Webserver+3d print
cyclone_crypto/camellia.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file camellia.c * @brief Camellia encryption algorithm * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This file is part of CycloneCrypto Open. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @section Description * * Camellia is an encryption algorithm designed to encipher and decipher * blocks of 128 bits under control of a 128/192/256-bit secret key * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL CRYPTO_TRACE_LEVEL //Dependencies #include <string.h> #include "crypto.h" #include "camellia.h" #include "debug.h" //Check crypto library configuration #if (CAMELLIA_SUPPORT == ENABLED) //Camellia round function #define CAMELLIA_ROUND(left1, left2, right1, right2, k1, k2) \ { \ temp1 = left1 ^ k1; \ temp2 = left2 ^ k2; \ CAMELLIA_S(temp1, temp2); \ CAMELLIA_P(temp1, temp2); \ temp1 ^= right2; \ temp2 ^= right1; \ right1 = left1; \ right2 = left2; \ left1 = temp2; \ left2 = temp1; \ } //F-function #define CAMELLIA_F(xl, xr, kl, kr) \ { \ xl = xl ^ kl; \ xl = xr ^ kr; \ CAMELLIA_S(xl, xr); \ CAMELLIA_P(xl, xr); \ } //FL-function #define CAMELLIA_FL(xl, xr, kl, kr) \ { \ temp1 = (xl & kl); \ xr ^= ROL32(temp1, 1); \ xl ^= (xr | kr); \ } //Inverse FL-function #define CAMELLIA_INV_FL(yl, yr, kl, kr) \ { \ yl ^= (yr | kr); \ temp1 = (yl & kl); \ yr ^= ROL32(temp1, 1); \ } //S-function #define CAMELLIA_S(zl, zr) \ { \ zl = (sbox1[(zl >> 24) & 0xFF] << 24) | (sbox2[(zl >> 16) & 0xFF] << 16) | \ (sbox3[(zl >> 8) & 0xFF] << 8) | sbox4[zl & 0xFF]; \ zr = (sbox2[(zr >> 24) & 0xFF] << 24) | (sbox3[(zr >> 16) & 0xFF] << 16) | \ (sbox4[(zr >> 8) & 0xFF] << 8) | sbox1[zr & 0xFF]; \ } //P-function #define CAMELLIA_P(zl, zr) \ { \ zl ^= ROL32(zr, 8); \ zr ^= ROL32(zl, 16); \ zl ^= ROR32(zr, 8); \ zr ^= ROR32(zl, 8); \ } //Key schedule related constants #define KL 0 #define KR 4 #define KA 8 #define KB 12 #define L 0 #define R 64 //Key schedule for 128-bit key static const CamelliaSubkey ks1[] = { {0, KL, 0, L}, //kw1 {2, KL, 0, R}, //kw2 {4, KA, 0, L}, //k1 {6, KA, 0, R}, //k2 {8, KL, 15, L}, //k3 {10, KL, 15, R}, //k4 {12, KA, 15, L}, //k5 {14, KA, 15, R}, //k6 {16, KA, 30, L}, //ke1 {18, KA, 30, R}, //ke2 {20, KL, 45, L}, //k7 {22, KL, 45, R}, //k8 {24, KA, 45, L}, //k9 {26, KL, 60, R}, //k10 {28, KA, 60, L}, //k11 {30, KA, 60, R}, //k12 {32, KL, 77, L}, //ke3 {34, KL, 77, R}, //ke4 {36, KL, 94, L}, //k13 {38, KL, 94, R}, //k14 {40, KA, 94, L}, //k15 {42, KA, 94, R}, //k16 {44, KL, 111, L}, //k17 {46, KL, 111, R}, //k18 {48, KA, 111, L}, //kw3 {50, KA, 111, R}, //kw4 }; //Key schedule for 192 and 256-bit keys static const CamelliaSubkey ks2[] = { {0, KL, 0, L}, //kw1 {2, KL, 0, R}, //k2 {4, KB, 0, L}, //k1 {6, KB, 0, R}, //k2 {8, KR, 15, L}, //k3 {10, KR, 15, R}, //k4 {12, KA, 15, L}, //k5 {14, KA, 15, R}, //k6 {16, KR, 30, L}, //ke1 {18, KR, 30, R}, //ke2 {20, KB, 30, L}, //k7 {22, KB, 30, R}, //k8 {24, KL, 45, L}, //k9 {26, KL, 45, R}, //k10 {28, KA, 45, L}, //k11 {30, KA, 45, R}, //k12 {32, KL, 60, L}, //ke3 {34, KL, 60, R}, //ke4 {36, KR, 60, L}, //k13 {38, KR, 60, R}, //k14 {40, KB, 60, L}, //k15 {42, KB, 60, R}, //k16 {44, KL, 77, L}, //k17 {46, KL, 77, R}, //k18 {48, KA, 77, L}, //ke5 {50, KA, 77, R}, //ke6 {52, KR, 94, L}, //k19 {54, KR, 94, R}, //k20 {56, KA, 94, L}, //k21 {58, KA, 94, R}, //k22 {60, KL, 111, L}, //k23 {62, KL, 111, R}, //k24 {64, KB, 111, L}, //kw3 {66, KB, 111, R}, //kw4 }; //Key schedule constants static const uint32_t sigma[12] = { 0xA09E667F, 0x3BCC908B, 0xB67AE858, 0x4CAA73B2, 0xC6EF372F, 0xE94F82BE, 0x54FF53A5, 0xF1D36F1C, 0x10E527FA, 0xDE682D1D, 0xB05688C2, 0xB3E6C1FD }; //Substitution table 1 static const uint8_t sbox1[256] = { 0x70, 0x82, 0x2C, 0xEC, 0xB3, 0x27, 0xC0, 0xE5, 0xE4, 0x85, 0x57, 0x35, 0xEA, 0x0C, 0xAE, 0x41, 0x23, 0xEF, 0x6B, 0x93, 0x45, 0x19, 0xA5, 0x21, 0xED, 0x0E, 0x4F, 0x4E, 0x1D, 0x65, 0x92, 0xBD, 0x86, 0xB8, 0xAF, 0x8F, 0x7C, 0xEB, 0x1F, 0xCE, 0x3E, 0x30, 0xDC, 0x5F, 0x5E, 0xC5, 0x0B, 0x1A, 0xA6, 0xE1, 0x39, 0xCA, 0xD5, 0x47, 0x5D, 0x3D, 0xD9, 0x01, 0x5A, 0xD6, 0x51, 0x56, 0x6C, 0x4D, 0x8B, 0x0D, 0x9A, 0x66, 0xFB, 0xCC, 0xB0, 0x2D, 0x74, 0x12, 0x2B, 0x20, 0xF0, 0xB1, 0x84, 0x99, 0xDF, 0x4C, 0xCB, 0xC2, 0x34, 0x7E, 0x76, 0x05, 0x6D, 0xB7, 0xA9, 0x31, 0xD1, 0x17, 0x04, 0xD7, 0x14, 0x58, 0x3A, 0x61, 0xDE, 0x1B, 0x11, 0x1C, 0x32, 0x0F, 0x9C, 0x16, 0x53, 0x18, 0xF2, 0x22, 0xFE, 0x44, 0xCF, 0xB2, 0xC3, 0xB5, 0x7A, 0x91, 0x24, 0x08, 0xE8, 0xA8, 0x60, 0xFC, 0x69, 0x50, 0xAA, 0xD0, 0xA0, 0x7D, 0xA1, 0x89, 0x62, 0x97, 0x54, 0x5B, 0x1E, 0x95, 0xE0, 0xFF, 0x64, 0xD2, 0x10, 