Webserver+3d print
common/os_port_embos.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file os_port_embos.c * @brief RTOS abstraction layer (Segger embOS) * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL TRACE_LEVEL_OFF //Dependencies #include <stdio.h> #include <stdlib.h> #include <string.h> #include "os_port.h" #include "os_port_embos.h" #include "debug.h" //Forward declaration of functions void osIdleTaskHook(void); //Variables static OS_TASK *tcbTable[OS_PORT_MAX_TASKS]; static void *stkTable[OS_PORT_MAX_TASKS]; /** * @brief Kernel initialization **/ void osInitKernel(void) { //Initialize tables memset(tcbTable, 0, sizeof(tcbTable)); memset(stkTable, 0, sizeof(stkTable)); //Disable interrupts OS_IncDI(); //Kernel initialization OS_InitKern(); //Hardware initialization OS_InitHW(); } /** * @brief Start kernel **/ void osStartKernel(void) { //Start the scheduler OS_Start(); } /** * @brief Create a static task * @param[out] task Pointer to the task structure * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stack Pointer to the stack * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return The function returns TRUE if the task was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateStaticTask(OsTask *task, const char_t *name, OsTaskCode taskCode, void *params, void *stack, size_t stackSize, int_t priority) { //Create a new task OS_CreateTaskEx(task, name, priority, taskCode, stack, stackSize * sizeof(uint_t), 1, params); //The task was successfully created return TRUE; } /** * @brief Create a new task * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return If the function succeeds, the return value is a pointer to the * new task. If the function fails, the return value is NULL **/ OsTask *osCreateTask(const char_t *name, OsTaskCode taskCode, void *params, size_t stackSize, int_t priority) { uint_t i; OS_TASK *task; void *stack; //Enter critical section osSuspendAllTasks(); //Loop through TCB table for(i = 0; i < OS_PORT_MAX_TASKS; i++) { //Check whether the current entry is free if(tcbTable[i] == NULL) break; } //Any entry available in the table? if(i < OS_PORT_MAX_TASKS) { //Allocate a memory block to hold the task's control block task = osAllocMem(sizeof(OS_TASK)); //Successful memory allocation? if(task != NULL) { //Allocate a memory block to hold the task's stack stack = osAllocMem(stackSize * sizeof(uint_t)); //Successful memory allocation? if(stack != NULL) { //Create a new task OS_CreateTaskEx(task, name, priority, taskCode, stack, stackSize * sizeof(uint_t), 1, params); //Save TCB base address tcbTable[i] = task; //Save stack base address stkTable[i] = stack; } else { osFreeMem(task); //Memory allocation failed task = NULL; } } } else { //Memory allocation failed task = NULL; } //Leave critical section osResumeAllTasks(); //Return task pointer return task; } /** * @brief Delete a task * @param[in] task Pointer to the task to be deleted **/ void osDeleteTask(OsTask *task) { //Delete the specified task OS_TerminateTask(task); } /** * @brief Delay routine * @param[in] delay Amount of time for which the calling task should block **/ void osDelayTask(systime_t delay) { //Delay the task for the specified duration OS_Delay(OS_MS_TO_SYSTICKS(delay)); } /** * @brief Yield control to the next task **/ void osSwitchTask(void) { //Not implemented } /** * @brief Suspend scheduler activity **/ void osSuspendAllTasks(void) { //Make sure the operating system is running if(OS_IsRunning()) { //Suspend scheduler activity OS_SuspendAllTasks(); } } /** * @brief Resume scheduler activity **/ void osResumeAllTasks(void) { //Make sure the operating system is running if(OS_IsRunning()) { //Resume scheduler activity OS_ResumeAllSuspendedTasks(); } } /** * @brief Create an event object * @param[in] event Pointer to the event object * @return The function returns TRUE if the event object was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateEvent(OsEvent *event) { //Create an event object OS_EVENT_Create(event); //The event object was successfully created return TRUE; } /** * @brief Delete an event object * @param[in] event Pointer to the event object **/ void osDeleteEvent(OsEvent *event) { //Make sure the operating system is running if(OS_IsRunning()) { //Properly dispose the event object OS_EVENT_Delete(event); } } /** * @brief Set the specified event object to the signaled state * @param[in] event Pointer to the event object **/ void osSetEvent(OsEvent *event) { //Set the specified event to the signaled state OS_EVENT_Set(event); } /** * @brief Set the specified event object to the nonsignaled state * @param[in] event Pointer to the event object **/ void osResetEvent(OsEvent *event) { //Force the specified event to the nonsignaled state OS_EVENT_Reset(event); } /** * @brief Wait until the specified event is in the signaled state * @param[in] event Pointer to the event object * @param[in] timeout