Diff: RF22.cpp
- Revision:
- 0:e16ffa7cb900
diff -r 000000000000 -r e16ffa7cb900 RF22.cpp
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/RF22.cpp Mon Jul 02 01:29:58 2012 +0000
@@ -0,0 +1,654 @@
+// RF22.cpp
+//
+// Copyright (C) 2011 Mike McCauley
+// $Id: RF22.cpp,v 1.13 2011/10/09 21:22:24 mikem Exp mikem $
+// ported to mbed by Karl Zweimueller
+
+
+#include "mbed.h"
+#include "RF22.h"
+//#include <SPI.h>
+
+
+// Interrupt vectors for the 2 Arduino interrupt pins
+// Each interrupt can be handled by a different instance of RF22, allowing you to have
+// 2 RF22s per Arduino
+//RF22* RF22::_RF22ForInterrupt[2] = {0, 0};
+
+// These are indexed by the values of ModemConfigChoice
+// Canned modem configurations generated with
+// 'http://www.hoperf.com/upfile/RF22B 23B 31B 42B 43B Register Settings_RevB1-v5.xls'
+// Stored in flash (program) memory to save SRAM
+/*PROGMEM */ static const RF22::ModemConfig MODEM_CONFIG_TABLE[] =
+{
+ { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier
+ { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5
+
+ // 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72
+ // FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
+ { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5
+ { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36
+ { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45
+ { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45
+ { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6
+ { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6
+ { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8
+ { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125
+
+ // GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
+ // These differ from FSK only in register 71, for the modulation type
+ { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5
+ { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36
+ { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45
+ { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45
+ { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6
+ { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6
+ { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8
+ { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125
+
+ // OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
+ { 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75
+ { 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335
+ { 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335
+ { 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335
+ { 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335
+ { 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335
+ { 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335
+
+};
+
+RF22::RF22(PinName slaveSelectPin, PinName mosi, PinName miso, PinName sclk, PinName interrupt)
+ : _slaveSelectPin(slaveSelectPin), _spi(mosi, miso, sclk), _interrupt(interrupt), led1(LED1), led2(LED2), led3(LED3), led4(LED4)
+{
+
+
+ _idleMode = RF22_XTON; // Default idle state is READY mode
+ _mode = RF22_MODE_IDLE; // We start up in idle mode
+ _rxGood = 0;
+ _rxBad = 0;
+ _txGood = 0;
+
+
+}
+
+boolean RF22::init()
+{
+ // Wait for RF22 POR (up to 16msec)
+ //delay(16);
+ wait_ms(16);
+
+ // Initialise the slave select pin
+ //pinMode(_slaveSelectPin, OUTPUT);
+ //digitalWrite(_slaveSelectPin, HIGH);
+ _slaveSelectPin = 1;
+
+ wait_ms(100);
+
+ // start the SPI library:
+ // Note the RF22 wants mode 0, MSB first and default to 1 Mbps
+ /*SPI.begin();
+ SPI.setDataMode(SPI_MODE0);
+ SPI.setBitOrder(MSBFIRST);
+ SPI.setClockDivider(SPI_CLOCK_DIV16); // (16 Mhz / 16) = 1 MHz
+ */
+
+ // Setup the spi for 8 bit data : 1RW-bit 7 adressbit and 8 databit
+ // second edge capture, with a 10MHz clock rate
+ _spi.format(8,0);
+ _spi.frequency(10000000);
+
+ // Software reset the device
+ reset();
+