0xC4, 0x00, 0x48, 0xA3, 0xF7, 0x75, 0xDB, 0x8A, 0x03, 0xE6, 0xDA, 0x09, 0x3F, 0xDD, 0x94, 0x87, 0x5C, 0x83, 0x02, 0xCD, 0x4A, 0x90, 0x33, 0x73, 0x67, 0xF6, 0xF3, 0x9D, 0x7F, 0xBF, 0xE2, 0x52, 0x9B, 0xD8, 0x26, 0xC8, 0x37, 0xC6, 0x3B, 0x81, 0x96, 0x6F, 0x4B, 0x13, 0xBE, 0x63, 0x2E, 0xE9, 0x79, 0xA7, 0x8C, 0x9F, 0x6E, 0xBC, 0x8E, 0x29, 0xF5, 0xF9, 0xB6, 0x2F, 0xFD, 0xB4, 0x59, 0x78, 0x98, 0x06, 0x6A, 0xE7, 0x46, 0x71, 0xBA, 0xD4, 0x25, 0xAB, 0x42, 0x88, 0xA2, 0x8D, 0xFA, 0x72, 0x07, 0xB9, 0x55, 0xF8, 0xEE, 0xAC, 0x0A, 0x36, 0x49, 0x2A, 0x68, 0x3C, 0x38, 0xF1, 0xA4, 0x40, 0x28, 0xD3, 0x7B, 0xBB, 0xC9, 0x43, 0xC1, 0x15, 0xE3, 0xAD, 0xF4, 0x77, 0xC7, 0x80, 0x9E }; //Substitution table 2 static const uint8_t sbox2[256] = { 0xE0, 0x05, 0x58, 0xD9, 0x67, 0x4E, 0x81, 0xCB, 0xC9, 0x0B, 0xAE, 0x6A, 0xD5, 0x18, 0x5D, 0x82, 0x46, 0xDF, 0xD6, 0x27, 0x8A, 0x32, 0x4B, 0x42, 0xDB, 0x1C, 0x9E, 0x9C, 0x3A, 0xCA, 0x25, 0x7B, 0x0D, 0x71, 0x5F, 0x1F, 0xF8, 0xD7, 0x3E, 0x9D, 0x7C, 0x60, 0xB9, 0xBE, 0xBC, 0x8B, 0x16, 0x34, 0x4D, 0xC3, 0x72, 0x95, 0xAB, 0x8E, 0xBA, 0x7A, 0xB3, 0x02, 0xB4, 0xAD, 0xA2, 0xAC, 0xD8, 0x9A, 0x17, 0x1A, 0x35, 0xCC, 0xF7, 0x99, 0x61, 0x5A, 0xE8, 0x24, 0x56, 0x40, 0xE1, 0x63, 0x09, 0x33, 0xBF, 0x98, 0x97, 0x85, 0x68, 0xFC, 0xEC, 0x0A, 0xDA, 0x6F, 0x53, 0x62, 0xA3, 0x2E, 0x08, 0xAF, 0x28, 0xB0, 0x74, 0xC2, 0xBD, 0x36, 0x22, 0x38, 0x64, 0x1E, 0x39, 0x2C, 0xA6, 0x30, 0xE5, 0x44, 0xFD, 0x88, 0x9F, 0x65, 0x87, 0x6B, 0xF4, 0x23, 0x48, 0x10, 0xD1, 0x51, 0xC0, 0xF9, 0xD2, 0xA0, 0x55, 0xA1, 0x41, 0xFA, 0x43, 0x13, 0xC4, 0x2F, 0xA8, 0xB6, 0x3C, 0x2B, 0xC1, 0xFF, 0xC8, 0xA5, 0x20, 0x89, 0x00, 0x90, 0x47, 0xEF, 0xEA, 0xB7, 0x15, 0x06, 0xCD, 0xB5, 0x12, 0x7E, 0xBB, 0x29, 0x0F, 0xB8, 0x07, 0x04, 0x9B, 0x94, 0x21, 0x66, 0xE6, 0xCE, 0xED, 0xE7, 0x3B, 0xFE, 0x7F, 0xC5, 0xA4, 0x37, 0xB1, 0x4C, 0x91, 0x6E, 0x8D, 0x76, 0x03, 0x2D, 0xDE, 0x96, 0x26, 0x7D, 0xC6, 0x5C, 0xD3, 0xF2, 0x4F, 0x19, 0x3F, 0xDC, 0x79, 0x1D, 0x52, 0xEB, 0xF3, 0x6D, 0x5E, 0xFB, 0x69, 0xB2, 0xF0, 0x31, 0x0C, 0xD4, 0xCF, 0x8C, 0xE2, 0x75, 0xA9, 0x4A, 0x57, 0x84, 0x11, 0x45, 0x1B, 0xF5, 0xE4, 0x0E, 0x73, 0xAA, 0xF1, 0xDD, 0x59, 0x14, 0x6C, 0x92, 0x54, 0xD0, 0x78, 0x70, 0xE3, 0x49, 0x80, 0x50, 0xA7, 0xF6, 0x77, 0x93, 0x86, 0x83, 0x2A, 0xC7, 0x5B, 0xE9, 0xEE, 0x8F, 0x01, 0x3D }; //Substitution table 3 static