Webserver+3d print
cyclone_crypto/sha1.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file sha1.c * @brief SHA-1 (Secure Hash Algorithm 1) * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This file is part of CycloneCrypto Open. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @section Description * * SHA-1 is a secure hash algorithm for computing a condensed representation * of an electronic message. Refer to FIPS 180-4 for more details * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL CRYPTO_TRACE_LEVEL //Dependencies #include <string.h> #include "crypto.h" #include "sha1.h" //Check crypto library configuration #if (SHA1_SUPPORT == ENABLED) //Macro to access the workspace as a circular buffer #define W(t) w[(t) & 0x0F] //SHA-1 auxiliary functions #define CH(x, y, z) (((x) & (y)) | (~(x) & (z))) #define PARITY(x, y, z) ((x) ^ (y) ^ (z)) #define MAJ(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) //SHA-1 padding static const uint8_t padding[64] = { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //SHA-1 constants static const uint32_t k[4] = { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; //SHA-1 object identifier (1.3.14.3.2.26) static const uint8_t sha1Oid[] = {0x2B, 0x0E, 0x03, 0x02, 0x1A}; //Common interface for hash algorithms const HashAlgo sha1HashAlgo = { "SHA-1", sha1Oid, sizeof(sha1Oid), sizeof(Sha1Context), SHA1_BLOCK_SIZE, SHA1_DIGEST_SIZE, (HashAlgoCompute) sha1Compute, (HashAlgoInit) sha1Init, (HashAlgoUpdate) sha1Update, (HashAlgoFinal) sha1Final }; /** * @brief Digest a message using SHA-1 * @param[in] data Pointer to the message being hashed * @param[in] length Length of the message * @param[out] digest Pointer to the calculated digest * @return Error code **/ error_t sha1Compute(const void *data, size_t length, uint8_t *digest) { //Allocate a memory buffer to hold the SHA-1 context Sha1Context *context = cryptoAllocMem(sizeof(Sha1Context)); //Failed to allocate memory? if(context == NULL) return ERROR_OUT_OF_MEMORY; //Initialize the SHA-1 context sha1Init(context); //Digest the message sha1Update(context, data, length); //Finalize the SHA-1 message digest sha1Final(context, digest); //Free previously allocated memory cryptoFreeMem(context); //Successful processing return NO_ERROR; } /** * @brief Initialize SHA-1 message digest context * @param[in] context Pointer to the SHA-1 context to initialize **/ void sha1Init(Sha1Context *context) { //Set initial hash value context->h[0] = 0x67452301; context->h[1] = 0xEFCDAB89; context->h[2] = 0x98BADCFE; context->h[3] = 0x10325476; context->h[4] = 0xC3D2E1F0; //Number of bytes in the buffer context->size = 0; //Total length of the message context->totalSize = 0; } /** * @brief Update the SHA-1 context with a portion of the message being hashed * @param[in] context Pointer to the SHA-1 context * @param[in] data Pointer to the buffer being hashed * @param[in] length Length of the buffer **/ void sha1Update(Sha1Context *context, const void *data, size_t length) { size_t n; //Process the incoming data while(length > 0) { //The buffer can hold at most 64 bytes n = MIN(length, 64 - context->size); //Copy the data to the buffer memcpy(context->buffer + context->size, data, n); //Update the SHA-1 context context->size += n; context->totalSize += n; //Advance the data pointer data = (uint8_t *) data + n; //Remaining bytes to process length -= n; //Process message in 16-word blocks if(context->size == 64) { //Transform the 16-word block sha1ProcessBlock(context); //Empty the buffer context->size = 0; } } } /** * @brief Finish the SHA-1 message digest * @param[in] context Pointer to the SHA-1 context * @param[out] digest Calculated digest (optional parameter) **/ void sha1Final(Sha1Context *context, uint8_t *digest) { uint_t i; size_t paddingSize; uint64_t totalSize; //Length of the original message (before padding) totalSize = context->totalSize * 8; //Pad the message so that its length is congruent to 56 modulo 64 if(context->size < 56) paddingSize = 56 - context->size; else paddingSize = 64 + 56 - context->size; //Append padding sha1Update(context, padding, paddingSize); //Append the length of the original message context->w[14] = htobe32((uint32_t) (totalSize >> 32)); context->w[15] = htobe32((uint32_t) totalSize); //Calculate the message digest sha1ProcessBlock(context); //Convert from host byte order to big-endian byte order for(i = 0; i < 5; i++) context->h[i] = htobe32(context->h[i]); //Copy the resulting digest if(digest != NULL) memcpy(digest, context->digest, SHA1_DIGEST_SIZE); } /** * @brief Process message in 16-word blocks * @param[in] context Pointer to the SHA-1 context **/ void sha1ProcessBlock(Sha1Context *context) { uint_t t; uint32_t temp; //Initialize the 5 working registers uint32_t a = context->h[0]; uint32_t b = context->h[1]; uint32_t c = context->h[2]; uint32_t d = context->h[3]; uint32_t e = context->h[4]; //Process message in 16-word blocks uint32_t *w = context->w; //Convert from big-endian byte order to host byte order for(t = 0; t < 16; t++) w[t] = betoh32(w[t]); //SHA-1 hash computation (alternate method) for(t = 0; t < 80; t++) { //Prepare the message schedule if(t >= 16) W(t) = ROL32(W(t + 13) ^ W(t + 8) ^ W(t + 2) ^ W(t), 1); //Calculate T if(t < 20) temp = ROL32(a, 5) + CH(b, c, d) + e + W(t) + k[0]; else if(t < 40) temp = ROL32(a, 5) + PARITY(b, c, d) + e + W(t) + k[1]; else if(t < 60) temp = ROL32(a, 5) + MAJ(b, c, d) + e + W(t) + k[2]; else temp = ROL32(a, 5) + PARITY(b, c, d) + e + W(t) + k[3]; //Update the working registers e = d; d = c; c = ROL32(b, 30); b = a; a = temp; } //Update the hash value context->h[0] += a; context->h[1] += b; context->h[2] += c; context->h[3] += d; context->h[4] += e; } #endif