Version del programa usado para la Expo IOT 2018 - Strada Hotel
Dependencies: DHT HX711 libmDot-mbed5 ISL29011
Fork of Dot-Examples by
examples/src/peer_to_peer_example.cpp
- Committer:
- Mike Fiore
- Date:
- 2016-10-11
- Revision:
- 11:d2e31743433a
- Child:
- 12:ec9768677cea
File content as of revision 11:d2e31743433a:
#include "dot_util.h" #include "mDotEvent.h" #if ACTIVE_EXAMPLE == PEER_TO_PEER_EXAMPLE ///////////////////////////////////////////////////////////// // * these options must match between the two devices in // // order for communication to be successful ///////////////////////////////////////////////////////////// static uint8_t network_address[] = { 0x01, 0x02, 0x03, 0x04 }; static uint8_t network_session_key[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 }; static uint8_t data_session_key[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 }; mDot* dot = NULL; Serial pc(USBTX, USBRX); #if defined(TARGET_XDOT_L151CC) I2C i2c(I2C_SDA, I2C_SCL); ISL29011 lux(i2c); #else AnalogIn lux(XBEE_AD0); #endif // Custom event handler for receiving Class C packets class RadioEvent : public mDotEvent { public: RadioEvent() {} virtual ~RadioEvent() {} /*! * MAC layer event callback prototype. * * \param [IN] flags Bit field indicating the MAC events occurred * \param [IN] info Details about MAC events occurred */ virtual void MacEvent(LoRaMacEventFlags* flags, LoRaMacEventInfo* info) { if (mts::MTSLog::getLogLevel() == mts::MTSLog::TRACE_LEVEL) { std::string msg = "OK"; switch (info->Status) { case LORAMAC_EVENT_INFO_STATUS_ERROR: msg = "ERROR"; break; case LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT: msg = "TX_TIMEOUT"; break; case LORAMAC_EVENT_INFO_STATUS_RX_TIMEOUT: msg = "RX_TIMEOUT"; break; case LORAMAC_EVENT_INFO_STATUS_RX_ERROR: msg = "RX_ERROR"; break; case LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL: msg = "JOIN_FAIL"; break; case LORAMAC_EVENT_INFO_STATUS_DOWNLINK_FAIL: msg = "DOWNLINK_FAIL"; break; case LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL: msg = "ADDRESS_FAIL"; break; case LORAMAC_EVENT_INFO_STATUS_MIC_FAIL: msg = "MIC_FAIL"; break; default: break; } logTrace("Event: %s", msg.c_str()); logTrace("Flags Tx: %d Rx: %d RxData: %d RxSlot: %d LinkCheck: %d JoinAccept: %d", flags->Bits.Tx, flags->Bits.Rx, flags->Bits.RxData, flags->Bits.RxSlot, flags->Bits.LinkCheck, flags->Bits.JoinAccept); logTrace("Info: Status: %d ACK: %d Retries: %d TxDR: %d RxPort: %d RxSize: %d RSSI: %d SNR: %d Energy: %d Margin: %d Gateways: %d", info->Status, info->TxAckReceived, info->TxNbRetries, info->TxDatarate, info->RxPort, info->RxBufferSize, info->RxRssi, info->RxSnr, info->Energy, info->DemodMargin, info->NbGateways); } if (flags->Bits.Rx) { logDebug("Rx %d bytes", info->RxBufferSize); if (info->RxBufferSize > 0) { // print RX data as hexadecimal printf("Rx data: %s\r\n", mts::Text::bin2hexString(info->RxBuffer, info->RxBufferSize).c_str()); // print RX data as string /* pc.printf("Rx data: "); for (int i = 0; i < info->RxBufferSize; i++) { pc.putc(info->RxBuffer[i]); } pc.printf("\r\n"); */ } } } }; int main() { RadioEvent events; uint32_t tx_frequency; uint8_t tx_datarate; uint8_t tx_power; uint8_t frequency_band; pc.baud(115200); mts::MTSLog::setLogLevel(mts::MTSLog::TRACE_LEVEL); dot = mDot::getInstance(); // make sure library logging is turned on dot->setLogLevel(mts::MTSLog::INFO_LEVEL); // attach the custom events handler dot->setEvents(&events); // update configuration if necessary if (dot->getJoinMode() != mDot::PEER_TO_PEER) { logInfo("changing network join mode to PEER_TO_PEER"); if (dot->setJoinMode(mDot::PEER_TO_PEER) != mDot::MDOT_OK) { logError("failed to set network join mode to PEER_TO_PEER"); } } frequency_band = dot->getFrequencyBand(); switch (frequency_band) { case mDot::FB_EU868: // 250kHz channels achieve higher throughput // DR6 : SF7 @ 250kHz // DR0 - DR5 (125kHz channels) available but much slower tx_frequency = 869850000; tx_datarate = mDot::DR6; // the 869850000 frequency is 100% duty cycle if the total power is under 7 dBm - tx power 4 + antenna gain 3 = 7 tx_power = 4; break; case mDot::FB_US915: case mDot::FB_AU915: default: // 500kHz channels achieve highest throughput // DR8 : SF12 @ 500kHz // DR9 : SF11 @ 500kHz // DR10 : SF10 @ 500kHz // DR11 : SF9 @ 500kHz // DR12 : SF8 @ 500kHz // DR13 : SF7 @ 500kHz // DR0 - DR3 (125kHz channels) available but much slower tx_frequency = 915500000; tx_datarate = mDot::DR13; // 915 bands have no duty cycle restrictions, set tx power to max tx_power = 20; break; } // in PEER_TO_PEER mode there is no join request/response transaction // as long as both Dots are configured correctly, they should be able to communicate update_peer_to_peer_config(network_address, network_session_key, data_session_key, tx_frequency, tx_datarate, tx_power); // save changes to configuration logInfo("saving configuration"); if (!dot->saveConfig()) { logError("failed to save configuration"); } // display configuration display_config(); #if defined(TARGET_XDOT_L151CC) // configure the ISL29011 sensor on the xDot-DK for continuous ambient light sampling, 16 bit conversion, and maximum range lux.setMode(ISL29011::ALS_CONT); lux.setResolution(ISL29011::ADC_16BIT); lux.setRange(ISL29011::RNG_64000); #endif while (true) { uint16_t light; std::vector<uint8_t> tx_data; // join network if not joined if (!dot->getNetworkJoinStatus()) { join_network(); } #if defined(TARGET_XDOT_L151CC) // get the latest light sample and send it to the gateway light = lux.getData(); tx_data.push_back((light >> 8) & 0xFF); tx_data.push_back(light & 0xFF); logInfo("light: %lu [0x%04X]", light, light); send_data(tx_data); #else // get some dummy data and send it to the gateway light = lux.read_u16(); tx_data.push_back((light >> 8) & 0xFF); tx_data.push_back(light & 0xFF); logInfo("light: %lu [0x%04X]", light, light); send_data(tx_data); #endif // the Dot can't sleep in PEER_TO_PEER mode // it must be waiting for data from the other Dot // send data every 5 seconds logInfo("waiting for 5s"); wait(5); } return 0; } #endif