio(interface); //Enable Ethernet MAC clock __HAL_RCC_ETHMAC_CLK_ENABLE(); __HAL_RCC_ETHMACTX_CLK_ENABLE(); __HAL_RCC_ETHMACRX_CLK_ENABLE(); //Reset Ethernet MAC peripheral __HAL_RCC_ETHMAC_FORCE_RESET(); __HAL_RCC_ETHMAC_RELEASE_RESET(); //Perform a software reset ETH->DMABMR |= ETH_DMABMR_SR; //Wait for the reset to complete while(ETH->DMABMR & ETH_DMABMR_SR); //Adjust MDC clock range depending on HCLK frequency ETH->MACMIIAR = ETH_MACMIIAR_CR_Div102; //PHY transceiver initialization error = interface->phyDriver->init(interface); //Failed to initialize PHY transceiver? if(error) return error; //Use default MAC configuration ETH->MACCR = ETH_MACCR_ROD; //Set the MAC address ETH->MACA0LR = interface->macAddr.w[0] | (interface->macAddr.w[1] << 16); ETH->MACA0HR = interface->macAddr.w[2]; //Initialize hash table ETH->MACHTLR = 0; ETH->MACHTHR = 0; //Configure the receive filter ETH->MACFFR = ETH_MACFFR_HPF | ETH_MACFFR_HM; //Disable flow control ETH->MACFCR = 0; //Enable store and forward mode ETH->DMAOMR = ETH_DMAOMR_RSF | ETH_DMAOMR_TSF; //Configure DMA bus mode ETH->DMABMR = ETH_DMABMR_AAB | ETH_DMABMR_USP | ETH_DMABMR_RDP_1Beat | ETH_DMABMR_RTPR_1_1 | ETH_DMABMR_PBL_1Beat | ETH_DMABMR_EDE; //Initialize DMA descriptor lists stm32f7xxEthInitDmaDesc(interface); //Prevent interrupts from being generated when the transmit statistic //counters reach half their maximum value ETH->MMCTIMR = ETH_MMCTIMR_TGFM | ETH_MMCTIMR_TGFMSCM | ETH_MMCTIMR_TGFSCM; //Prevent interrupts from being generated when the receive statistic //counters reach half their maximum value ETH->MMCRIMR = ETH_MMCRIMR_RGUFM | ETH_MMCRIMR_RFAEM | ETH_MMCRIMR_RFCEM; //Disable MAC interrupts ETH->MACIMR = ETH_MACIMR_TSTIM | ETH_MACIMR_PMTIM; //Enable the desired DMA interrupts ETH->DMAIER = ETH_DMAIER_NISE | ETH_DMAIER_RIE | ETH_DMAIER_TIE; //Set priority grouping (4 bits for pre-emption priority, no bits for subpriority) NVIC_SetPriorityGrouping(STM32F7XX_ETH_IRQ_PRIORITY_GROUPING); //Configure Ethernet interrupt priority NVIC_SetPriority(ETH_IRQn, NVIC_EncodePriority(STM32F7XX_ETH_IRQ_PRIORITY_GROUPING, STM32F7XX_ETH_IRQ_GROUP_PRIORITY, STM32F7XX_ETH_IRQ_SUB_PRIORITY)); //Enable MAC transmission and reception ETH->MACCR |= ETH_MACCR_TE | ETH_MACCR_RE; //Enable DMA transmission and reception ETH->DMAOMR |= ETH_DMAOMR_ST | ETH_DMAOMR_SR; //Accept any packets from the upper layer osSetEvent(&interface->nicTxEvent); //Successful initialization return NO_ERROR; } //STM32756G-EVAL, STM32F769I-EVAL, STM32F746G-DISCOVERY, //Nucleo-F746ZG or Nucleo-F767ZI evaluation board? #if defined(USE_STM32756G_EVAL) || defined(USE_STM32F769I_EVAL) || \ defined(USE_STM32746G_DISCO) || defined(USE_STM32F7XX_NUCLEO_144) /** * @brief GPIO configuration * @param[in] interface Underlying network interface **/ void stm32f7xxEthInitGpio(NetInterface *interface) { GPIO_InitTypeDef GPIO_InitStructure; //STM32756G-EVAL or STM32F769I-EVAL evaluation board? #if defined(USE_STM32756G_EVAL) || defined(USE_STM32F769I_EVAL) //Enable SYSCFG clock __HAL_RCC_SYSCFG_CLK_ENABLE(); //Enable GPIO clocks __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOI_CLK_ENABLE(); //Configure MCO1 (PA8) as an output GPIO_InitStructure.Pin = GPIO_PIN_8; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Alternate = GPIO_AF0_MCO; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); //Configure MCO1 pin to output the HSE clock (25MHz) HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSE, RCC_MCODIV_1); //Select MII interface mode SYSCFG->PMC &= ~SYSCFG_PMC_MII_RMII_SEL; #if defined(STM32F7XX_ETH_MDIO_PIN) && defined(STM32F7XX_ETH_MDC_PIN) //Configure ETH_MDIO as a GPIO GPIO_InitStructure.Pin = STM32F7XX_ETH_MDIO_PIN; GPIO_InitStructure.Mode = GPIO_MODE_INPUT; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_MEDIUM; HAL_GPIO_Init(STM32F7XX_ETH_MDIO_GPIO, &GPIO_InitStructure); //Configure ETH_MDC as a GPIO GPIO_InitStructure.Pin = STM32F7XX_ETH_MDC_PIN; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_MEDIUM; HAL_GPIO_Init(STM32F7XX_ETH_MDC_GPIO, &GPIO_InitStructure); //Deassert MDC HAL_GPIO_WritePin(STM32F7XX_ETH_MDC_GPIO, STM32F7XX_ETH_MDC_PIN, GPIO_PIN_RESET); #else //Configure ETH_MDIO (PA2) GPIO_InitStructure.Pin = GPIO_PIN_2; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_MEDIUM; GPIO_InitStructure.Alternate = GPIO_AF11_ETH; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); //Configure ETH_MDC (PC1) GPIO_InitStructure.Pin = GPIO_PIN_1; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_MEDIUM; GPIO_InitStructure.Alternate = GPIO_AF11_ETH; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); #endif //Configure MII pins GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Alternate = GPIO_AF11_ETH; //Configure ETH_MII_CRS (PA0) //GPIO_InitStructure.Pin = GPIO_PIN_0; //HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); //Configure ETH_MII_RX_CLK (PA1) and ETH_MII_RX_DV (PA7) GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_7; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); //Configure ETH_MII_TXD2 (PC2), ETH_MII_TX_CLK (PC3), ETH_MII_RXD0 (PC4) //and ETH_MII_RXD1 (PC5) GPIO_InitStructure.Pin = GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); //Configure ETH_MII_TXD3 (PE2) GPIO_InitStructure.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOE, &GPIO_InitStructure); //Configure ETH_MII_TX_EN (PG11), ETH_MII_TXD0 (PG13) and ETH_MII_TXD1 (PG14) GPIO_InitStructure.Pin = GPIO_PIN_11 | GPIO_PIN_13 | GPIO_PIN_14; HAL_GPIO_Init(GPIOG, &GPIO_InitStructure); //Configure ETH_MII_COL (PH3) //GPIO_InitStructure.Pin = GPIO_PIN_3; //HAL_GPIO_Init(GPIOH, &GPIO_InitStructure); //Configure ETH_MII_RXD2 (PH6) and ETH_MII_RXD3 (PH7) GPIO_InitStructure.Pin = GPIO_PIN_6 | GPIO_PIN_7; HAL_GPIO_Init(GPIOH, &GPIO_InitStructure); //Configure ETH_MII_RX_ER (PI10) //GPIO_InitStructure.Pin = GPIO_PIN_10; //HAL_GPIO_Init(GPIOI, &GPIO_InitStructure); //STM32F746G-DISCOVERY evaluation board? #elif defined(USE_STM32746G_DISCO) //Enable SYSCFG clock __HAL_RCC_SYSCFG_CLK_ENABLE(); //Enable GPIO clocks __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); //Select RMII interface mode SYSCFG->PMC |= SYSCFG_PMC_MII_RMII_SEL; //Configure RMII pins GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Alternate = GPIO_AF11_ETH; //Configure ETH_RMII_REF_CLK (PA1), ETH_MDIO (PA2) and ETH_RMII_CRS_DV (PA7) GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_7; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); //Configure