+ // Get the device type and check it
+ // This also tests whether we are really connected to a device
+ _deviceType = spiRead(RF22_REG_00_DEVICE_TYPE);
+ if ( _deviceType != RF22_DEVICE_TYPE_RX_TRX
+ && _deviceType != RF22_DEVICE_TYPE_TX)
+ return false;
+
+ // Set up interrupt handler
+// if (_interrupt == 0)
+// {
+ //_RF22ForInterrupt[0] = this;
+ //attachInterrupt(0, RF22::isr0, LOW);
+ _interrupt.fall(this, &RF22::isr0);
+/* }
+ else if (_interrupt == 1)
+ {
+ _RF22ForInterrupt[1] = this;
+ attachInterrupt(1, RF22::isr1, LOW);
+ }
+ else
+ return false;
+*/
+ clearTxBuf();
+ clearRxBuf();
+
+ // Most of these are the POR default
+ spiWrite(RF22_REG_7D_TX_FIFO_CONTROL2, RF22_TXFFAEM_THRESHOLD);
+ spiWrite(RF22_REG_7E_RX_FIFO_CONTROL, RF22_RXFFAFULL_THRESHOLD);
+ spiWrite(RF22_REG_30_DATA_ACCESS_CONTROL, RF22_ENPACRX | RF22_ENPACTX | RF22_ENCRC | RF22_CRC_CRC_16_IBM);
+ // Configure the message headers
+ // Here we set up the standard packet format for use by the RF22 library
+ // 8 nibbles preamble
+ // 2 SYNC words 2d, d4
+ // Header length 4 (to, from, id, flags)
+ // 1 octet of data length (0 to 255)
+ // 0 to 255 octets data
+ // 2 CRC octets as CRC16(IBM), computed on the header, length and data
+ // On reception the to address is check for validity against RF22_REG_3F_CHECK_HEADER3
+ // or the broadcast address of 0xff
+ // If no changes are made after this, the transmitted
+ // to address will be 0xff, the from address will be 0xff
+ // and all such messages will be accepted. This permits the out-of the box
+ // RF22 config to act as an unaddresed, unreliable datagram service
+ spiWrite(RF22_REG_32_HEADER_CONTROL1, RF22_BCEN_HEADER3 | RF22_HDCH_HEADER3);
+ spiWrite(RF22_REG_33_HEADER_CONTROL2, RF22_HDLEN_4 | RF22_SYNCLEN_2);
+ setPreambleLength(8);
+ uint8_t syncwords[] = { 0x2d, 0xd4 };
+ setSyncWords(syncwords, sizeof(syncwords));
+ setPromiscuous(false);
+ // Check the TO header against RF22_DEFAULT_NODE_ADDRESS
+ spiWrite(RF22_REG_3F_CHECK_HEADER3, RF22_DEFAULT_NODE_ADDRESS);
+ // Set the default transmit header values
+ setHeaderTo(RF22_DEFAULT_NODE_ADDRESS);
+ setHeaderFrom(RF22_DEFAULT_NODE_ADDRESS);
+ setHeaderId(0);
+ setHeaderFlags(0);
+
+ // Ensure the antenna can be switched automatically according to transmit and receive
+ // This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
+ // This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive
+ spiWrite (RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state
+ spiWrite (RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state
+
+ // Enable interrupts
+ spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM | RF22_ENRXFFAFULL | RF22_ENPKSENT | RF22_ENPKVALID | RF22_ENCRCERROR | RF22_ENFFERR);
+ spiWrite(RF22_REG_06_INTERRUPT_ENABLE2, RF22_ENPREAVAL);
+
+ // Set some defaults. An innocuous ISM frequency
+ setFrequency(868.0);
+// setFrequency(434.0);
+// setFrequency(900.0);
+ // Some slow, reliable default speed and modulation
+ setModemConfig(FSK_Rb2_4Fd36);
+// setModemConfig(FSK_Rb125Fd125);
+ // Minimum power
+ setTxPower(RF22_TXPOW_8DBM);
+// setTxPower(RF22_TXPOW_17DBM);
+
+// Set the AFC for receiver to max. 0,1MHz
+// Other AFC-Registers have PowerOnValues which enable AFC
+// RF22_AFC_LIMIT 0x50 =0,1MHz
+ spiWrite(RF22_REG_2A_AFC_LIMITER, RF22_AFC_LIMIT); // POR=0x00 = OFF
+
+ return true;
+}
+
+void RF22::handleInterrupt()
+{
+ led1 = !led1;
+ receive_data = spiRead(0x7f);
+ resetFifos();
+ status_03 = spiRead(0x03);
+
+ spiRead(0x04);
+ spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM | RF22_ENRXFFAFULL | RF22_ENPKSENT | RF22_ENPKVALID | RF22_ENCRCERROR | RF22_ENFFERR);
+ spiWrite(0x3e, 1);
+ spiWrite(0x07, 5);
+ //pc.printf("ch = %d",ch);
+
+}
+// C++ level interrupt handler for this instance
+
+
+// These are low level functions that call the interrupt handler for the correct
+// instance of RF22.