const uint8_t sbox3[256] = { 0x38, 0x41, 0x16, 0x76, 0xD9, 0x93, 0x60, 0xF2, 0x72, 0xC2, 0xAB, 0x9A, 0x75, 0x06, 0x57, 0xA0, 0x91, 0xF7, 0xB5, 0xC9, 0xA2, 0x8C, 0xD2, 0x90, 0xF6, 0x07, 0xA7, 0x27, 0x8E, 0xB2, 0x49, 0xDE, 0x43, 0x5C, 0xD7, 0xC7, 0x3E, 0xF5, 0x8F, 0x67, 0x1F, 0x18, 0x6E, 0xAF, 0x2F, 0xE2, 0x85, 0x0D, 0x53, 0xF0, 0x9C, 0x65, 0xEA, 0xA3, 0xAE, 0x9E, 0xEC, 0x80, 0x2D, 0x6B, 0xA8, 0x2B, 0x36, 0xA6, 0xC5, 0x86, 0x4D, 0x33, 0xFD, 0x66, 0x58, 0x96, 0x3A, 0x09, 0x95, 0x10, 0x78, 0xD8, 0x42, 0xCC, 0xEF, 0x26, 0xE5, 0x61, 0x1A, 0x3F, 0x3B, 0x82, 0xB6, 0xDB, 0xD4, 0x98, 0xE8, 0x8B, 0x02, 0xEB, 0x0A, 0x2C, 0x1D, 0xB0, 0x6F, 0x8D, 0x88, 0x0E, 0x19, 0x87, 0x4E, 0x0B, 0xA9, 0x0C, 0x79, 0x11, 0x7F, 0x22, 0xE7, 0x59, 0xE1, 0xDA, 0x3D, 0xC8, 0x12, 0x04, 0x74, 0x54, 0x30, 0x7E, 0xB4, 0x28, 0x55, 0x68, 0x50, 0xBE, 0xD0, 0xC4, 0x31, 0xCB, 0x2A, 0xAD, 0x0F, 0xCA, 0x70, 0xFF, 0x32, 0x69, 0x08, 0x62, 0x00, 0x24, 0xD1, 0xFB, 0xBA, 0xED, 0x45, 0x81, 0x73, 0x6D, 0x84, 0x9F, 0xEE, 0x4A, 0xC3, 0x2E, 0xC1, 0x01, 0xE6, 0x25, 0x48, 0x99, 0xB9, 0xB3, 0x7B, 0xF9, 0xCE, 0xBF, 0xDF, 0x71, 0x29, 0xCD, 0x6C, 0x13, 0x64, 0x9B, 0x63, 0x9D, 0xC0, 0x4B, 0xB7, 0xA5, 0x89, 0x5F, 0xB1, 0x17, 0xF4, 0xBC, 0xD3, 0x46, 0xCF, 0x37, 0x5E, 0x47, 0x94, 0xFA, 0xFC, 0x5B, 0x97, 0xFE, 0x5A, 0xAC, 0x3C, 0x4C, 0x03, 0x35, 0xF3, 0x23, 0xB8, 0x5D, 0x6A, 0x92, 0xD5, 0x21, 0x44, 0x51, 0xC6, 0x7D, 0x39, 0x83, 0xDC, 0xAA, 0x7C, 0x77, 0x56, 0x05, 0x1B, 0xA4, 0x15, 0x34, 0x1E, 0x1C, 0xF8, 0x52, 0x20, 0x14, 0xE9, 0xBD, 0xDD, 0xE4, 0xA1, 0xE0, 0x8A, 0xF1, 0xD6, 0x7A, 0xBB, 0xE3, 0x40, 0x4F }; //Substitution table 4 static const uint8_t sbox4[256] = { 0x70, 0x2C, 0xB3, 0xC0, 0xE4, 0x57, 0xEA, 0xAE, 0x23, 0x6B, 0x45, 0xA5, 0xED, 0x4F, 0x1D, 0x92, 0x86, 0xAF, 0x7C, 0x1F, 0x3E, 0xDC, 0x5E, 0x0B, 0xA6, 0x39, 0xD5, 0x5D, 0xD9, 0x5A, 0x51, 0x6C, 0x8B, 0x9A, 0xFB, 0xB0, 0x74, 0x2B, 0xF0, 0x84, 0xDF, 0xCB, 0x34, 0x76, 0x6D, 0xA9, 0xD1, 0x04, 0x14, 0x3A, 0xDE, 0x11, 0x32, 0x9C, 0x53, 0xF2, 0xFE, 0xCF, 0xC3, 0x7A, 0x24, 0xE8, 0x60, 0x69, 0xAA, 0xA0, 0xA1, 0x62, 0x54, 0x1E, 0xE0, 0x64, 0x10, 0x00, 0xA3, 0x75, 0x8A, 0xE6, 0x09, 0xDD, 0x87, 0x83, 0xCD, 0x90, 0x73, 0xF6, 0x9D, 0xBF, 0x52, 0xD8, 0xC8, 0xC6, 0x81, 0x6F, 0x13, 0x63, 0xE9, 0xA7, 0x9F, 0xBC, 0x29, 0xF9, 0x2F, 0xB4, 0x78, 0x06, 0xE7, 0x71, 0xD4, 0xAB, 0x88, 0x8D, 