ETH_MDC (PC1), ETH_RMII_RXD0 (PC4) and ETH_RMII_RXD1 (PC5) GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); //Configure ETH_RMII_RXER (PG2), RMII_TX_EN (PG11), ETH_RMII_TXD0 (PG13) //and ETH_RMII_TXD1 (PG14) GPIO_InitStructure.Pin = GPIO_PIN_2 | GPIO_PIN_11 | GPIO_PIN_13 | GPIO_PIN_14; HAL_GPIO_Init(GPIOG, &GPIO_InitStructure); //Nucleo-F746ZG or Nucleo-F767ZI evaluation board? #elif defined(USE_STM32F7XX_NUCLEO_144) //Enable SYSCFG clock __HAL_RCC_SYSCFG_CLK_ENABLE(); //Enable GPIO clocks __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); //Select RMII interface mode SYSCFG->PMC |= SYSCFG_PMC_MII_RMII_SEL; //Configure RMII pins GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Alternate = GPIO_AF11_ETH; //Configure ETH_RMII_REF_CLK (PA1), ETH_MDIO (PA2) and ETH_RMII_CRS_DV (PA7) GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_7; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); //Configure ETH_RMII_TXD1 (PB13) GPIO_InitStructure.Pin = GPIO_PIN_13; HAL_GPIO_Init(GPIOB, &GPIO_InitStructure); //Configure ETH_MDC (PC1), ETH_RMII_RXD0 (PC4) and ETH_RMII_RXD1 (PC5) GPIO_InitStructure.Pin = GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); //Configure RMII_TX_EN (PG11), ETH_RMII_TXD0 (PG13) GPIO_InitStructure.Pin = GPIO_PIN_11 | GPIO_PIN_13; HAL_GPIO_Init(GPIOG, &GPIO_InitStructure); #endif } #endif /** * @brief Initialize DMA descriptor lists * @param[in] interface Underlying network interface **/ void stm32f7xxEthInitDmaDesc(NetInterface *interface) { uint_t i; //Initialize TX DMA descriptor list for(i = 0; i < STM32F7XX_ETH_TX_BUFFER_COUNT; i++) { //Use chain structure rather than ring structure txDmaDesc[i].tdes0 = ETH_TDES0_IC | ETH_TDES0_TCH; //Initialize transmit buffer size txDmaDesc[i].tdes1 = 0; //Transmit buffer address txDmaDesc[i].tdes2 = (uint32_t) txBuffer[i]; //Next descriptor address txDmaDesc[i].tdes3 = (uint32_t) &txDmaDesc[i + 1]; //Reserved fields txDmaDesc[i].tdes4 = 0; txDmaDesc[i].tdes5 = 0; //Transmit frame time stamp txDmaDesc[i].tdes6 = 0; txDmaDesc[i].tdes7 = 0; } //The last descriptor is chained to the first entry txDmaDesc[i - 1].tdes3 = (uint32_t) &txDmaDesc[0]; //Point to the very first descriptor txCurDmaDesc = &txDmaDesc[0]; //Initialize RX DMA descriptor list for(i = 0; i < STM32F7XX_ETH_RX_BUFFER_COUNT; i++) { //The descriptor is initially owned by the DMA rxDmaDesc[i].rdes0 = ETH_RDES0_OWN; //Use chain structure rather than ring structure rxDmaDesc[i].rdes1 = ETH_RDES1_RCH | (STM32F7XX_ETH_RX_BUFFER_SIZE & ETH_RDES1_RBS1); //Receive buffer address rxDmaDesc[i].rdes2 = (uint32_t) rxBuffer[i]; //Next descriptor address rxDmaDesc[i].rdes3 = (uint32_t) &rxDmaDesc[i + 1]; //Extended status rxDmaDesc[i].rdes4 = 0; //Reserved field rxDmaDesc[i].rdes5 = 0; //Receive frame time stamp rxDmaDesc[i].rdes6 = 0; rxDmaDesc[i].rdes7 = 0; } //The last descriptor is chained to the first entry rxDmaDesc[i - 1].rdes3 = (uint32_t) &rxDmaDesc[0]; //Point to the very first descriptor rxCurDmaDesc = &rxDmaDesc[0]; //Start location of the TX descriptor list ETH->DMATDLAR = (uint32_t) txDmaDesc; //Start location of the RX descriptor list ETH->DMARDLAR = (uint32_t) rxDmaDesc; } /** * @brief