+// 2 interrupts allows us to have 2 different devices
+void RF22::isr0()
+{
+ //if (_RF22ForInterrupt[0])
+ //_RF22ForInterrupt[0]->handleInterrupt();
+ handleInterrupt();
+}
+/*
+void RF22::isr1()
+{
+ if (_RF22ForInterrupt[1])
+ _RF22ForInterrupt[1]->handleInterrupt();
+}
+*/
+void RF22::reset()
+{
+ spiWrite(RF22_REG_07_OPERATING_MODE1, RF22_SWRES);
+ // Wait for it to settle
+ //delay(1); // SWReset time is nominally 100usec
+ wait_ms(1);
+}
+
+uint8_t RF22::spiRead(uint8_t reg)
+{
+ //digitalWrite(_slaveSelectPin, LOW);
+ _slaveSelectPin=0;
+ //_spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the address with the write mask off
+ _spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the address with the write mask off
+ uint8_t val = _spi.write(0); // The written value is ignored, reg value is read
+ //digitalWrite(_slaveSelectPin, HIGH);
+ _slaveSelectPin = 1;
+ return val;
+}
+
+void RF22::spiWrite(uint8_t reg, uint8_t val)
+{
+ //digitalWrite(_slaveSelectPin, LOW);
+ _slaveSelectPin = 0;
+ _spi.write(reg | RF22_SPI_WRITE_MASK); // Send the address with the write mask on
+ _spi.write(val); // New value follows
+ //digitalWrite(_slaveSelectPin, HIGH);
+ _slaveSelectPin = 1;
+}
+
+void RF22::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len)
+{
+ //digitalWrite(_slaveSelectPin, LOW);
+ _slaveSelectPin = 0;
+ _spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the start address with the write mask off
+ while (len--)
+ *dest++ = _spi.write(0);
+ //digitalWrite(_slaveSelectPin, HIGH);
+ _slaveSelectPin = 1;
+}
+
+void RF22::spiBurstWrite(uint8_t reg, uint8_t* src, uint8_t len)
+{
+ //digitalWrite(_slaveSelectPin, LOW);
+ _slaveSelectPin = 0;
+ _spi.write(reg | RF22_SPI_WRITE_MASK); // Send the start address with the write mask on
+ while (len--)
+ _spi.write(*src++);
+ //digitalWrite(_slaveSelectPin, HIGH);
+ _slaveSelectPin = 1;
+}
+
+uint8_t RF22::statusRead()
+{
+ return spiRead(RF22_REG_02_DEVICE_STATUS);
+}
+
+uint8_t RF22::adcRead(uint8_t adcsel,
+ uint8_t adcref ,
+ uint8_t adcgain,
+ uint8_t adcoffs)
+{
+ uint8_t configuration = adcsel | adcref | (adcgain & RF22_ADCGAIN);
+ spiWrite(RF22_REG_0F_ADC_CONFIGURATION, configuration | RF22_ADCSTART);
+ spiWrite(RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs);
+
+ // Conversion time is nominally 305usec
+ // Wait for the DONE bit
+ while (!(spiRead(RF22_REG_0F_ADC_CONFIGURATION) & RF22_ADCDONE))
+ ;
+ // Return the value
+ return spiRead(RF22_REG_11_ADC_VALUE);
+}
+
+uint8_t RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs)
+{
+ spiWrite(RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RF22_ENTSOFFS);
+ spiWrite(RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs);
+ return adcRead(RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RF22_ADCREF_BANDGAP_VOLTAGE);
+}
+
+uint16_t RF22::wutRead()
+{
+ uint8_t buf[2];
+ spiBurstRead(RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2);
+ return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order
+}
+
+// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec
+void RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd)
+{
+ uint8_t period[3];
+
+ period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3);
+ period[1] = wtm >> 8;
+ period[2] = wtm & 0xff;
+ spiBurstWrite(RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period));
+}
+
+// Returns true if centre + (fhch * fhs) is within limits
+// Caution, different versions of the RF22 suport different max freq
+// so YMMV
+boolean RF22::setFrequency(float centre)
+{
+ uint8_t fbsel = RF22_SBSEL;
+ if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon
+ return false;
+ if (centre >= 480.0)
+ {
+ centre /= 2;
+ fbsel |= RF22_HBSEL;
+ }
+ centre /= 10.0;
+ float integerPart = floor(centre);