0x72, 0xB9, 0xF8, 0xAC, 0x36, 0x2A, 0x3C, 0xF1, 0x40, 0xD3, 0xBB, 0x43, 0x15, 0xAD, 0x77, 0x80, 0x82, 0xEC, 0x27, 0xE5, 0x85, 0x35, 0x0C, 0x41, 0xEF, 0x93, 0x19, 0x21, 0x0E, 0x4E, 0x65, 0xBD, 0xB8, 0x8F, 0xEB, 0xCE, 0x30, 0x5F, 0xC5, 0x1A, 0xE1, 0xCA, 0x47, 0x3D, 0x01, 0xD6, 0x56, 0x4D, 0x0D, 0x66, 0xCC, 0x2D, 0x12, 0x20, 0xB1, 0x99, 0x4C, 0xC2, 0x7E, 0x05, 0xB7, 0x31, 0x17, 0xD7, 0x58, 0x61, 0x1B, 0x1C, 0x0F, 0x16, 0x18, 0x22, 0x44, 0xB2, 0xB5, 0x91, 0x08, 0xA8, 0xFC, 0x50, 0xD0, 0x7D, 0x89, 0x97, 0x5B, 0x95, 0xFF, 0xD2, 0xC4, 0x48, 0xF7, 0xDB, 0x03, 0xDA, 0x3F, 0x94, 0x5C, 0x02, 0x4A, 0x33, 0x67, 0xF3, 0x7F, 0xE2, 0x9B, 0x26, 0x37, 0x3B, 0x96, 0x4B, 0xBE, 0x2E, 0x79, 0x8C, 0x6E, 0x8E, 0xF5, 0xB6, 0xFD, 0x59, 0x98, 0x6A, 0x46, 0xBA, 0x25, 0x42, 0xA2, 0xFA, 0x07, 0x55, 0xEE, 0x0A, 0x49, 0x68, 0x38, 0xA4, 0x28, 0x7B, 0xC9, 0xC1, 0xE3, 0xF4, 0xC7, 0x9E }; //Common interface for encryption algorithms const CipherAlgo camelliaCipherAlgo = { "CAMELLIA", sizeof(CamelliaContext), CIPHER_ALGO_TYPE_BLOCK, CAMELLIA_BLOCK_SIZE, (CipherAlgoInit) camelliaInit, NULL, NULL, (CipherAlgoEncryptBlock) camelliaEncryptBlock, (CipherAlgoDecryptBlock) camelliaDecryptBlock }; /** * @brief Initialize a Camellia context using the supplied key * @param[in] context Pointer to the Camellia context to initialize * @param[in] key Pointer to the key * @param[in] keyLength Length of the key * @return Error code **/ error_t camelliaInit(CamelliaContext *context, const uint8_t *key, size_t keyLength) { uint_t i; uint32_t temp1; uint32_t temp2; uint32_t *k; const CamelliaSubkey *p; //18 rounds are required for 128-bit key if(keyLength == 16) context->nr = 18; //24 rounds are required for 192 and 256-bit keys else if(keyLength == 24 || keyLength == 32) context->nr = 24; //Key length is not supported... else return ERROR_INVALID_KEY_LENGTH; //Point to KA, KB, KL and KR k = context->k; //Clear key contents memset(k, 0, 64); //Save the supplied secret key memcpy(k, key, keyLength); //192-bit keys require special processing if(keyLength == 24) { //Form a 256-bit key k[KR + 2] = ~k[KR + 0]; k[KR + 3] = ~k[KR + 1]; } //XOR KL and KR before applying the rounds for(i = 0; i < 4; i++) { k[KL + i] = betoh32(k[KL + i]); k[KR + i] = betoh32(k[KR + i]); k[KB + i] = k[KL + i] ^ k[KR + i]; } //Generate the 