Webserver+3d print
common/os_port_chibios.c
- Committer:
- Sergunb
- Date:
- 2017-02-04
- Revision:
- 0:8918a71cdbe9
File content as of revision 0:8918a71cdbe9:
/** * @file os_port_chibios.c * @brief RTOS abstraction layer (ChibiOS/RT) * * @section License * * Copyright (C) 2010-2017 Oryx Embedded SARL. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @author Oryx Embedded SARL (www.oryx-embedded.com) * @version 1.7.6 **/ //Switch to the appropriate trace level #define TRACE_LEVEL TRACE_LEVEL_OFF //Dependencies #include <stdio.h> #include <stdlib.h> #include <string.h> #include "os_port.h" #include "os_port_chibios.h" #include "debug.h" //Variables static OsTask taskTable[OS_PORT_MAX_TASKS]; static uint_t *waTable[OS_PORT_MAX_TASKS]; /** * @brief Kernel initialization **/ void osInitKernel(void) { //Initialize tables memset(taskTable, 0, sizeof(taskTable)); memset(waTable, 0, sizeof(waTable)); //Kernel initialization chSysInit(); } /** * @brief Start kernel **/ void osStartKernel(void) { //Terminate the main thread chThdExit(MSG_OK); } /** * @brief Create a static task * @param[out] task Pointer to the task structure * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stack Pointer to the stack * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return The function returns TRUE if the task was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateStaticTask(OsTask *task, const char_t *name, OsTaskCode taskCode, void *params, void *stack, size_t stackSize, int_t priority) { //Compute the size of the working area in bytes stackSize *= sizeof(uint_t); //Create a new task task->tp = chThdCreateStatic(stack, stackSize, priority, (tfunc_t) taskCode, params); //Check whether the task was successfully created if(task->tp != NULL) return TRUE; else return FALSE; } /** * @brief Create a new task * @param[in] name A name identifying the task * @param[in] taskCode Pointer to the task entry function * @param[in] params A pointer to a variable to be passed to the task * @param[in] stackSize The initial size of the stack, in words * @param[in] priority The priority at which the task should run * @return If the function succeeds, the return value is a pointer to the * new task. If the function fails, the return value is NULL **/ OsTask *osCreateTask(const char_t *name, OsTaskCode taskCode, void *params, size_t stackSize, int_t priority) { uint_t i; void *wa; OsTask *task = NULL; //Compute the size of the stack in bytes stackSize *= sizeof(uint_t); //Allocate a memory block to hold the working area wa = osAllocMem(THD_WORKING_AREA_SIZE(stackSize)); //Successful memory allocation? if(wa != NULL) { //Enter critical section chSysLock(); //Loop through task table for(i = 0; i < OS_PORT_MAX_TASKS; i++) { //Check whether the current entry is free if(taskTable[i].tp == NULL) break; } //Any entry available in the table? if(i < OS_PORT_MAX_TASKS) { //Create a new task taskTable[i].tp = chThdCreateI(wa, THD_WORKING_AREA_SIZE(stackSize), priority, (tfunc_t) taskCode, params); //Check whether the task was successfully created if(taskTable[i].tp != NULL) { //Insert the newly created task in the ready list chSchWakeupS(taskTable[i].tp, MSG_OK); //Save task pointer task = &taskTable[i]; //Save working area base address waTable[i] = wa; //Leave critical section chSysUnlock(); } else { //Leave critical section chSysUnlock(); //Clean up side effects osFreeMem(wa); } } else { //Leave critical section chSysUnlock(); //No entry available in the table osFreeMem(wa); } } //Return a pointer to the newly created task return task; } /** * @brief Delete a task * @param[in] task Pointer to the task to be deleted **/ void osDeleteTask(OsTask *task) { //Delete the specified task if(task == NULL) chThdExit(MSG_OK); else chThdTerminate(task->tp); } /** * @brief Delay routine * @param[in] delay Amount of time for which the calling task should block **/ void osDelayTask(systime_t delay) { //Delay the task for the specified duration chThdSleep(OS_MS_TO_SYSTICKS(delay)); } /** * @brief Yield control to the next task **/ void osSwitchTask(void) { //Force a context switch chThdYield(); } /** * @brief Suspend scheduler activity **/ void osSuspendAllTasks(void) { //Suspend scheduler activity chSysLock(); } /** * @brief Resume scheduler activity **/ void osResumeAllTasks(void) { //Resume scheduler activity chSysUnlock(); } /** * @brief Create an event object * @param[in] event Pointer to the event object * @return The function returns TRUE if the event object was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateEvent(OsEvent *event) { //Initialize the binary semaphore object chBSemObjectInit(event, TRUE); //Event successfully created return TRUE; } /** * @brief Delete an event object * @param[in] event Pointer to the event object **/ void osDeleteEvent(OsEvent *event) { //No resource to release } /** * @brief Set the specified event object to the signaled state * @param[in] event Pointer to the event object **/ void osSetEvent(OsEvent *event) { //Set the specified event to the signaled state chBSemSignal(event); } /** * @brief Set the specified event object to the nonsignaled state * @param[in] event Pointer to the event object **/ void osResetEvent(OsEvent *event) { //Force the specified event to the nonsignaled state chBSemReset(event, TRUE); } /** * @brief Wait until the specified event is in the signaled state * @param[in] event Pointer to the event object * @param[in] timeout Timeout interval * @return The function returns TRUE if the state of the specified object is * signaled. FALSE is returned if the timeout interval elapsed **/ bool_t osWaitForEvent(OsEvent *event, systime_t timeout) { msg_t msg; //Wait until the specified event is in the signaled //state or the timeout interval elapses if(timeout == 0) { //Non-blocking call msg = chBSemWaitTimeout(event, TIME_IMMEDIATE); } else if(timeout == INFINITE_DELAY) { //Infinite timeout period msg = chBSemWaitTimeout(event, TIME_INFINITE); } else { //Wait until the specified event becomes set msg = chBSemWaitTimeout(event, OS_MS_TO_SYSTICKS(timeout)); } //Check whether the specified event is set if(msg == MSG_OK) return TRUE; else return FALSE; } /** * @brief Set an event object to the signaled state from an interrupt service routine * @param[in] event Pointer to the event object * @return TRUE if setting the event to signaled state caused a task to unblock * and the unblocked task has a priority higher than the currently running task **/ bool_t osSetEventFromIsr(OsEvent *event) { //Set the specified event to the signaled state chBSemSignalI(event); //The return value is not relevant return FALSE; } /** * @brief Create a semaphore object * @param[in] semaphore Pointer to the semaphore object * @param[in] count The maximum count for the semaphore object. This value * must be greater than zero * @return The function returns TRUE if the semaphore was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateSemaphore(OsSemaphore *semaphore, uint_t count) { //Initialize the semaphore object chSemObjectInit(semaphore, count); //Semaphore successfully created return TRUE; } /** * @brief Delete a semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osDeleteSemaphore(OsSemaphore *semaphore) { //No resource to release } /** * @brief Wait for the specified semaphore to be available * @param[in] semaphore Pointer to the semaphore object * @param[in] timeout Timeout interval * @return The function returns TRUE if the semaphore is available. FALSE is * returned if the timeout interval elapsed **/ bool_t osWaitForSemaphore(OsSemaphore *semaphore, systime_t timeout) { msg_t msg; //Wait until the semaphore is available or the timeout interval elapses if(timeout == 0) { //Non-blocking call msg = chSemWaitTimeout(semaphore, TIME_IMMEDIATE); } else if(timeout == INFINITE_DELAY) { //Infinite timeout period msg = chSemWaitTimeout(semaphore, TIME_INFINITE); } else { //Wait until the specified semaphore becomes available msg = chSemWaitTimeout(semaphore, OS_MS_TO_SYSTICKS(timeout)); } //Check whether the specified semaphore is available if(msg == MSG_OK) return TRUE; else return FALSE; } /** * @brief Release the specified semaphore object * @param[in] semaphore Pointer to the semaphore object **/ void osReleaseSemaphore(OsSemaphore *semaphore) { //Release the semaphore chSemSignal(semaphore); } /** * @brief Create a mutex object * @param[in] mutex Pointer to the mutex object * @return The function returns TRUE if the mutex was successfully * created. Otherwise, FALSE is returned **/ bool_t osCreateMutex(OsMutex *mutex) { //Initialize the mutex object chMtxObjectInit(mutex); //Mutex successfully created return TRUE; } /** * @brief Delete a mutex object * @param[in] mutex Pointer to the mutex object **/ void osDeleteMutex(OsMutex *mutex) { //No resource to release } /** * @brief Acquire ownership of the specified mutex object * @param[in] mutex Pointer to the mutex object **/ void osAcquireMutex(OsMutex *mutex) { //Obtain ownership of the mutex object chMtxLock(mutex); } /** * @brief Release ownership of the specified mutex object * @param[in] mutex Pointer to the mutex object **/ void osReleaseMutex(OsMutex *mutex) { //Release ownership of the mutex object #if (CH_KERNEL_MAJOR < 3) chMtxUnlock(); #else chMtxUnlock(mutex); #endif } /** * @brief Retrieve system time * @return Number of milliseconds elapsed since the system was last started **/ systime_t osGetSystemTime(void) { systime_t time; //Get current tick count time = chVTGetSystemTime(); //Convert system ticks to milliseconds return OS_SYSTICKS_TO_MS(time); } /** * @brief Allocate a memory block * @param[in] size Bytes to allocate * @return A pointer to the allocated memory block or NULL if * there is insufficient memory available **/ void *osAllocMem(size_t size) { void *p; //Allocate a memory block p = chHeapAlloc(NULL, size); //Debug message TRACE_DEBUG("Allocating %" PRIuSIZE " bytes at 0x%08" PRIXPTR "\r\n", size, (uintptr_t) p); //Return a pointer to the newly allocated memory block return p; } /** * @brief Release a previously allocated memory block * @param[in] p Previously allocated memory block to be freed **/ void osFreeMem(void *p) { //Make sure the pointer is valid if(p != NULL) { //Debug message TRACE_DEBUG("Freeing memory at 0x%08" PRIXPTR "\r\n", (uintptr_t) p); //Free memory block chHeapFree(p); } } /** * @brief Idle loop hook **/ void osIdleLoopHook(void) { uint_t i; //Loop through task table for(i = 0; i < OS_PORT_MAX_TASKS; i++) { //Check whether current entry is used if(taskTable[i].tp != NULL) { //Wait for task termination if(chThdTerminatedX(taskTable[i].tp)) { //Free working area osFreeMem(waTable[i]); //Mark the entry as free waTable[i] = NULL; taskTable[i].tp = NULL; } } } }