+ float fractionalPart = centre - integerPart;
+
+ uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
+ fbsel |= fb;
+ uint16_t fc = fractionalPart * 64000;
+ spiWrite(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT
+ spiWrite(RF22_REG_74_FREQUENCY_OFFSET2, 0);
+ spiWrite(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
+ spiWrite(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
+ spiWrite(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
+ return !(statusRead() & RF22_FREQERR);
+}
+
+// Step size in 10kHz increments
+// Returns true if centre + (fhch * fhs) is within limits
+boolean RF22::setFHStepSize(uint8_t fhs)
+{
+ spiWrite(RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs);
+ return !(statusRead() & RF22_FREQERR);
+}
+
+// Adds fhch * fhs to centre frequency
+// Returns true if centre + (fhch * fhs) is within limits
+boolean RF22::setFHChannel(uint8_t fhch)
+{
+ spiWrite(RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch);
+ return !(statusRead() & RF22_FREQERR);
+}
+
+uint8_t RF22::rssiRead()
+{
+ return spiRead(RF22_REG_26_RSSI);
+}
+
+uint8_t RF22::ezmacStatusRead()
+{
+ return spiRead(RF22_REG_31_EZMAC_STATUS);
+}
+
+void RF22::setMode(uint8_t mode)
+{
+ spiWrite(RF22_REG_07_OPERATING_MODE1, mode);
+}
+
+void RF22::setModeIdle()
+{
+ if (_mode != RF22_MODE_IDLE)
+ {
+ setMode(_idleMode);
+ _mode = RF22_MODE_IDLE;
+ }
+}
+
+void RF22::setModeRx()
+{
+ if (_mode != RF22_MODE_RX)
+ {
+ setMode(_idleMode | RF22_RXON);
+ _mode = RF22_MODE_RX;
+ }
+}
+
+void RF22::setModeTx()
+{
+ if (_mode != RF22_MODE_TX)
+ {
+ setMode(_idleMode | RF22_TXON);
+ _mode = RF22_MODE_TX;
+ }
+}
+
+void RF22::setTxPower(uint8_t power)
+{
+ spiWrite(RF22_REG_6D_TX_POWER, power);
+}
+
+// Sets registers from a canned modem configuration structure
+void RF22::setModemRegisters(ModemConfig* config)
+{
+ spiWrite(RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c);
+ spiWrite(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f);
+ spiBurstWrite(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6);
+ spiBurstWrite(RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3);
+ spiWrite(RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58);
+ spiWrite(RF22_REG_69_AGC_OVERRIDE1, config->reg_69);
+ spiBurstWrite(RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5);
+}
+
+// Set one of the canned FSK Modem configs
+// Returns true if its a valid choice
+boolean RF22::setModemConfig(ModemConfigChoice index)
+{
+ if (index > (sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
+ return false;
+
+ RF22::ModemConfig cfg;
+ memcpy(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig));
+ setModemRegisters(&cfg);
+
+ return true;
+}
+
+// REVISIT: top bit is in Header Control 2 0x33
+void RF22::setPreambleLength(uint8_t nibbles)
+{
+ spiWrite(RF22_REG_34_PREAMBLE_LENGTH, nibbles);
+}
+
+// Caution doesnt set sync word len in Header Control 2 0x33
+void RF22::setSyncWords(uint8_t* syncWords, uint8_t len)
+{
+ spiBurstWrite(RF22_REG_36_SYNC_WORD3, syncWords, len);
+}
+
+void RF22::clearRxBuf()
+{
+ _bufLen = 0;
+ _rxBufValid = false;
+}
+
+boolean RF22::available()
+{
+ setModeRx();
+ return _rxBufValid;
+}
+
+// Blocks until a valid message is received
+void RF22::waitAvailable()
+{
+ while (!available())
+ ;
+}
+
+// Blocks until a valid message is received or timeout expires
+// Return true if there is a message available
+bool RF22::waitAvailableTimeout(uint16_t timeout)
+{
+ Timer t;
+ t.start();
+ unsigned long endtime = t.read_ms() + timeout;
+ while (t.read_ms() < endtime)
+ if (available())
+ return true;
+ return false;
+}
+
+void RF22::waitPacketSent()
+{
+ while (!_txPacketSent)
+ ;
+}
+
+boolean RF22::recv(uint8_t* buf, uint8_t* len)
+{