STM32F746/756 Ethernet MAC timer handler * * This routine is periodically called by the TCP/IP stack to * handle periodic operations such as polling the link state * * @param[in] interface Underlying network interface **/ void stm32f7xxEthTick(NetInterface *interface) { //Handle periodic operations interface->phyDriver->tick(interface); } /** * @brief Enable interrupts * @param[in] interface Underlying network interface **/ void stm32f7xxEthEnableIrq(NetInterface *interface) { //Enable Ethernet MAC interrupts NVIC_EnableIRQ(ETH_IRQn); //Enable Ethernet PHY interrupts interface->phyDriver->enableIrq(interface); } /** * @brief Disable interrupts * @param[in] interface Underlying network interface **/ void stm32f7xxEthDisableIrq(NetInterface *interface) { //Disable Ethernet MAC interrupts NVIC_DisableIRQ(ETH_IRQn); //Disable Ethernet PHY interrupts interface->phyDriver->disableIrq(interface); } /** * @brief STM32F746/756 Ethernet MAC interrupt service routine **/ void ETH_IRQHandler(void) { bool_t flag; uint32_t status; //Enter interrupt service routine osEnterIsr(); //This flag will be set if a higher priority task must be woken flag = FALSE; //Read DMA status register status = ETH->DMASR; //A packet has been transmitted? if(status & ETH_DMASR_TS) { //Clear TS interrupt flag ETH->DMASR = ETH_DMASR_TS; //Check whether the TX buffer is available for writing if(!(txCurDmaDesc->tdes0 & ETH_TDES0_OWN)) { //Notify the TCP/IP stack that the transmitter is ready to send flag |= osSetEventFromIsr(&nicDriverInterface->nicTxEvent); } } //A packet has been received? if(status & ETH_DMASR_RS) { //Disable RIE interrupt ETH->DMAIER &= ~ETH_DMAIER_RIE; //Set event flag nicDriverInterface->nicEvent = TRUE; //Notify the TCP/IP stack of the event flag |= osSetEventFromIsr(&netEvent); } //Clear NIS interrupt flag ETH->DMASR = ETH_DMASR_NIS; //Leave interrupt service routine osExitIsr(flag); } /** * @brief STM32F746/756 Ethernet MAC event handler * @param[in] interface Underlying network interface **/ void stm32f7xxEthEventHandler(NetInterface *interface) { error_t error; //Packet received? if(ETH->DMASR & ETH_DMASR_RS) { //Clear interrupt flag ETH->DMASR = ETH_DMASR_RS; //Process all pending packets do { //Read incoming packet error = stm32f7xxEthReceivePacket(interface); //No more data in the receive buffer? } while(error != ERROR_BUFFER_EMPTY); } //Re-enable DMA interrupts ETH->DMAIER |= ETH_DMAIER_NISE | ETH_DMAIER_RIE | ETH_DMAIER_TIE; } /** * @brief Send a packet * @param[in] interface Underlying network interface * @param[in] buffer Multi-part buffer containing the data to send * @param[in] offset Offset to the first data byte * @return Error code **/ error_t stm32f7xxEthSendPacket(NetInterface *interface, const NetBuffer *buffer, size_t offset) { static uint8_t temp[STM32F7XX_ETH_TX_BUFFER_SIZE]; size_t length; //Retrieve the length of the packet length = netBufferGetLength(buffer) - offset; //Check the frame length if(length > STM32F7XX_ETH_TX_BUFFER_SIZE) { //The transmitter can accept another packet osSetEvent(&interface->nicTxEvent); //Report an error return ERROR_INVALID_LENGTH; } //Make sure the current buffer is available for writing if(txCurDmaDesc->tdes0 & ETH_TDES0_OWN) return ERROR_FAILURE; //Copy user data to the transmit buffer netBufferRead(temp, buffer, offset, length); memcpy((uint8_t *) txCurDmaDesc->tdes2, temp, (length + 3) & ~3UL); //Write the number of bytes to send txCurDmaDesc->tdes1 = length & ETH_TDES1_TBS1; //Set LS and FS flags as the data fits in a single buffer txCurDmaDesc->tdes0 |= ETH_TDES0_LS | ETH_TDES0_FS; //Give the ownership of the descriptor to the DMA txCurDmaDesc->tdes0 |= ETH_TDES0_OWN; //Data synchronization barrier __DSB(); //Clear TBUS flag to resume processing ETH->DMASR = ETH_DMASR_TBUS; //Instruct the DMA to poll the transmit descriptor list ETH->DMATPDR = 0; //Point to the next descriptor in the list txCurDmaDesc = (Stm32f7xxTxDmaDesc *) txCurDmaDesc->tdes3; //Check whether the next buffer is available for writing if(!(txCurDmaDesc->tdes0 & ETH_TDES0_OWN)) { //The transmitter can accept another packet osSetEvent(&interface->nicTxEvent); } //Data successfully written return NO_ERROR; } /** * @brief Receive a packet * @param[in] interface Underlying network interface * @return Error code **/ error_t stm32f7xxEthReceivePacket(NetInterface *interface) { static uint8_t temp[STM32F7XX_ETH_RX_BUFFER_SIZE]; error_t error; size_t n; //The current buffer is available for reading? if(!(rxCurDmaDesc->rdes0 & ETH_RDES0_OWN)) { //FS and LS flags should be set if((rxCurDmaDesc->rdes0 & ETH_RDES0_FS) && (rxCurDmaDesc->rdes0 & ETH_RDES0_LS)) { //Make sure no error occurred if(!(rxCurDmaDesc->rdes0 & ETH_RDES0_ES)) { //Retrieve the length of the frame n = (rxCurDmaDesc->rdes0 & ETH_RDES0_FL) >> 16; //Limit the number of data to read n = MIN(n, STM32F7XX_ETH_RX_BUFFER_SIZE); //Copy data from the receive buffer memcpy(temp, (uint8_t *) rxCurDmaDesc->rdes2, (n + 3) & ~3UL); //Pass the packet to the upper layer nicProcessPacket(interface, temp, n); //Valid packet received error = NO_ERROR; } else { //The received packet contains an error error = ERROR_INVALID_PACKET; } } else { //The packet is not valid error = ERROR_INVALID_PACKET; } //Give the ownership of the descriptor back to the DMA rxCurDmaDesc->rdes0 = ETH_RDES0_OWN; //Point to the next descriptor in the list rxCurDmaDesc = (Stm32f7xxRxDmaDesc *) rxCurDmaDesc->rdes3; } else { //No more data in the receive buffer error = ERROR_BUFFER_EMPTY; } //Clear RBUS flag to resume processing ETH->DMASR = ETH_DMASR_RBUS; //Instruct the DMA to poll the receive descriptor list ETH->DMARPDR = 0; //Return status code return error; } /** * @brief Configure multicast MAC address filtering * @param[in] interface Underlying network interface * @return Error code **/ error_t stm32f7xxEthSetMulticastFilter(NetInterface *interface) { uint_t i; uint_t k; uint32_t crc; uint32_t hashTable[2]; MacFilterEntry *entry; //Debug message TRACE_DEBUG("Updating STM32F7xx hash table...