Webserver+3d print
common/os_port_cmsis_rtos.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file os_port_cmsis_rtos.c * @brief RTOS abstraction layer (CMSIS-RTOS) * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL TRACE_LEVEL_OFF //Dependencies #include <stdio.h> #include <stdlib.h> #include "os_port.h" #include "os_port_cmsis_rtos.h" #include "debug.h" /** * @brief Kernel initialization **/ void osInitKernel(void) { //Check CMSIS-RTOS API version #if (osCMSIS >= 0x10001) //Initialize the kernel osKernelInitialize(); #endif } /** * @brief Start kernel **/ void osStartKernel(void) { //Check CMSIS-RTOS API version #if (osCMSIS >= 0x10001) //Start the kernel osKernelStart(); #else //Start the kernel osKernelStart(NULL, NULL); #endif } /** * @brief Create a new task * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return If the function succeeds, the return value is a pointer to the * new task. If the function fails, the return value is NULL **/ OsTask *osCreateTask(const char_t *name, OsTaskCode taskCode, void *params, size_t stackSize, int_t priority) { osThreadId threadId; osThreadDef_t threadDef; #if defined(osCMSIS_RTX) threadDef.pthread = (os_pthread) taskCode; threadDef.tpriority = (osPriority) priority; threadDef.instances = 1; threadDef.stacksize = stackSize * sizeof(uint_t); #else threadDef.name = (char_t *) name; threadDef.pthread = (os_pthread) taskCode; threadDef.tpriority = (osPriority) priority; threadDef.instances = 1; threadDef.stacksize = stackSize; #endif //Create a new thread threadId = osThreadCreate(&threadDef, params); //Return a handle to the newly created thread return (OsTask *) threadId; } /** * @brief Delete a task * @param[in] task Pointer to the task to be deleted **/ void osDeleteTask(OsTask *task) { //Delete the specified thread osThreadTerminate((osThreadId) task); } /** * @brief Delay routine * @param[in] delay Amount of time for which the calling task should block **/ void osDelayTask(systime_t delay) { //Delay the thread for the specified duration osDelay(delay); } /** * @brief Yield control to the next task **/ void osSwitchTask(void) { //Force a context switch osThreadYield(); } /** * @brief Suspend scheduler activity **/ void osSuspendAllTasks(void) { #if !defined(osCMSIS_RTX) //Make sure the operating system is running if(osKernelRunning()) { //Suspend all threads osThreadSuspendAll(); } #endif } /** * @brief Resume scheduler activity **/ void osResumeAllTasks(void) { #if !defined(osCMSIS_RTX) //Make sure the operating system is running if(osKernelRunning()) { //Resume all threads osThreadResumeAll(); } #endif } /** * @brief Create an event object * @param[in] event Pointer to the event object * @return The function returns TRUE if the event object was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateEvent(OsEvent *event) { osSemaphoreDef_t semaphoreDef; #if defined(osCMSIS_RTX) semaphoreDef.semaphore = event->cb; #else semaphoreDef.dummy = 0; #endif //Create a binary semaphore object event->id = osSemaphoreCreate(&semaphoreDef, 1); //Check whether the returned semaphore ID is valid if(event->id != NULL) { //Force the specified event to the nonsignaled state osSemaphoreWait(event->id, 0); //Event successfully created return TRUE; } else { //Failed to create event object return FALSE; } } /** * @brief Delete an event object * @param[in] event Pointer to the event object **/ void osDeleteEvent(OsEvent *event) { //Make sure the semaphore ID is valid if(event->id != NULL) { //Properly dispose the event object osSemaphoreDelete(event->id); } } /** * @brief Set the specified event object to the signaled state * @param[in] event Pointer to the event object **/ void osSetEvent(OsEvent *event) { //Set the specified event to the signaled state osSemaphoreRelease(event->id); } /** * @brief Set the specified event object to the nonsignaled state * @param[in] event Pointer to the event object **/ void osResetEvent(OsEvent *event) { #if defined(osCMSIS_RTX) //Force the specified event to the nonsignaled state while(osSemaphoreWait(event->id, 0) > 0); #else //Force the specified event to the nonsignaled state osSemaphoreWait(event->id, 0); #endif } /** * @brief Wait until the specified event is in the signaled state * @param[in] event Pointer to the event object * @param[in] timeout Timeout interval * @return The function returns TRUE if the state of the specified object is * signaled. FALSE is returned if the timeout interval elapsed **/ bool_t osWaitForEvent(OsEvent *event, systime_t timeout) { int32_t ret; //Wait until the specified event is in the signaled //state or the timeout interval elapses if(timeout == INFINITE_DELAY) { //Infinite timeout period ret = osSemaphoreWait(event->id, osWaitForever); } else { #if defined(osCMSIS_RTX) systime_t n; //Loop until the assigned time period has elapsed do { //Limit the timeout value n = MIN(timeout, 10000); //Wait for the specified time interval ret = osSemaphoreWait(event->id, n); //Decrement timeout value timeout -= n; //Check timeout value } while(ret == 0 && timeout > 0); #else //Wait for the specified time interval ret = osSemaphoreWait(event->id, timeout); #endif } #if defined(osCMSIS_RTX) //Check return value if(ret > 0) { //Force the event back to the nonsignaled state while(osSemaphoreWait(event->id, 0) > 0); //The specified event is in the signaled state return TRUE; } else { //The timeout interval