Webserver+3d print
cyclone_crypto/aria.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file aria.c * @brief ARIA encryption algorithm * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This file is part of CycloneCrypto Open. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @section Description * * ARIA is a 128-bit block cipher with 128-, 192-, and 256-bit keys. The * algorithm consists of a key scheduling part and data randomizing part. * Refer to RFC 5794 for more details * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL CRYPTO_TRACE_LEVEL //Dependencies #include <string.h> #include "crypto.h" #include "aria.h" #include "debug.h" //Check crypto library configuration #if (ARIA_SUPPORT == ENABLED) //Move operation #define MOV128(b, a) \ { \ (b)[0] = (a)[0]; \ (b)[1] = (a)[1]; \ (b)[2] = (a)[2]; \ (b)[3] = (a)[3]; \ } //XOR operation #define XOR128(b, a) \ { \ (b)[0] ^= (a)[0]; \ (b)[1] ^= (a)[1]; \ (b)[2] ^= (a)[2]; \ (b)[3] ^= (a)[3]; \ } //Rotate left operation #define ROL128(b, a, n) \ { \ (b)[0] = ((a)[((n) / 32 + 0) % 4] << ((n) % 32)) | ((a)[((n) / 32 + 1) % 4] >> (32 - ((n) % 32))); \ (b)[1] = ((a)[((n) / 32 + 1) % 4] << ((n) % 32)) | ((a)[((n) / 32 + 2) % 4] >> (32 - ((n) % 32))); \ (b)[2] = ((a)[((n) / 32 + 2) % 4] << ((n) % 32)) | ((a)[((n) / 32 + 3) % 4] >> (32 - ((n) % 32))); \ (b)[3] = ((a)[((n) / 32 + 3) % 4] << ((n) % 32)) | ((a)[((n) / 32 + 0) % 4] >> (32 - ((n) % 32))); \ } //Substitution layer SL1 #define SL1(b, a) \ { \ uint8_t *x = (uint8_t *) (a); \ uint8_t *y = (uint8_t *) (b); \ y[0] = sb1[x[0]]; \ y[1] = sb2[x[1]]; \ y[2] = sb3[x[2]]; \ y[3] = sb4[x[3]]; \ y[4] = sb1[x[4]]; \ y[5] = sb2[x[5]]; \ y[6] = sb3[x[6]]; \ y[7] = sb4[x[7]]; \ y[8] = sb1[x[8]]; \ y[9] = sb2[x[9]]; \ y[10] = sb3[x[10]]; \ y[11] = sb4[x[11]]; \ y[12] = sb1[x[12]]; \ y[13] = sb2[x[13]]; \ y[14] = sb3[x[14]]; \ y[15] = sb4[x[15]]; \ } //Substitution layer SL2 #define SL2(b, a) \ { \ uint8_t *x = (uint8_t *) (a); \ uint8_t *y = (uint8_t *) (b); \ y[0] = sb3[x[0]]; \ y[1] = sb4[x[1]]; \ y[2] = sb1[x[2]]; \ y[3] = sb2[x[3]]; \ y[4] = sb3[x[4]]; \ y[5] = sb4[x[5]]; \ y[6] = sb1[x[6]]; \ y[7] = sb2[x[7]]; \ y[8] = sb3[x[8]]; \ y[9] = sb4[x[9]]; \ y[10] = sb1[x[10]]; \ y[11] = sb2[x[11]]; \ y[12] = sb3[x[12]]; \ y[13] = sb4[x[13]]; \ y[14] = sb1[x[14]]; \ y[15] = sb2[x[15]]; \ } //Diffusion layer #define A(b, a) \ { \ uint8_t *x = (uint8_t *) (a); \ uint8_t *y = (uint8_t *) (b); \ y[0] = x[3] ^ x[4] ^ x[6] ^ x[8] ^ x[9] ^ x[13] ^ x[14]; \ y[1] = x[2] ^ x[5] ^ x[7] ^ x[8] ^ x[9] ^ x[12] ^ x[15]; \ y[2] = x[1] ^ x[4] ^ x[6] ^ x[10] ^ x[11] ^ x[12] ^ x[15]; \ y[3] = x[0] ^ x[5] ^ x[7] ^ x[10] ^ x[11] ^ x[13] ^ x[14]; \ y[4] = x[0] ^ x[2] ^ x[5] ^ x[8] ^ x[11] ^ x[14] ^ x[15]; \ y[5] = x[1] ^ x[3] ^ x[4] ^ x[9] ^ x[10] ^ x[14] ^ x[15]; \ y[6] = x[0] ^ x[2] ^ x[7] ^ x[9] ^ x[10] ^ x[12] ^ x[13]; \ y[7] = x[1] ^ x[3] ^ x[6] ^ x[8] ^ x[11] ^ x[12] ^ x[13]; \ y[8] = x[0] ^ x[1] ^ x[4] ^ x[7] ^ x[10] ^ x[13] ^ x[15]; \ y[9] = x[0] ^ x[1] ^ x[5] ^ x[6] ^ x[11] ^ x[12] ^ x[14]; \ y[10] = x[2] ^ x[3] ^ x[5] ^ x[6] ^ x[8] ^ x[13] ^ x[15]; \ y[11] = x[2] ^ x[3] ^ x[4] ^ x[7] ^ x[9] ^ x[12] ^ x[14]; \ y[12] = x[1] ^ x[2] ^ x[6] ^ x[7] ^ x[9] ^ x[11] ^ x[12]; \ y[13] = x[0] ^ x[3] ^ x[6] ^ x[7] ^ x[8] ^ x[10] ^ x[13]; \ y[14] = x[0] ^ x[3] ^ x[4] ^ x[5] ^ x[9] ^ x[11] ^ x[14]; \ y[15] = x[1] ^ x[2] ^ x[4] ^ x[5] ^ x[8] ^ x[10] ^ x[15]; \ } //S-box 1 static const uint8_t sb1[256] = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; //S-box 2 static const uint8_t sb2[256] = { 0xE2, 0x4E, 0x54, 0xFC, 0x94, 0xC2, 0x4A, 0xCC, 0x62, 0x0D, 0x6A, 0x46, 0x3C, 0x4D, 0x8B, 0xD1, 0x5E, 0xFA, 0x64, 0xCB, 0xB4, 0x97, 0xBE, 0x2B, 0xBC, 0x77, 0x2E, 0x03, 0xD3, 0x19, 0x59, 0xC1, 0x1D, 0x06, 0x41, 0x6B, 0x55, 0xF0, 0x99, 0x69, 0xEA, 0x9C, 0x18, 0xAE, 0x63, 0xDF, 0xE7, 0xBB, 0x00, 0x73, 0x66, 0xFB, 0x96, 0x4C, 0x85, 0xE4, 0x3A, 0x09, 0x45, 0xAA, 0x0F, 0xEE, 0x10, 0xEB, 0x2D, 0x7F, 0xF4, 0x29, 0xAC, 0xCF, 0xAD, 0x91, 0x8D, 0x78, 0xC8, 0x95, 0xF9, 0x2F, 0xCE, 0xCD, 0x08, 0x7A, 0x88, 0x38, 0x5C, 0x83, 0x2A, 0x28, 0x47, 0xDB, 0xB8, 0xC7, 0x93, 0xA4, 0x12, 0x53, 0xFF, 0x87, 0x0E, 0x31, 0x36, 0x21, 0x58, 0x48, 0x01, 0x8E, 0x37, 0x74, 0x32, 0xCA, 0xE9, 0xB1, 0xB7, 0xAB, 0x0C, 0xD7, 0xC4, 0x56, 0x42, 0x26, 0x07, 0x98, 0x60, 0xD9, 0xB6, 0xB9, 0x11, 0x40, 0xEC, 0x20, 0x8C, 0xBD, 0xA0, 0xC9, 0x84, 0x04, 0x49, 0x23, 0xF1, 0x4F, 0x50, 0x1F, 0x13, 0xDC, 0xD8, 0xC0, 0x9E, 0x57, 0xE3, 0xC3, 0x7B, 0x65, 0x3B, 0x02, 0x8F, 0x3E, 0xE8, 0x25, 0x92, 0xE5, 0x15, 0xDD, 0xFD, 0x17, 0xA9, 0xBF, 0xD4, 0x9A, 0x7E, 0xC5, 0x39, 0x67, 0xFE, 0x76, 0x9D, 0x43, 0xA7, 0xE1, 0xD0, 0xF5, 0x68, 0xF2, 0x1B, 0x34, 0x70, 0x05, 0xA3, 0x8A, 0xD5, 0x79, 0x86, 0xA8, 0x30, 0xC6, 0x51, 0x4B, 0x1E, 0xA6, 0x27, 0xF6, 0x35, 0xD2, 0x6E, 0x24, 0x16, 0x82, 0x5F, 0xDA, 0xE6, 0x75, 0xA2, 0xEF, 0x2C, 0xB2, 0x1C, 0x9F, 0x5D, 0x6F, 0x80, 0x0A, 0x72, 0x44, 0x9B, 0x6C, 0x90, 0x0B, 0x5B, 0x33, 0x7D, 0x5A, 0x52, 0xF3, 0x61, 0xA1, 0xF7, 0xB0, 0xD6, 0x3F, 0x7C, 0x6D, 0xED, 0x14, 0xE0, 0xA5, 0x3D, 0x22, 0xB3, 0xF8, 0x89, 0xDE, 0x71, 0x1A, 0xAF, 0xBA, 0xB5, 0x81 }; //S-box 3 static const uint8_t sb3[256] = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }; //S-box 4 static const uint8_t sb4[256] = { 0x30, 0x68, 0x99, 0x1B, 0x87, 0xB9, 0x21, 0x78, 0x50, 0x39, 0xDB, 0xE1, 0x72, 0x09, 0x62, 