Timeout interval * @return The function returns TRUE if the state of the specified object is * signaled. FALSE is returned if the timeout interval elapsed **/ bool_t osWaitForEvent(OsEvent *event, systime_t timeout) { bool_t ret; //Wait until the specified event is in the signaled //state or the timeout interval elapses if(timeout == 0) { //Non-blocking call ret = OS_EVENT_Get(event); } else if(timeout == INFINITE_DELAY) { //Infinite timeout period OS_EVENT_Wait(event); ret = TRUE; } else { //Wait until the specified event becomes set ret = !OS_EVENT_WaitTimed(event, OS_MS_TO_SYSTICKS(timeout)); } //The return value specifies whether the event is set return ret; } /** * @brief Set an event object to the signaled state from an interrupt service routine * @param[in] event Pointer to the event object * @return TRUE if setting the event to signaled state caused a task to unblock * and the unblocked task has a priority higher than the currently running task **/ bool_t osSetEventFromIsr(OsEvent *event) { //Set the specified event to the signaled state OS_EVENT_Set(event); //The return value is not relevant return FALSE; } /** * @brief Create a semaphore object * @param[in] semaphore Pointer to the semaphore object * @param[in] count The maximum count for the semaphore object. This value * must be greater than zero * @return The function returns TRUE if the semaphore was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateSemaphore(OsSemaphore *semaphore, uint_t count) { //Create a semaphore OS_CreateCSema(semaphore, count); //The event object was successfully created return TRUE; } /** * @brief Delete a semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osDeleteSemaphore(OsSemaphore *semaphore) { //Make sure the operating system is running if(OS_IsRunning()) { //Properly dispose the specified semaphore OS_DeleteCSema(semaphore); } } /** * @brief Wait for the specified semaphore to be available * @param[in] semaphore Pointer to the semaphore object * @param[in] timeout Timeout interval * @return The function returns TRUE if the semaphore is available. FALSE is * returned if the timeout interval elapsed **/ bool_t osWaitForSemaphore(OsSemaphore *semaphore, systime_t timeout) { bool_t ret; //Wait until the semaphore is available or the timeout interval elapses if(timeout == 0) { //Non-blocking call ret = OS_CSemaRequest(semaphore); } else if(timeout == INFINITE_DELAY) { //Infinite timeout period OS_WaitCSema(semaphore); ret = TRUE; } else { //Wait until the specified semaphore becomes available ret = OS_WaitCSemaTimed(semaphore, OS_MS_TO_SYSTICKS(timeout)); } //The return value specifies whether the semaphore is available return ret; } /** * @brief Release the specified semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osReleaseSemaphore(OsSemaphore *semaphore) { //Release the semaphore OS_SignalCSema(semaphore); } /** * @brief Create a mutex object * @param[in] mutex Pointer to the mutex object * @return The function returns TRUE if the mutex was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateMutex(OsMutex *mutex) { //Create a mutex OS_CreateRSema(mutex); //The mutex was successfully created return TRUE; } /** * @brief Delete a mutex object * @param[in] mutex Pointer to the mutex object **/ void osDeleteMutex(OsMutex *mutex) { //Make sure the operating system is running if(OS_IsRunning()) { //Properly dispose the specified mutex OS_DeleteRSema(mutex); } } /** * @brief Acquire ownership of the specified mutex object * @param[in] mutex Pointer to the mutex object **/ void osAcquireMutex(OsMutex *mutex) { //Obtain ownership of the mutex object OS_Use(mutex); } /** * @brief Release ownership of the specified mutex object * @param[in] mutex Pointer to the mutex object **/ void osReleaseMutex(OsMutex *mutex) { //Release ownership of the mutex object OS_Unuse(mutex); } /** * @brief Retrieve system time * @return Number of milliseconds elapsed since the system was last started **/ systime_t osGetSystemTime(void) { systime_t time; //Get current tick count time = OS_GetTime32(); //Convert system ticks to milliseconds return OS_SYSTICKS_TO_MS(time); } /** * @brief Allocate a memory block * @param[in] size Bytes to allocate * @return A pointer to the allocated memory block or NULL if * there is insufficient memory available **/ void *osAllocMem(size_t size) { void *p; //Allocate a memory block p = OS_malloc(size); //Debug message TRACE_DEBUG("Allocating %" PRIuSIZE " bytes at 0x%08" PRIXPTR "\r\n", size, (uintptr_t) p); //Return a pointer to the newly allocated memory block return p; } /** * @brief Release a previously allocated memory block * @param[in] p Previously allocated memory block to be freed **/ void osFreeMem(void *p) { //Make sure the pointer is valid if(p != NULL) { //Debug message TRACE_DEBUG("Freeing memory at 0x%08" PRIXPTR "\r\n", (uintptr_t) p); //Free memory block OS_free(p); } }