Webserver+3d print
common/os_port_rtx.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file os_port_rtx.c * @brief RTOS abstraction layer (Keil RTX) * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL TRACE_LEVEL_OFF //Dependencies #include <stdio.h> #include <stdlib.h> #include <string.h> #include "os_port.h" #include "os_port_rtx.h" #include "debug.h" //Variables static bool_t running = FALSE; static OsTask taskTable[OS_PORT_MAX_TASKS]; /** * @brief Kernel initialization **/ void osInitKernel(void) { //The scheduler is not running running = FALSE; //Initialize task table memset(taskTable, 0, sizeof(taskTable)); } /** * @brief Start kernel * @param[in] task Pointer to the task function to start after the kernel is initialized **/ void osStartKernel(OsInitTaskCode task) { //The scheduler is now running running = TRUE; //Start the scheduler os_sys_init(task); } /** * @brief Create a static task * @param[out] task Pointer to the task structure * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stack Pointer to the stack * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return The function returns TRUE if the task was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateStaticTask(OsTask *task, const char_t *name, OsTaskCode taskCode, void *params, void *stack, size_t stackSize, int_t priority) { //Create a new task task->tid = os_tsk_create_user_ex(taskCode, priority, stack, stackSize * sizeof(uint_t), params); //Check task identifier if(task->tid != 0) return TRUE; else return FALSE; } /** * @brief Create a new task * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return If the function succeeds, the return value is a pointer to the * new task. If the function fails, the return value is NULL **/ OsTask *osCreateTask(const char_t *name, OsTaskCode taskCode, void *params, size_t stackSize, int_t priority) { uint_t i; OsTask *task = NULL; //Enter critical section osSuspendAllTasks(); //Loop through table for(i = 0; i < OS_PORT_MAX_TASKS; i++) { //Check whether the current entry is free if(!taskTable[i].tid) break; } //Any entry available in the table? if(i < OS_PORT_MAX_TASKS) { //Create a new task taskTable[i].tid = os_tsk_create_ex(taskCode, priority, params); //Check whether the task was successfully created if(taskTable[i].tid != 0) task = &taskTable[i]; } //Leave critical section osResumeAllTasks(); //Return a pointer to the newly created task return task; } /** * @brief Delete a task * @param[in] task Pointer to the task to be deleted **/ void osDeleteTask(OsTask *task) { uint_t i; OS_TID tid; //Retrieve task ID if(task == NULL) tid = os_tsk_self(); else tid = task->tid; //Enter critical section osSuspendAllTasks(); //Loop through table for(i = 0; i < OS_PORT_MAX_TASKS; i++) { //Check current entry if(taskTable[i].tid == tid) { //Release current entry taskTable[i].tid = 0; } } //Leave critical section osResumeAllTasks(); //Delete the currently running task? if(task == NULL) { //Kill ourselves os_tsk_delete_self(); } else { //Delete the specified task os_tsk_delete(tid); } } /** * @brief Delay routine * @param[in] delay Amount of time for which the calling task should block **/ void osDelayTask(systime_t delay) { uint16_t n; //Convert milliseconds to system ticks delay = OS_MS_TO_SYSTICKS(delay); //Delay the task for the specified duration while(delay > 0) { //The delay value cannot be higher than 0xFFFE... n = MIN(delay, 0xFFFE); //Wait for the specified amount of time os_dly_wait(n); //Decrement delay value delay -= n; } } /** * @brief Yield control to the next task **/ void osSwitchTask(void) { //Pass control to the next task os_tsk_pass(); } /** * @brief Suspend scheduler activity **/ void osSuspendAllTasks(void) { //Make sure the operating system is running if(running) { //Suspend all tasks tsk_lock(); } } /** * @brief Resume scheduler activity **/ void osResumeAllTasks(void) { //Make sure the operating system is running if(running) { //Resume all tasks tsk_unlock(); } } /** * @brief Create an event object * @param[in] event Pointer to the event object * @return The function returns TRUE if the event object was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateEvent(OsEvent *event) { //Initialize the event object os_sem_init(event, 0); //Event successfully created return TRUE; } /** * @brief Delete an event object * @param[in] event Pointer to the event object **/ void osDeleteEvent(OsEvent *event) { //No resource to release } /** * @brief Set the specified event object to the signaled state * @param[in] event Pointer to the event object **/ void osSetEvent(OsEvent *event) { //Set the specified event to the signaled state os_sem_send(event); } /** * @brief Set the specified event object to the nonsignaled state * @param[in] event Pointer to the event object **/ void osResetEvent(OsEvent *event) { OS_RESULT res; //Force the specified event to the nonsignaled state do { //Decrement the semaphore's count by one res = os_sem_wait(event, 0); //Check status } while(res == OS_R_OK); } /** * @brief Wait until the specified event is in the signaled state * @param[in] event Pointer to the event object * @param[in] timeout Timeout interval * @return The function returns TRUE if the state of the specified object is * signaled. FALSE is returned if the timeout interval elapsed **/ bool_t osWaitForEvent(OsEvent *event, systime_t timeout) { uint16_t