128-bit keys KA and KB for(i = 0; i < 6; i++) { //Apply round function CAMELLIA_ROUND(k[KB + 0], k[KB + 1], k[KB + 2], k[KB + 3], sigma[2 * i], sigma[2 * i + 1]); //The 2nd round requires special processing if(i == 1) { //The result is XORed with KL k[KB + 0] ^= k[KL + 0]; k[KB + 1] ^= k[KL + 1]; k[KB + 2] ^= k[KL + 2]; k[KB + 3] ^= k[KL + 3]; } //The 4th round requires special processing else if(i == 3) { //Save KA after the 4th round memcpy(k + KA, k + KB, 16); //The result is XORed with KR k[KB + 0] ^= k[KR + 0]; k[KB + 1] ^= k[KR + 1]; k[KB + 2] ^= k[KR + 2]; k[KB + 3] ^= k[KR + 3]; } } //The key schedule depends on the length of key if(keyLength == 16) { //Key schedule for 128-bit key i = arraysize(ks1); p = ks1; } else { //Key schedule for 192 and 256-bit keys i = arraysize(ks2); p = ks2; } //Generate subkeys while(i > 0) { //Calculate the shift count uint_t n = (p->shift + p->position) / 32; uint_t m = (p->shift + p->position) % 32; //Point to KL, KR, KA or KB k = context->k + p->key; //Generate the current subkey if(m == 0) { context->ks[p->index] = k[n % 4]; context->ks[p->index + 1] = k[(n + 1) % 4]; } else { context->ks[p->index] = (k[n % 4] << m) | (k[(n + 1) % 4] >> (32 - m)); context->ks[p->index + 1] = (k[(n + 1) % 4] << m) | (k[(n + 2) % 4] >> (32 - m)); } //Next subkey p++; i--; } //No error to report return NO_ERROR; } /** * @brief Encrypt a 16-byte block using Camellia algorithm * @param[in] context Pointer to the Camellia context * @param[in] input Plaintext block to encrypt * @param[out] output Ciphertext block resulting from encryption **/ void camelliaEncryptBlock(CamelliaContext *context, const uint8_t *input, uint8_t *output) { uint_t i; uint32_t temp1; uint32_t temp2; uint32_t *ks; //The plaintext is separated into two parts (L and R) uint32_t left1 = LOAD32BE(input + 0); uint32_t left2 = LOAD32BE(input + 4); uint32_t right1 = LOAD32BE(input + 8); uint32_t right2 = LOAD32BE(input + 12); //The key schedule must be applied in ascending order ks = context->ks; //XOR plaintext with kw1 and kw2 left1 ^= ks[0]; left2 ^= ks[1]; right1 ^= ks[2]; right2 ^= ks[3]; //Advance current location in key schedule ks += 4; //Apply round function 18 or 24 times depending on the key length for(i = context->nr; i > 0; i--) { //Apply round function