\r\n"); //Clear hash table hashTable[0] = 0; hashTable[1] = 0; //The MAC filter table contains the multicast MAC addresses //to accept when receiving an Ethernet frame for(i = 0; i < MAC_MULTICAST_FILTER_SIZE; i++) { //Point to the current entry entry = &interface->macMulticastFilter[i]; //Valid entry? if(entry->refCount > 0) { //Compute CRC over the current MAC address crc = stm32f7xxEthCalcCrc(&entry->addr, sizeof(MacAddr)); //The upper 6 bits in the CRC register are used to index the //contents of the hash table k = (crc >> 26) & 0x3F; //Update hash table contents hashTable[k / 32] |= (1 << (k % 32)); } } //Write the hash table ETH->MACHTLR = hashTable[0]; ETH->MACHTHR = hashTable[1]; //Debug message TRACE_DEBUG(" MACHTLR = %08" PRIX32 "\r\n", ETH->MACHTLR); TRACE_DEBUG(" MACHTHR = %08" PRIX32 "\r\n", ETH->MACHTHR); //Successful processing return NO_ERROR; } /** * @brief Adjust MAC configuration parameters for proper operation * @param[in] interface Underlying network interface * @return Error code **/ error_t stm32f7xxEthUpdateMacConfig(NetInterface *interface) { uint32_t config; //Read current MAC configuration config = ETH->MACCR; //10BASE-T or 100BASE-TX operation mode? if(interface->linkSpeed == NIC_LINK_SPEED_100MBPS) config |= ETH_MACCR_FES; else config &= ~ETH_MACCR_FES; //Half-duplex or full-duplex mode? if(interface->duplexMode == NIC_FULL_DUPLEX_MODE) config |= ETH_MACCR_DM; else config &= ~ETH_MACCR_DM; //Update MAC configuration register ETH->MACCR = config; //Successful processing return NO_ERROR; } /** * @brief Write PHY register * @param[in] phyAddr PHY address * @param[in] regAddr Register address * @param[in] data Register value **/ void stm32f7xxEthWritePhyReg(uint8_t phyAddr, uint8_t regAddr, uint16_t data) { #if defined(STM32F7XX_ETH_MDC_PIN) && defined(STM32F7XX_ETH_MDIO_PIN) //Synchronization pattern stm32f7xxEthWriteSmi(SMI_SYNC, 32); //Start of frame stm32f7xxEthWriteSmi(SMI_START, 2); //Set up a write operation stm32f7xxEthWriteSmi(SMI_WRITE, 2); //Write PHY address stm32f7xxEthWriteSmi(phyAddr, 5); //Write register address stm32f7xxEthWriteSmi(regAddr, 5); //Turnaround stm32f7xxEthWriteSmi(SMI_TA, 2); //Write register value stm32f7xxEthWriteSmi(data, 16); //Release MDIO stm32f7xxEthReadSmi(1); #else uint32_t temp; //Take care not to alter MDC clock configuration temp = ETH->MACMIIAR & ETH_MACMIIAR_CR; //Set up a write operation temp |= ETH_MACMIIAR_MW | ETH_MACMIIAR_MB; //PHY address temp |= (phyAddr << 11) & ETH_MACMIIAR_PA; //Register address temp |= (regAddr << 6) & ETH_MACMIIAR_MR; //Data to be written in the PHY register ETH->MACMIIDR = data & ETH_MACMIIDR_MD; //Start a write operation ETH->MACMIIAR = temp; //Wait for the write to complete while(ETH->MACMIIAR & ETH_MACMIIAR_MB); #endif } /** * @brief Read PHY register * @param[in] phyAddr PHY address * @param[in] regAddr Register address * @return Register value **/ uint16_t stm32f7xxEthReadPhyReg(uint8_t phyAddr, uint8_t regAddr) { #if defined(STM32F7XX_ETH_MDC_PIN) && defined(STM32F7XX_ETH_MDIO_PIN) uint16_t data; //Synchronization pattern stm32f7xxEthWriteSmi(SMI_SYNC, 32); //Start of frame stm32f7xxEthWriteSmi(SMI_START, 2); //Set up a read operation stm32f7xxEthWriteSmi(SMI_READ, 2); //Write PHY address stm32f7xxEthWriteSmi(phyAddr, 5); //Write register address stm32f7xxEthWriteSmi(regAddr, 5); //Turnaround to avoid contention stm32f7xxEthReadSmi(1); //Read register value data = stm32f7xxEthReadSmi(16); //Force the PHY to release the MDIO pin stm32f7xxEthReadSmi(1); #else uint16_t data; uint32_t temp; //Take care not to alter MDC clock configuration temp = ETH->MACMIIAR & ETH_MACMIIAR_CR; //Set up a read operation temp |= ETH_MACMIIAR_MB; //PHY address temp |= (phyAddr << 11) & ETH_MACMIIAR_PA; //Register address temp |= (regAddr << 6) & ETH_MACMIIAR_MR; //Start a read operation ETH->MACMIIAR = temp; //Wait for the read to complete while(ETH->MACMIIAR & ETH_MACMIIAR_MB); //Read register value data = ETH->MACMIIDR & ETH_MACMIIDR_MD; #endif //Return PHY register contents return data; } /** * @brief SMI write operation * @param[in] data Raw data to be written * @param[in] length Number of bits to be written **/ void stm32f7xxEthWriteSmi(uint32_t data, uint_t length) { #if defined(STM32F7XX_ETH_MDC_PIN) && defined(STM32F7XX_ETH_MDIO_PIN) GPIO_InitTypeDef GPIO_InitStructure; //Skip the most significant bits since they are meaningless data <<= 32 - length; //Configure MDIO as an output GPIO_InitStructure.Pin = STM32F7XX_ETH_MDIO_PIN; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_MEDIUM; HAL_GPIO_Init(STM32F7XX_ETH_MDIO_GPIO, &GPIO_InitStructure); //Write the specified number of bits while(length--) { //Write MDIO if(data & 0x80000000) { HAL_GPIO_WritePin(STM32F7XX_ETH_MDIO_GPIO, STM32F7XX_ETH_MDIO_PIN, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(STM32F7XX_ETH_MDIO_GPIO, STM32F7XX_ETH_MDIO_PIN, GPIO_PIN_RESET); } //Delay usleep(1); //Assert MDC HAL_GPIO_WritePin(STM32F7XX_ETH_MDC_GPIO, STM32F7XX_ETH_MDC_PIN, GPIO_PIN_SET); //Delay usleep(1); //Deassert MDC HAL_GPIO_WritePin(STM32F7XX_ETH_MDC_GPIO, STM32F7XX_ETH_MDC_PIN, GPIO_PIN_RESET); //Rotate data data <<= 1; } #endif } /** * @brief SMI read operation * @param[in] length Number of bits to be read * @return Data resulting from the MDIO read operation **/ uint32_t stm32f7xxEthReadSmi(uint_t length) { uint32_t data = 0; #if defined(STM32F7XX_ETH_MDC_PIN) && defined(STM32F7XX_ETH_MDIO_PIN) GPIO_InitTypeDef GPIO_InitStructure; //Configure MDIO as an input GPIO_InitStructure.Pin = STM32F7XX_ETH_MDIO_PIN; GPIO_InitStructure.Mode = GPIO_MODE_INPUT; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_MEDIUM; HAL_GPIO_Init(STM32F7XX_ETH_MDIO_GPIO, &GPIO_InitStructure); //Read the specified number of bits while(length--) { //Rotate data data <<= 1; //Assert MDC HAL_GPIO_WritePin(STM32F7XX_ETH_MDC_GPIO, STM32F7XX_ETH_MDC_PIN, GPIO_PIN_SET); //Delay usleep(1); //Deassert MDC HAL_GPIO_WritePin(STM32F7XX_ETH_MDC_GPIO, STM32F7XX_ETH_MDC_PIN, GPIO_PIN_RESET); //Delay usleep(1); //Check MDIO state if(HAL_GPIO_ReadPin(STM32F7XX_ETH_MDIO_GPIO, STM32F7XX_ETH_MDIO_PIN)) data |= 0x00000001; } #endif //Return the received data return data; } /** * @brief CRC calculation * @param[in] data Pointer to the data over which to calculate the CRC * @param[in] length Number of bytes to process * @return Resulting CRC value **/ uint32_t stm32f7xxEthCalcCrc(const void *data, size_t length) { uint_t i; uint_t j; //Point to the data over which to calculate the CRC const uint8_t *p = (uint8_t *) data; //CRC preset value uint32_t crc = 0xFFFFFFFF; //Loop through data for(i = 0; i < length; i++) { //The message is processed bit by bit for(j = 0; j < 8; j++) { //Update CRC value if(((crc >> 31) ^ (p[i] >> j)) & 0x01) crc = (crc << 1) ^ 0x04C11DB7; else crc = crc << 1; } } //Return CRC value return ~crc; }