n; OS_RESULT res; //Wait until the specified event is in the signaled //state or the timeout interval elapses if(timeout == INFINITE_DELAY) { //Infinite timeout period res = os_sem_wait(event, 0xFFFF); } else { //Convert milliseconds to system ticks timeout = OS_MS_TO_SYSTICKS(timeout); //Loop until the assigned time period has elapsed do { //The timeout value cannot be higher than 0xFFFE... n = MIN(timeout, 0xFFFE); //Wait for the specified time interval res = os_sem_wait(event, n); //Decrement timeout value timeout -= n; //Check timeout value } while(res == OS_R_TMO && timeout > 0); } //Check whether the specified event is set if(res == OS_R_OK || res == OS_R_SEM) { //Force the event back to the nonsignaled state do { //Decrement the semaphore's count by one res = os_sem_wait(event, 0); //Check status } while(res == OS_R_OK); //The specified event is in the signaled state return TRUE; } else { //The timeout interval elapsed return FALSE; } } /** * @brief Set an event object to the signaled state from an interrupt service routine * @param[in] event Pointer to the event object * @return TRUE if setting the event to signaled state caused a task to unblock * and the unblocked task has a priority higher than the currently running task **/ bool_t osSetEventFromIsr(OsEvent *event) { //Set the specified event to the signaled state isr_sem_send(event); //The return value is not relevant return FALSE; } /** * @brief Create a semaphore object * @param[in] semaphore Pointer to the semaphore object * @param[in] count The maximum count for the semaphore object. This value * must be greater than zero * @return The function returns TRUE if the semaphore was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateSemaphore(OsSemaphore *semaphore, uint_t count) { //Initialize the semaphore object os_sem_init(semaphore, count); //Semaphore successfully created return TRUE; } /** * @brief Delete a semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osDeleteSemaphore(OsSemaphore *semaphore) { //No resource to release } /** * @brief Wait for the specified semaphore to be available * @param[in] semaphore Pointer to the semaphore object * @param[in] timeout Timeout interval * @return The function returns TRUE if the semaphore is available. FALSE is * returned if the timeout interval elapsed **/ bool_t osWaitForSemaphore(OsSemaphore *semaphore, systime_t timeout) { uint16_t n; OS_RESULT res; //Wait until the semaphore is available or the timeout interval elapses if(timeout == INFINITE_DELAY) { //Infinite timeout period res = os_sem_wait(semaphore, 0xFFFF); } else { //Convert milliseconds to system ticks timeout = OS_MS_TO_SYSTICKS(timeout); //Loop until the assigned time period has elapsed do { //The timeout value cannot be higher than 0xFFFE... n = MIN(timeout, 0xFFFE); //Wait for the specified time interval res = os_sem_wait(semaphore, n); //Decrement timeout value timeout -= n; //Check timeout value } while(res == OS_R_TMO && timeout > 0); } //Check whether the specified semaphore is available if(res == OS_R_OK || res == OS_R_SEM) return TRUE; else return FALSE; } /** * @brief Release the specified semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osReleaseSemaphore(OsSemaphore *semaphore) { //Release the semaphore os_sem_send(semaphore); } /** * @brief Create a mutex object * @param[in] mutex Pointer to the mutex object * @return The function returns TRUE if the mutex was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateMutex(OsMutex *mutex) { //Initialize the mutex object os_mut_init(mutex); //Mutex successfully created return TRUE; } /** * @brief Delete a mutex object * @param[in] mutex Pointer to the mutex object **/ void osDeleteMutex(OsMutex *mutex) { //No resource to release } /** * @brief Acquire ownership of the specified mutex object * @param[in] mutex A handle to the mutex object **/ void osAcquireMutex(OsMutex *mutex) { //Obtain ownership of the mutex object os_mut_wait(mutex, 0xFFFF); } /** * @brief Release ownership of the specified mutex object * @param[in] mutex A handle to the mutex object **/ void osReleaseMutex(OsMutex *mutex) { //Release ownership of the mutex object os_mut_release(mutex); } /** * @brief Retrieve system time * @return Number of milliseconds elapsed since the system was last started **/ systime_t osGetSystemTime(void) { systime_t time; //Get current tick count time = os_time_get(); //Convert system ticks to milliseconds return OS_SYSTICKS_TO_MS(time); } /** * @brief Allocate a memory block * @param[in] size Bytes to allocate * @return A pointer to the allocated memory block or NULL if * there is insufficient memory available **/ void *osAllocMem(size_t size) { void *p; //Enter critical section osSuspendAllTasks(); //Allocate a memory block p = malloc(size); //Leave critical section osResumeAllTasks(); //Debug message TRACE_DEBUG("Allocating %u bytes at 0x%08X\r\n", size, (uint_t) p); //Return a pointer to the newly allocated memory block return p; } /** * @brief Release a previously allocated memory block * @param[in] p Previously allocated memory block to be freed **/ void osFreeMem(void *p) { //Make sure the pointer is valid if(p != NULL) { //Debug message TRACE_DEBUG("Freeing memory at 0x%08X\r\n", (uint_t) p); //Enter critical section osSuspendAllTasks(); //Free memory block free(p); //Leave critical section osResumeAllTasks(); } }