CAMELLIA_ROUND(left1, left2, right1, right2, ks[0], ks[1]); //Advance current location in key schedule ks += 2; //6th, 12th and 18th rounds require special processing if(i == 7 || i == 13 || i == 19) { //Apply FL-function CAMELLIA_FL(left1, left2, ks[0], ks[1]) //Apply inverse FL-function CAMELLIA_INV_FL(right1, right2, ks[2], ks[3]) //Advance current location in key schedule ks += 4; } } //XOR operation with kw3 and kw4 right1 ^= ks[0]; right2 ^= ks[1]; left1 ^= ks[2]; left2 ^= ks[3]; //The resulting value is the ciphertext STORE32BE(right1, output + 0); STORE32BE(right2, output + 4); STORE32BE(left1, output + 8); STORE32BE(left2, output + 12); } /** * @brief Decrypt a 16-byte block using Camellia algorithm * @param[in] context Pointer to the Camellia context * @param[in] input Ciphertext block to decrypt * @param[out] output Plaintext block resulting from decryption **/ void camelliaDecryptBlock(CamelliaContext *context, const uint8_t *input, uint8_t *output) { uint_t i; uint32_t temp1; uint32_t temp2; uint32_t *ks; //The ciphertext is separated into two parts (L and R) uint32_t right1 = LOAD32BE(input + 0); uint32_t right2 = LOAD32BE(input + 4); uint32_t left1 = LOAD32BE(input + 8); uint32_t left2 = LOAD32BE(input + 12); //The key schedule must be applied in reverse order ks = (context->nr == 18) ? (context->ks + 48) : (context->ks + 64); //XOR ciphertext with kw3 and kw4 right1 ^= ks[0]; right2 ^= ks[1]; left1 ^= ks[2]; left2 ^= ks[3]; //Apply round function 18 or 24 times depending on the key length for(i = context->nr; i > 0; i--) { //Update current location in key schedule ks -= 2; //Apply round function CAMELLIA_ROUND(right1, right2, left1, left2, ks[0], ks[1]); //6th, 12th and 18th rounds require special processing if(i == 7 || i == 13 || i == 19) { //Update current location in key schedule ks -= 4; //Apply FL-function CAMELLIA_FL(right1, right2, ks[2], ks[3]) //Apply inverse FL-function CAMELLIA_INV_FL(left1, left2, ks[0], ks[1]) } } //Update current location in key schedule ks -= 4; //XOR operation with kw1 and kw2 left1 ^= ks[0]; left2 ^= ks[1]; right1 ^= ks[2]; right2 ^= ks[3]; //The resulting value is the plaintext STORE32BE(left1, output + 0); STORE32BE(left2, output + 4); STORE32BE(right1, output + 8); STORE32BE(right2, output + 12); } #endif