elapsed return FALSE; } #else //Check return value if(ret == osOK) return TRUE; else return FALSE; #endif } /** * @brief Set an event object to the signaled state from an interrupt service routine * @param[in] event Pointer to the event object * @return TRUE if setting the event to signaled state caused a task to unblock * and the unblocked task has a priority higher than the currently running task **/ bool_t osSetEventFromIsr(OsEvent *event) { //Set the specified event to the signaled state osSemaphoreRelease(event->id); //The return value is not relevant return FALSE; } /** * @brief Create a semaphore object * @param[in] semaphore Pointer to the semaphore object * @param[in] count The maximum count for the semaphore object. This value * must be greater than zero * @return The function returns TRUE if the semaphore was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateSemaphore(OsSemaphore *semaphore, uint_t count) { osSemaphoreDef_t semaphoreDef; #if defined(osCMSIS_RTX) semaphoreDef.semaphore = semaphore->cb; #else semaphoreDef.dummy = 0; #endif //Create a semaphore object semaphore->id = osSemaphoreCreate(&semaphoreDef, count); //Check whether the returned semaphore ID is valid if(semaphore->id != NULL) return TRUE; else return FALSE; } /** * @brief Delete a semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osDeleteSemaphore(OsSemaphore *semaphore) { //Make sure the semaphore ID is valid if(semaphore->id != NULL) { //Properly dispose the specified semaphore osSemaphoreDelete(semaphore->id); } } /** * @brief Wait for the specified semaphore to be available * @param[in] semaphore Pointer to the semaphore object * @param[in] timeout Timeout interval * @return The function returns TRUE if the semaphore is available. FALSE is * returned if the timeout interval elapsed **/ bool_t osWaitForSemaphore(OsSemaphore *semaphore, systime_t timeout) { int32_t ret; //Wait until the semaphore is available or the timeout interval elapses if(timeout == INFINITE_DELAY) { //Infinite timeout period ret = osSemaphoreWait(semaphore->id, osWaitForever); } else { #if defined(osCMSIS_RTX) systime_t n; //Loop until the assigned time period has elapsed do { //Limit the timeout value n = MIN(timeout, 10000); //Wait for the specified time interval ret = osSemaphoreWait(semaphore->id, n); //Decrement timeout value timeout -= n; //Check timeout value } while(ret == 0 && timeout > 0); #else //Wait for the specified time interval ret = osSemaphoreWait(semaphore->id, timeout); #endif } #if defined(osCMSIS_RTX) //Check return value if(ret > 0) return TRUE; else return FALSE; #else //Check return value if(ret == osOK) return TRUE; else return FALSE; #endif } /** * @brief Release the specified semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osReleaseSemaphore(OsSemaphore *semaphore) { //Release the semaphore osSemaphoreRelease(semaphore->id); } /** * @brief Create a mutex object * @param[in] mutex Pointer to the mutex object * @return The function returns TRUE if the mutex was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateMutex(OsMutex *mutex) { osMutexDef_t mutexDef; #if defined(osCMSIS_RTX) mutexDef.mutex = mutex->cb; #else mutexDef.dummy = 0; #endif //Create a mutex object mutex->id = osMutexCreate(&mutexDef); //Check whether the returned mutex ID is valid if(mutex->id != NULL) return TRUE; else return FALSE; } /** * @brief Delete a mutex object * @param[in] mutex Pointer to the mutex object **/ void osDeleteMutex(OsMutex *mutex) { //Make sure the mutex ID is valid if(mutex->id != NULL) { //Properly dispose the specified mutex osMutexDelete(mutex->id); } } /** * @brief Acquire ownership of the specified mutex object * @param[in] mutex Pointer to the mutex object **/ void osAcquireMutex(OsMutex *mutex) { //Obtain ownership of the mutex object osMutexWait(mutex->id, osWaitForever); } /** * @brief Release ownership of the specified mutex object * @param[in] mutex Pointer to the mutex object **/ void osReleaseMutex(OsMutex *mutex) { //Release ownership of the mutex object osMutexRelease(mutex->id); } /** * @brief Retrieve system time * @return Number of milliseconds elapsed since the system was last started **/ systime_t osGetSystemTime(void) { systime_t time; #if defined(osCMSIS_RTX) //Forward function declaration extern uint32_t rt_time_get(void); //Get current tick count time = rt_time_get(); #else //Get current tick count time = osKernelSysTick(); #endif //Convert system ticks to milliseconds return OS_SYSTICKS_TO_MS(time); } /** * @brief Allocate a memory block * @param[in] size Bytes to allocate * @return A pointer to the allocated memory block or NULL if * there is insufficient memory available **/ void *osAllocMem(size_t size) { void *p; //Enter critical section osSuspendAllTasks(); //Allocate a memory block p = malloc(size); //Leave critical section osResumeAllTasks(); //Debug message TRACE_DEBUG("Allocating %u bytes at 0x%08X\r\n", size, (uint_t) p); //Return a pointer to the newly allocated memory block return p; } /** * @brief Release a previously allocated memory block * @param[in] p Previously allocated memory block to be freed **/ void osFreeMem(void *p) { //Make sure the pointer is valid if(p != NULL) { //Debug message TRACE_DEBUG("Freeing memory at 0x%08X\r\n", (uint_t) p); //Enter critical section osSuspendAllTasks(); //Free memory block free(p); //Leave critical section osResumeAllTasks(); } }