0x3C, 0x3E, 0x7E, 0x5E, 0x8E, 0xF1, 0xA0, 0xCC, 0xA3, 0x2A, 0x1D, 0xFB, 0xB6, 0xD6, 0x20, 0xC4, 0x8D, 0x81, 0x65, 0xF5, 0x89, 0xCB, 0x9D, 0x77, 0xC6, 0x57, 0x43, 0x56, 0x17, 0xD4, 0x40, 0x1A, 0x4D, 0xC0, 0x63, 0x6C, 0xE3, 0xB7, 0xC8, 0x64, 0x6A, 0x53, 0xAA, 0x38, 0x98, 0x0C, 0xF4, 0x9B, 0xED, 0x7F, 0x22, 0x76, 0xAF, 0xDD, 0x3A, 0x0B, 0x58, 0x67, 0x88, 0x06, 0xC3, 0x35, 0x0D, 0x01, 0x8B, 0x8C, 0xC2, 0xE6, 0x5F, 0x02, 0x24, 0x75, 0x93, 0x66, 0x1E, 0xE5, 0xE2, 0x54, 0xD8, 0x10, 0xCE, 0x7A, 0xE8, 0x08, 0x2C, 0x12, 0x97, 0x32, 0xAB, 0xB4, 0x27, 0x0A, 0x23, 0xDF, 0xEF, 0xCA, 0xD9, 0xB8, 0xFA, 0xDC, 0x31, 0x6B, 0xD1, 0xAD, 0x19, 0x49, 0xBD, 0x51, 0x96, 0xEE, 0xE4, 0xA8, 0x41, 0xDA, 0xFF, 0xCD, 0x55, 0x86, 0x36, 0xBE, 0x61, 0x52, 0xF8, 0xBB, 0x0E, 0x82, 0x48, 0x69, 0x9A, 0xE0, 0x47, 0x9E, 0x5C, 0x04, 0x4B, 0x34, 0x15, 0x79, 0x26, 0xA7, 0xDE, 0x29, 0xAE, 0x92, 0xD7, 0x84, 0xE9, 0xD2, 0xBA, 0x5D, 0xF3, 0xC5, 0xB0, 0xBF, 0xA4, 0x3B, 0x71, 0x44, 0x46, 0x2B, 0xFC, 0xEB, 0x6F, 0xD5, 0xF6, 0x14, 0xFE, 0x7C, 0x70, 0x5A, 0x7D, 0xFD, 0x2F, 0x18, 0x83, 0x16, 0xA5, 0x91, 0x1F, 0x05, 0x95, 0x74, 0xA9, 0xC1, 0x5B, 0x4A, 0x85, 0x6D, 0x13, 0x07, 0x4F, 0x4E, 0x45, 0xB2, 0x0F, 0xC9, 0x1C, 0xA6, 0xBC, 0xEC, 0x73, 0x90, 0x7B, 0xCF, 0x59, 0x8F, 0xA1, 0xF9, 0x2D, 0xF2, 0xB1, 0x00, 0x94, 0x37, 0x9F, 0xD0, 0x2E, 0x9C, 0x6E, 0x28, 0x3F, 0x80, 0xF0, 0x3D, 0xD3, 0x25, 0x8A, 0xB5, 0xE7, 0x42, 0xB3, 0xC7, 0xEA, 0xF7, 0x4C, 0x11, 0x33, 0x03, 0xA2, 0xAC, 0x60 }; //Key scheduling constants static const uint32_t c[12] = { BETOH32(0x517CC1B7), BETOH32(0x27220A94), BETOH32(0xFE13ABE8), BETOH32(0xFA9A6EE0), BETOH32(0x6DB14ACC), BETOH32(0x9E21C820), BETOH32(0xFF28B1D5), BETOH32(0xEF5DE2B0), BETOH32(0xDB92371D), BETOH32(0x2126E970), BETOH32(0x03249775), BETOH32(0x04E8C90E) }; //Common interface for encryption algorithms const CipherAlgo ariaCipherAlgo = { "ARIA", sizeof(AriaContext), CIPHER_ALGO_TYPE_BLOCK, ARIA_BLOCK_SIZE, (CipherAlgoInit) ariaInit, NULL, NULL, (CipherAlgoEncryptBlock) ariaEncryptBlock, (CipherAlgoDecryptBlock) ariaDecryptBlock }; /** * @brief Odd round function * @param[in,out] d 128-bit string * @param[in] rk 128-bit string **/ static void OF(uint32_t *d, const uint32_t *rk) { uint32_t t[4]; //XOR D with RK XOR128(d, rk); //Substitution layer SL1 SL1(t, d); //Diffusion layer A(d, t); } /** * @brief Even round function * @param[in,out] d 128-bit string * @param[in] rk 128-bit string **/ static void EF(uint32_t *d, const uint32_t *rk) { uint32_t t[4]; //XOR D with RK XOR128(d, rk); //Substitution layer SL2 SL2(t, d); //Diffusion layer A(d, t); } /** * @brief Initialize a ARIA context using the supplied key * @param[in] context