+ if (!available())
+ return false;
+ if (*len > _bufLen)
+ *len = _bufLen;
+ memcpy(buf, _buf, *len);
+ clearRxBuf();
+ return true;
+}
+
+void RF22::clearTxBuf()
+{
+ _bufLen = 0;
+ _txBufSentIndex = 0;
+ _txPacketSent = false;
+}
+
+void RF22::startTransmit()
+{
+ sendNextFragment(); // Actually the first fragment
+ spiWrite(RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent
+ setModeTx(); // Start the transmitter, turns off the receiver
+}
+
+// Restart the trasnmission of a packet that had a problem
+void RF22::restartTransmit()
+{
+ _mode = RF22_MODE_IDLE;
+ _txBufSentIndex = 0;
+ _txPacketSent = false;
+// Serial.println("Restart");
+ startTransmit();
+}
+
+boolean RF22::send(uint8_t* data, uint8_t len)
+{
+ setModeIdle();
+ fillTxBuf(data, len);
+ startTransmit();
+ return true;
+}
+
+boolean RF22::fillTxBuf(uint8_t* data, uint8_t len)
+{
+ clearTxBuf();
+ return appendTxBuf(data, len);
+}
+
+boolean RF22::appendTxBuf(uint8_t* data, uint8_t len)
+{
+ if (((uint16_t)_bufLen + len) > RF22_MAX_MESSAGE_LEN)
+ return false;
+ memcpy(_buf + _bufLen, data, len);
+ _bufLen += len;
+ return true;
+}
+
+// Assumption: there is currently <= RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO
+void RF22::sendNextFragment()
+{
+ if (_txBufSentIndex < _bufLen)
+ {
+ // Some left to send
+ uint8_t len = _bufLen - _txBufSentIndex;
+ // But dont send too much
+ if (len > (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1))
+ len = (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1);
+ spiBurstWrite(RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
+ _txBufSentIndex += len;
+ }
+}
+
+// Assumption: there are at least RF22_RXFFAFULL_THRESHOLD in the RX FIFO
+// That means it should only be called after a RXAFULL interrupt
+void RF22::readNextFragment()
+{
+ if (((uint16_t)_bufLen + RF22_RXFFAFULL_THRESHOLD) > RF22_MAX_MESSAGE_LEN)
+ {
+ // Hmmm receiver overflow. Should never occur
+ return;
+ }
+ // Read the RF22_RXFFAFULL_THRESHOLD octets that should be there
+ spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RF22_RXFFAFULL_THRESHOLD);
+ _bufLen += RF22_RXFFAFULL_THRESHOLD;
+}
+
+// Clear the FIFOs
+void RF22::resetFifos()
+{
+ spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX | RF22_FFCLRTX);
+ spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
+}
+
+// Clear the Rx FIFO
+void RF22::resetRxFifo()
+{
+ spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX);
+ spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
+}
+
+// CLear the TX FIFO
+void RF22::resetTxFifo()
+{
+ spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRTX);
+ spiWrite(RF22_REG_08_OPERATING_MODE2, 0);
+}
+
+// Default implmentation does nothing. Override if you wish
+void RF22::handleExternalInterrupt()
+{
+}
+
+// Default implmentation does nothing. Override if you wish
+void RF22::handleWakeupTimerInterrupt()
+{
+}
+
+void RF22::setHeaderTo(uint8_t to)
+{
+ spiWrite(RF22_REG_3A_TRANSMIT_HEADER3, to);
+}
+
+void RF22::setHeaderFrom(uint8_t from)
+{
+ spiWrite(RF22_REG_3B_TRANSMIT_HEADER2, from);
+}
+
+void RF22::setHeaderId(uint8_t id)
+{
+ spiWrite(RF22_REG_3C_TRANSMIT_HEADER1, id);
+}
+
+void RF22::setHeaderFlags(uint8_t flags)
+{
+ spiWrite(RF22_REG_3D_TRANSMIT_HEADER0, flags);
+}
+
+uint8_t RF22::headerTo()
+{
+ return spiRead(RF22_REG_47_RECEIVED_HEADER3);
+}
+
+uint8_t RF22::headerFrom()
+{
+ return spiRead(RF22_REG_48_RECEIVED_HEADER2);
+}
+
+uint8_t RF22::headerId()
+{
+ return spiRead(RF22_REG_49_RECEIVED_HEADER1);
+}
+
+uint8_t RF22::headerFlags()
+{
+ return spiRead(RF22_REG_4A_RECEIVED_HEADER0);
+}
+
+uint8_t RF22::lastRssi()
+{
+ return _lastRssi;
+}
+
+void RF22::setPromiscuous(boolean promiscuous)
+{
+ spiWrite(RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff);
+}