mbed os rtos
targets/TARGET_STM/TARGET_STM32F2/pwmout_api.c
- Committer:
- calmantara186
- Date:
- 2018-02-22
- Revision:
- 1:2b6e8130a0ac
- Parent:
- 0:f269e3021894
File content as of revision 1:2b6e8130a0ac:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2016, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "pwmout_api.h" #if DEVICE_PWMOUT #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "PeripheralPins.h" static TIM_HandleTypeDef TimHandle; void pwmout_init(pwmout_t* obj, PinName pin) { // Get the peripheral name from the pin and assign it to the object obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); MBED_ASSERT(obj->pwm != (PWMName)NC); // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object uint32_t function = pinmap_function(pin, PinMap_PWM); MBED_ASSERT(function != (uint32_t)NC); obj->channel = STM_PIN_CHANNEL(function); obj->inverted = STM_PIN_INVERTED(function); // Enable TIM clock #if defined(TIM1_BASE) if (obj->pwm == PWM_1) __HAL_RCC_TIM1_CLK_ENABLE(); #endif #if defined(TIM2_BASE) if (obj->pwm == PWM_2) __HAL_RCC_TIM2_CLK_ENABLE(); #endif #if defined(TIM3_BASE) if (obj->pwm == PWM_3) __HAL_RCC_TIM3_CLK_ENABLE(); #endif #if defined(TIM4_BASE) if (obj->pwm == PWM_4) __HAL_RCC_TIM4_CLK_ENABLE(); #endif #if defined(TIM5_BASE) if (obj->pwm == PWM_5) __HAL_RCC_TIM5_CLK_ENABLE(); #endif #if defined(TIM8_BASE) if (obj->pwm == PWM_8) __HAL_RCC_TIM8_CLK_ENABLE(); #endif #if defined(TIM9_BASE) if (obj->pwm == PWM_9) __HAL_RCC_TIM9_CLK_ENABLE(); #endif #if defined(TIM10_BASE) if (obj->pwm == PWM_10) __HAL_RCC_TIM10_CLK_ENABLE(); #endif #if defined(TIM11_BASE) if (obj->pwm == PWM_11) __HAL_RCC_TIM11_CLK_ENABLE(); #endif #if defined(TIM12_BASE) if (obj->pwm == PWM_12) __HAL_RCC_TIM12_CLK_ENABLE(); #endif #if defined(TIM13_BASE) if (obj->pwm == PWM_13) __HAL_RCC_TIM13_CLK_ENABLE(); #endif #if defined(TIM14_BASE) if (obj->pwm == PWM_14) __HAL_RCC_TIM14_CLK_ENABLE(); #endif // Configure GPIO pinmap_pinout(pin, PinMap_PWM); obj->pin = pin; obj->period = 0; obj->pulse = 0; pwmout_period_us(obj, 20000); // 20 ms per default } void pwmout_free(pwmout_t* obj) { // Configure GPIO pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); } void pwmout_write(pwmout_t* obj, float value) { TIM_OC_InitTypeDef sConfig; int channel = 0; TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); if (value < (float)0.0) { value = 0.0; } else if (value > (float)1.0) { value = 1.0; } obj->pulse = (uint32_t)((float)obj->period * value); // Configure channels sConfig.OCMode = TIM_OCMODE_PWM1; sConfig.Pulse = obj->pulse; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfig.OCFastMode = TIM_OCFAST_DISABLE; sConfig.OCIdleState = TIM_OCIDLESTATE_RESET; sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET; switch (obj->channel) { case 1: channel = TIM_CHANNEL_1; break; case 2: channel = TIM_CHANNEL_2; break; case 3: channel = TIM_CHANNEL_3; break; case 4: channel = TIM_CHANNEL_4; break; default: return; } if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) { error("Cannot initialize PWM\n"); } if (obj->inverted) { HAL_TIMEx_PWMN_Start(&TimHandle, channel); } else { HAL_TIM_PWM_Start(&TimHandle, channel); } } float pwmout_read(pwmout_t* obj) { float value = 0; if (obj->period > 0) { value = (float)(obj->pulse) / (float)(obj->period); } return ((value > (float)1.0) ? (float)(1.0) : (value)); } void pwmout_period(pwmout_t* obj, float seconds) { pwmout_period_us(obj, seconds * 1000000.0f); } void pwmout_period_ms(pwmout_t* obj, int ms) { pwmout_period_us(obj, ms * 1000); } void pwmout_period_us(pwmout_t* obj, int us) { TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); RCC_ClkInitTypeDef RCC_ClkInitStruct; uint32_t PclkFreq; uint32_t APBxCLKDivider; float dc = pwmout_read(obj); __HAL_TIM_DISABLE(&TimHandle); // Get clock configuration // Note: PclkFreq contains here the Latency (not used after) HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq); // Get the PCLK and APBCLK divider related to the timer switch (obj->pwm) { // APB1 clock #if defined(TIM2_BASE) case PWM_2: #endif #if defined(TIM3_BASE) case PWM_3: #endif #if defined(TIM4_BASE) case PWM_4: #endif #if defined(TIM5_BASE) case PWM_5: #endif #if defined(TIM12_BASE) case PWM_12: #endif #if defined(TIM13_BASE) case PWM_13: #endif #if defined(TIM14_BASE) case PWM_14: #endif PclkFreq = HAL_RCC_GetPCLK1Freq(); APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider; break; // APB2 clock #if defined(TIM1_BASE) case PWM_1: #endif #if defined(TIM8_BASE) case PWM_8: #endif #if defined(TIM9_BASE) case PWM_9: #endif #if defined(TIM10_BASE) case PWM_10: #endif #if defined(TIM11_BASE) case PWM_11: #endif PclkFreq = HAL_RCC_GetPCLK2Freq(); APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider; break; default: return; } TimHandle.Init.Period = us - 1; // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx if (APBxCLKDivider == RCC_HCLK_DIV1) TimHandle.Init.Prescaler = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 us tick else TimHandle.Init.Prescaler = (uint16_t)((PclkFreq * 2) / 1000000) - 1; // 1 us tick TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) { error("Cannot initialize PWM\n"); } // Set duty cycle again pwmout_write(obj, dc); // Save for future use obj->period = us; __HAL_TIM_ENABLE(&TimHandle); } void pwmout_pulsewidth(pwmout_t* obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { pwmout_pulsewidth_us(obj, ms * 1000); } void pwmout_pulsewidth_us(pwmout_t* obj, int us) { float value = (float)us / (float)obj->period; pwmout_write(obj, value); } #endif