Pointer to the ARIA context to initialize * @param[in] key Pointer to the key * @param[in] keyLength Length of the key * @return Error code **/ error_t ariaInit(AriaContext *context, const uint8_t *key, size_t keyLength) { uint_t i; uint32_t *ek; uint32_t *dk; const uint32_t *ck1; const uint32_t *ck2; const uint32_t *ck3; uint32_t w[16]; //128-bit master key? if(keyLength == 16) { //Select the relevant constants ck1 = c + 0; ck2 = c + 4; ck3 = c + 8; //The number of rounds depends on the size of the master key context->nr = 12; } //192-bit master key? else if(keyLength == 24) { //Select the relevant constants ck1 = c + 4; ck2 = c + 8; ck3 = c + 0; //The number of rounds depends on the size of the master key context->nr = 14; } //256-bit master key? else if(keyLength == 32) { //Select the relevant constants ck1 = c + 8; ck2 = c + 0; ck3 = c + 4; //The number of rounds depends on the size of the master key context->nr = 16; } else { //Report an error return ERROR_INVALID_KEY_LENGTH; } //Compute 128-bit values KL and KR memset(w, 0, sizeof(w)); memcpy(w, key, keyLength); //Save KR... MOV128(w + 8, w + 4); //Compute intermediate values W0, W1, W2, and W3 MOV128(w + 4, w + 0); OF(w + 4, ck1); XOR128(w + 4, w + 8); MOV128(w + 8, w + 4); EF(w + 8, ck2); XOR128(w + 8, w + 0); MOV128(w + 12, w + 8); OF(w + 12, ck3); XOR128(w + 12, w + 4); //Convert from big-endian byte order to host byte order for(i = 0; i < 16; i++) w[i] = betoh32(w[i]); //Point to the encryption round keys ek = context->ek; //Compute ek1, ..., ek17 as follow ROL128(ek + 0, w + 4, 109); XOR128(ek + 0, w + 0); ROL128(ek + 4, w + 8, 109); XOR128(ek + 4, w + 4); ROL128(ek + 8, w + 12, 109); XOR128(ek + 8, w + 8); ROL128(ek + 12, w + 0, 109); XOR128(ek + 12, w + 12); ROL128(ek + 16, w + 4, 97); XOR128(ek + 16, w + 0); ROL128(ek + 20, w + 8, 97); XOR128(ek + 20, w + 4); ROL128(ek + 24, w + 12, 97); XOR128(ek + 24, w + 8); ROL128(ek + 28, w + 0, 97); XOR128(ek + 28, w + 12); ROL128(ek + 32, w + 4, 61); XOR128(ek + 32, w + 0); ROL128(ek + 36, w + 8, 61); XOR128(ek + 36, w + 4); ROL128(ek + 40, w + 12, 61); XOR128(ek + 40, w + 8); ROL128(ek + 44, w + 0, 61); XOR128(ek + 44, w + 12); ROL128(ek + 48, w + 4, 31); XOR128(ek + 48, w + 0); ROL128(ek + 52, w + 8, 31); XOR128(ek + 52, w + 4); ROL128(ek + 56, w + 12, 31); XOR128(ek + 56, w + 8); ROL128(ek + 60, w + 0, 31); XOR128(ek + 60, w + 12); ROL128(ek + 64, w + 4, 19); XOR128(ek + 64, w + 0); //Convert from host byte order to big-endian byte order for(i = 0; i < 68; i++) ek[i] = htobe32(ek[i]); //Decryption round keys are derived from the encryption round keys dk = context->dk; //Compute dk1 MOV128(dk + 0, ek + context->nr * 4); //Compute dk2, ..., dk(n) for(i = 1; i < context->nr; i++) A(dk + i * 4, ek + (context->nr - i) * 4); //Compute dk(n + 1) MOV128(dk + i * 4, ek + 0); //No error to report return NO_ERROR; } /** * @brief Encrypt a 16-byte block using ARIA algorithm * @param[in] context Pointer to the ARIA context * @param[in] input Plaintext block to encrypt * @param[out] output Ciphertext block resulting from encryption **/ void ariaEncryptBlock(AriaContext *context, const uint8_t *input, uint8_t *output) { uint32_t *ek; uint32_t p[4]; uint32_t q[4]; //Copy the plaintext to the buffer memcpy(p, input, ARIA_BLOCK_SIZE); //Point to the encryption round keys ek = context->ek; //Apply 11 rounds OF(p, ek + 0); EF(p, ek + 4); OF(p, ek + 8); EF(p, ek + 12); OF(p, ek + 16); EF(p, ek + 20); OF(p, ek + 24); EF(p, ek + 28); OF(p, ek + 32); EF(p, ek + 36); OF(p, ek + 40); //128-bit master keys require a total of 12 rounds if(context->nr == 12) { XOR128(p, ek + 44); SL2(q, p); XOR128(q, ek + 48); } //192-bit master keys require a total of 14 rounds else if(context->nr == 14) { EF(p, ek + 44); OF(p, ek + 48); XOR128(p, ek + 52); SL2(q, p); XOR128(q, ek + 56); } //256-bit master keys require a total of 16 rounds else { EF(p, ek + 44); OF(p, ek + 48); EF(p, ek + 52); OF(p, ek + 56); XOR128(p, ek + 60); SL2(q, p); XOR128(q, ek + 64); } //Copy the resulting ciphertext from the buffer memcpy(output, q, ARIA_BLOCK_SIZE); } /** * @brief Decrypt a 16-byte block using ARIA algorithm * @param[in] context Pointer to the ARIA context * @param[in] input Ciphertext block to decrypt * @param[out] output Plaintext block resulting from decryption **/ void ariaDecryptBlock(AriaContext *context, const uint8_t *input, uint8_t *output) { uint32_t *dk; uint32_t p[4]; uint32_t q[4]; //Copy the ciphertext to the buffer memcpy(p, input, ARIA_BLOCK_SIZE); //Point to the decryption round keys dk = context->dk; //Apply 11 rounds OF(p, dk + 0); EF(p, dk + 4); OF(p, dk + 8); EF(p, dk + 12); OF(p, dk + 16); EF(p, dk + 20); OF(p, dk + 24); EF(p, dk + 28); OF(p, dk + 32); EF(p, dk + 36); OF(p, dk + 40); //128-bit master keys require a total of 12 rounds if(context->nr == 12) { XOR128(p, dk + 44); SL2(q, p); XOR128(q, dk + 48); } //192-bit master keys require a total of 14 rounds else if(context->nr == 14) { EF(p, dk + 44); OF(p, dk + 48); XOR128(p, dk + 52); SL2(q, p); XOR128(q, dk + 56); } //256-bit master keys require a total of 16 rounds else { EF(p, dk + 44); OF(p, dk + 48); EF(p, dk + 52); OF(p, dk + 56); XOR128(p, dk + 60); SL2(q, p); XOR128(q, dk + 64); } //The resulting value is the plaintext memcpy(output, q, ARIA_BLOCK_SIZE); } #endif