Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of AdiSense1000 by
Diff: main.cpp
- Revision:
- 5:dbb2b71a59ed
- Parent:
- 3:3796776e2c27
- Child:
- 7:4dbae381f693
--- a/main.cpp Fri Aug 25 12:53:49 2017 +0000 +++ b/main.cpp Mon Sep 25 14:45:20 2017 +0000 @@ -1,7 +1,6 @@ -/*! +/* ****************************************************************************** - * @file: main.cpp - * @brief: + * file: main.cpp *----------------------------------------------------------------------------- * Copyright (c) 2017 Emutex Ltd. / Analog Devices, Inc. @@ -48,25 +47,50 @@ #include "mbed.h" #include "inc/adisense1000.h" -#define BITP_VALID_DATA (7) -#define SAMPLE_COUNT (10) +/*! + ****************************************************************************** + * @file: main.cpp + * @brief: Setup the following channels listed below to configure a burst of 5 + * cycles to occur every 30 seconds. + * The time allocated to each individual cycle is 3 seconds + */ -void setupCJC0(void); -void setupSENSOR0(void); -void setVoltage(void); -void printCalTable(void); +#define BITP_VALID_DATA (7) +#define SAMPLES_PER_CHANNEL (10) +#define NUM_CHANNELS (9) +#define CYCLE_TIME (3) +#define NUM_CYCLES_PER_FILL (5) +#define MULTI_CYCLE_FILL_INTERVAL (30) + +void setupCJC0(void); /* RTD 2-wire PT100 */ +void setupCJC1(void); /* RTD 2-wire PT100 */ +void setupSENSOR0(void); /* RTD 2-wire PT100 */ +void setupSENSOR1(void); /* Thermocouple Type-K (compensation: CJC1) */ +void setupSENSOR2(void); /* Thermocouple Type-T (compensation: CJC0) */ +void setupSENSOR3(void); /* Thermocouple Type-J (compensation: CJC0) */ +void setupVOLTAGE(void); /* Honeywell Pressure (HSCMRNN1.6BAAA3) */ +void setupCURRENT(void); /* Honeywell Pressure (PX2CN2XX100PACH) */ +void setupI2C0(void); /* Honeywell Humidity (HIH8000 Series) */ Serial pc(PA_11, PA_12, 115200); ADI_Channel_Config_t CJC0; +ADI_Channel_Config_t CJC1; ADI_Channel_Config_t SENSOR0; +ADI_Channel_Config_t SENSOR1; +ADI_Channel_Config_t SENSOR2; +ADI_Channel_Config_t SENSOR3; +ADI_Channel_Config_t VOLTAGE; +ADI_Channel_Config_t CURRENT; +ADI_Channel_Config_t I2C0; int main() { uint8_t chStatus = 0; uint16_t deviceID = 0; uint32_t rawSample = 0; - float temperature = 0; + float processed = 0; bool validSample = 0; + bool waitUntilReady = true; ADI_CORE_Status_t devStatus; ADI_SENSE_RESULT retValue; @@ -75,49 +99,109 @@ retValue = ADISense1000_Open(); pc.printf("Host - Device Comms Opened with return: %d\r\n", retValue); + pc.printf("Resetting ADI Sense 1000 device, please wait...\r\n"); + retValue = ADISense1000_Reset(waitUntilReady); + pc.printf("Reset device with return: %d\r\n", retValue); + retValue = ADISense1000_GetID(&deviceID); pc.printf("Read device ID 0x%lx with return %d\r\n", deviceID, retValue); retValue = ADISense1000_GetStatus(&devStatus); pc.printf("Read Status 0x%lx with return %d\r\n", devStatus, retValue); - retValue = ADISense1000_ConfigureModule(); + ADI_CORE_Mode_t modeReg; + modeReg.Conversion_Mode = CORE_MODE_MULTICYCLE; + modeReg.Drdy_Mode = CORE_MODE_DRDY_PER_FIFO_FILL; + + retValue = ADISense1000_ConfigureModule(modeReg); pc.printf("Configure Module with return %d\r\n", retValue); - printCalTable(); + ADI_CORE_Cycle_Control_t cycleControlReg; + cycleControlReg.Cycle_Time = CYCLE_TIME; + cycleControlReg.Cycle_Time_Units = CORE_CYCLE_CONTROL_SECONDS; + + ADI_CORE_Fifo_Num_Cycles_t fifoNumCyclesReg; + fifoNumCyclesReg.Fifo_Num_Cycles = NUM_CYCLES_PER_FILL; + + ADI_CORE_Multi_Cycle_Rate_t multiCycleRateReg; + multiCycleRateReg.Multi_Cycle_Rate = MULTI_CYCLE_FILL_INTERVAL; + + retValue = ADISense1000_ConfigureCycleIntervals(cycleControlReg, + fifoNumCyclesReg, + multiCycleRateReg); + pc.printf("Configure Cycle Intervals with return %d\r\n", retValue); setupCJC0(); pc.printf("\r\nStart CJC0 Channel Config \r\n"); retValue = ADISense1000_ConfigureChannel(ADI_SENSE_CJC0, &CJC0); pc.printf("Channel setup complete with return: %d\r\n", retValue); + setupCJC1(); + pc.printf("\r\nStart CJC1 Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_CJC1, &CJC1); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + setupSENSOR0(); pc.printf("\r\nStart SENSOR0 Channel Config \r\n"); retValue = ADISense1000_ConfigureChannel(ADI_SENSE_SENSOR_0, &SENSOR0); pc.printf("Channel setup complete with return: %d\r\n", retValue); - retValue = ADISense1000_StartMeasurement(CORE_COMMAND_CONVERT_WITH_RAW); + setupSENSOR1(); + pc.printf("\r\nStart SENSOR1 Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_SENSOR_1, &SENSOR1); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + + setupSENSOR2(); + pc.printf("\r\nStart SENSOR2 Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_SENSOR_2, &SENSOR2); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + + setupSENSOR3(); + pc.printf("\r\nStart SENSOR3 Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_SENSOR_3, &SENSOR3); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + + setupVOLTAGE(); + pc.printf("\r\nStart VOLTAGE Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_V_MEASURE, &VOLTAGE); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + + setupCURRENT(); + pc.printf("\r\nStart CURRENT Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_I_MEASURE, &CURRENT); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + + setupI2C0(); + pc.printf("\r\nStart I2C0 Channel Config \r\n"); + retValue = ADISense1000_ConfigureChannel(ADI_SENSE_DIG_SENSOR_0, &I2C0); + pc.printf("Channel setup complete with return: %d\r\n", retValue); + + ADI_CORE_Power_Config_t powerConfig; + + powerConfig.Power_Mode_ADC = 3; /* Full power */ + powerConfig.Power_Mode_MCU = 0; /* not yet defined */ + + retValue = ADISense1000_StartMeasurement(powerConfig, CORE_COMMAND_CONVERT_WITH_RAW); pc.printf("Measurement started with return: %d\r\n\r\n", retValue); + /* In multi-cycle mode, a burst of measurement cycles will be executed at cycle intervals, + and then the burst is repeated at the multi-cycle interval */ + while (true) { - while(!ADISense1000_SampleReady()) { - } + pc.printf("\r\n\r\nWaiting for next multi-cycle fill to complete...\r\n\r\n"); + /* Wait for the next cycle to complete */ + while(!ADISense1000_SampleReady()) { + } - for(uint8_t i=0; i<(SAMPLE_COUNT*2); i++) - { - /* Read data from the enabled channels */ - retValue = ADISense1000_GetData(&rawSample, &temperature, &chStatus); - validSample = (chStatus >> BITP_VALID_DATA)&0x01; - pc.printf("-%s- :: Sample # %2d Channel # %2d :: -%s- :: Raw %8d :: Temperature %.7f\r\n", - ((retValue>0) ? "ERROR" : "OK") , (i+1), (chStatus&0x0f), (validSample ? "VALID" : "INVALID"), rawSample, temperature); - } - - while (true) { - pc.printf("()\r"); - wait(1); - pc.printf("[]\r"); - wait(1); + for(unsigned i=0; i<(SAMPLES_PER_CHANNEL*NUM_CHANNELS*NUM_CYCLES_PER_FILL); i++) + { + /* Read data from the enabled channels */ + retValue = ADISense1000_GetData(&rawSample, &processed, &chStatus); + validSample = (chStatus >> BITP_VALID_DATA)&0x01; + pc.printf("-%s- :: Sample # %2d Channel # %2d :: -%s- :: Raw %8d :: Processed %.7f\r\n", + ((retValue>0) ? "ERROR" : "OK") , (i+1), (chStatus&0x0f), (validSample ? "VALID" : "INVALID"), rawSample, processed); + } } } @@ -125,12 +209,11 @@ void setupCJC0(void) { - CJC0.Count.Channel_Count = SAMPLE_COUNT - 1; + CJC0.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; CJC0.Count.Channel_Enable = 1; CJC0.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_RTD_2W_PT100; CJC0.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; - CJC0.Type.Sensor_Load_Defaults = 0; CJC0.Details.CJC_Publish = 1; CJC0.Details.Vbias = 0; @@ -141,53 +224,155 @@ CJC0.Excitation.IOUT_Excitation_Current = 4; /* 500uA */ CJC0.Excitation.IOUT0_Disable = 0; - CJC0.DigitalCoding.VALUE16 = 0; - CJC0.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; CJC0.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; } +void setupCJC1(void) +{ + CJC1.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + CJC1.Count.Channel_Enable = 1; + + CJC1.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_RTD_2W_PT100; + CJC1.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; + + CJC1.Details.CJC_Publish = 1; + CJC1.Details.Vbias = 0; + CJC1.Details.Reference_Buffer_Disable = 0; + CJC1.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT1; + CJC1.Details.PGA_Gain = 3; /* G=8 */ + + CJC1.Excitation.IOUT_Excitation_Current = 4; /* 500uA */ + CJC1.Excitation.IOUT0_Disable = 0; + + CJC1.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; + CJC1.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; +} + + void setupSENSOR0(void) { - SENSOR0.Count.Channel_Count = SAMPLE_COUNT - 1; + SENSOR0.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; SENSOR0.Count.Channel_Enable = 1; - SENSOR0.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_K; + SENSOR0.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_RTD_2W_PT100; SENSOR0.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; - SENSOR0.Type.Sensor_Load_Defaults = 0; - SENSOR0.Details.Vbias = 1; - SENSOR0.Details.Reference_Buffer_Disable = 1; - SENSOR0.Details.Compensation_Channel = 0; /* CJC0 */ - SENSOR0.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; - SENSOR0.Details.PGA_Gain = 5; /* G=32 */ + SENSOR0.Details.Vbias = 0; + SENSOR0.Details.Reference_Buffer_Disable = 0; + SENSOR0.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_RINT1; + SENSOR0.Details.PGA_Gain = 3; /* G=8 */ - SENSOR0.Excitation.VALUE8 = 0; - SENSOR0.DigitalCoding.VALUE16 = 0; + SENSOR0.Excitation.IOUT_Excitation_Current = 4; /* 500uA */ + SENSOR0.Excitation.IOUT0_Disable = 0; SENSOR0.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; SENSOR0.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; } -static float calDataBuffer[56 * 3]; -void printCalTable(void) + +void setupSENSOR1(void) +{ + SENSOR1.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + SENSOR1.Count.Channel_Enable = 1; + + SENSOR1.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_K; + SENSOR1.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; + + SENSOR1.Details.Vbias = 1; + SENSOR1.Details.Reference_Buffer_Disable = 1; + SENSOR1.Details.Compensation_Channel = 1; /* CJC1 */ + SENSOR1.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; + SENSOR1.Details.PGA_Gain = 5; /* G=32 */ + + SENSOR1.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; + SENSOR1.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; +} + + +void setupSENSOR2(void) { - ADI_SENSE_RESULT retValue; - unsigned dataLen, nRows, nColumns; + SENSOR2.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + SENSOR2.Count.Channel_Enable = 1; + + SENSOR2.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_T; + SENSOR2.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; + + SENSOR2.Details.Vbias = 1; + SENSOR2.Details.Reference_Buffer_Disable = 1; + SENSOR2.Details.Compensation_Channel = 0; /* CJC0 */ + SENSOR2.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; + SENSOR2.Details.PGA_Gain = 5; /* G=32 */ - retValue = ADISense1000_ReadCalTable(calDataBuffer, sizeof(calDataBuffer), - &dataLen, &nRows, &nColumns); - pc.printf("Cal table read complete with return: %d\r\n", retValue); + SENSOR2.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; + SENSOR2.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; +} + + +void setupSENSOR3(void) +{ + SENSOR3.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + SENSOR3.Count.Channel_Enable = 1; + + SENSOR3.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_THERMOCOUPLE_J; + SENSOR3.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; - pc.printf("Calibration Table:\r\n"); - pc.printf("%6s| %10s | %10s | %10s |\r\n", "index", "25", "-40", "85"); - for (unsigned row = 0; row < nRows; row++) - { - pc.printf("%6d", row); - for (unsigned col = 0; col < nColumns; col++) - pc.printf("| %10f ", calDataBuffer[(row * nColumns) + col]); - pc.printf("|\r\n"); - } + SENSOR3.Details.Vbias = 1; + SENSOR3.Details.Reference_Buffer_Disable = 1; + SENSOR3.Details.Compensation_Channel = 0; /* CJC0 */ + SENSOR3.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; + SENSOR3.Details.PGA_Gain = 5; /* G=32 */ + + SENSOR3.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; + SENSOR3.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; +} + + +void setupVOLTAGE(void) +{ + VOLTAGE.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + VOLTAGE.Count.Channel_Enable = 1; + + VOLTAGE.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_VOLTAGE_PRESSURE1; + VOLTAGE.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; + + VOLTAGE.Details.Vbias = 0; + VOLTAGE.Details.Reference_Buffer_Disable = 1; + VOLTAGE.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; + VOLTAGE.Details.PGA_Gain = 1; /* G=2 */ + + VOLTAGE.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; + VOLTAGE.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; +} + + +void setupCURRENT(void) +{ + CURRENT.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + CURRENT.Count.Channel_Enable = 1; + + CURRENT.Type.Sensor_Type = CORE_SENSOR_TYPE_SENSOR_CURRENT_PRESSURE1; + CURRENT.Type.Sensor_Category = CORE_SENSOR_TYPE_ANALOG; + + CURRENT.Details.Vbias = 0; + CURRENT.Details.Reference_Buffer_Disable = 1; + CURRENT.Details.Reference_Select = CORE_SENSOR_DETAILS_REF_INT; + CURRENT.Details.PGA_Gain = 1; /* G=2 */ + + CURRENT.FilterSelect.ADC_Filter_Type = CORE_FILTER_SELECT_FIR; + CURRENT.FilterSelect.ADC_FIR_Sel = 3; /* 25 SPS */; +} + + +void setupI2C0(void) +{ + I2C0.Count.Channel_Count = SAMPLES_PER_CHANNEL - 1; + I2C0.Count.Channel_Enable = 1; + + I2C0.Type.Sensor_Type = CORE_SENSOR_TYPE_I2C_PRESSURE1; + I2C0.Type.Sensor_Category = CORE_SENSOR_TYPE_I2C; + + I2C0.DigitalAddress.Digital_Sensor_Address = 0x27; }