Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FastPWM mbed QEI biquadFilter HIDScope MODSERIAL
main.cpp@42:cef1b3187e4c, 2018-10-31 (annotated)
- Committer:
- efvanmarrewijk
- Date:
- Wed Oct 31 14:49:57 2018 +0000
- Revision:
- 42:cef1b3187e4c
- Parent:
- 40:1be9dfad0a10
!!Does not work
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
efvanmarrewijk | 16:720365110953 | 1 | // Inclusion of libraries |
efvanmarrewijk | 31:91ad5b188bd9 | 2 | #include "mbed.h" |
efvanmarrewijk | 31:91ad5b188bd9 | 3 | #include "FastPWM.h" |
efvanmarrewijk | 31:91ad5b188bd9 | 4 | #include "QEI.h" // Includes library for encoder |
efvanmarrewijk | 31:91ad5b188bd9 | 5 | #include "MODSERIAL.h" |
efvanmarrewijk | 31:91ad5b188bd9 | 6 | #include "HIDScope.h" |
efvanmarrewijk | 31:91ad5b188bd9 | 7 | #include "BiQuad.h" |
Ramonwaninge | 0:3ea1bbfbeaae | 8 | |
efvanmarrewijk | 14:e21cb701ccb8 | 9 | // Input |
efvanmarrewijk | 27:3430dfb4c9fb | 10 | AnalogIn pot1(A1); |
efvanmarrewijk | 27:3430dfb4c9fb | 11 | AnalogIn pot2(A2); |
efvanmarrewijk | 21:363271dcfe1f | 12 | InterruptIn button1(D0); |
efvanmarrewijk | 21:363271dcfe1f | 13 | InterruptIn button2(D1); |
efvanmarrewijk | 31:91ad5b188bd9 | 14 | InterruptIn emergencybutton(SW2); //The button SW2 on the K64F is the emergency button: if you press this, everything will abort as soon as possible |
efvanmarrewijk | 21:363271dcfe1f | 15 | |
efvanmarrewijk | 32:a5b411833d1e | 16 | DigitalIn pin8(D8); // Encoder 1 B |
efvanmarrewijk | 32:a5b411833d1e | 17 | DigitalIn pin9(D9); // Encoder 1 A |
efvanmarrewijk | 32:a5b411833d1e | 18 | DigitalIn pin10(D10); // Encoder 2 B |
efvanmarrewijk | 32:a5b411833d1e | 19 | DigitalIn pin11(D11); // Encoder 2 A |
efvanmarrewijk | 32:a5b411833d1e | 20 | DigitalIn pin12(D12); // Encoder 3 B |
efvanmarrewijk | 32:a5b411833d1e | 21 | DigitalIn pin13(D13); // Encoder 3 A |
efvanmarrewijk | 9:65c52c1f4a57 | 22 | |
efvanmarrewijk | 14:e21cb701ccb8 | 23 | // Output |
efvanmarrewijk | 35:ba556f2d0fcc | 24 | DigitalOut pin2(D2); // Motor 3 direction = motor flip |
efvanmarrewijk | 35:ba556f2d0fcc | 25 | FastPWM pin3(D3); // Motor 3 pwm = motor flip |
efvanmarrewijk | 35:ba556f2d0fcc | 26 | DigitalOut pin4(D4); // Motor 2 direction = motor right |
efvanmarrewijk | 35:ba556f2d0fcc | 27 | FastPWM pin5(D5); // Motor 2 pwm = motor right |
efvanmarrewijk | 35:ba556f2d0fcc | 28 | FastPWM pin6(D6); // Motor 1 pwm = motor left |
efvanmarrewijk | 35:ba556f2d0fcc | 29 | DigitalOut pin7(D7); // Motor 1 direction = motor left |
efvanmarrewijk | 26:b48708ed51ff | 30 | |
efvanmarrewijk | 26:b48708ed51ff | 31 | DigitalOut greenled(LED_GREEN,1); |
efvanmarrewijk | 26:b48708ed51ff | 32 | DigitalOut redled(LED_RED,1); |
efvanmarrewijk | 26:b48708ed51ff | 33 | DigitalOut blueled(LED_BLUE,1); |
Ramonwaninge | 2:d8a552d1d33a | 34 | |
efvanmarrewijk | 16:720365110953 | 35 | // Utilisation of libraries |
efvanmarrewijk | 16:720365110953 | 36 | MODSERIAL pc(USBTX, USBRX); |
efvanmarrewijk | 35:ba556f2d0fcc | 37 | QEI Encoderl(D9,D8,NC,4200); // Counterclockwise motor rotation is the positive direction |
efvanmarrewijk | 39:dcf3e5019a63 | 38 | QEI Encoderr(D10,D11,NC,4200); // Counterclockwise motor rotation is the positive direction |
efvanmarrewijk | 35:ba556f2d0fcc | 39 | QEI Encoderf(D13,D12,NC,4200); // Counterclockwise motor rotation is the positive direction |
efvanmarrewijk | 20:695140b8db2f | 40 | Ticker motor; |
efvanmarrewijk | 24:d255752065d1 | 41 | Ticker encoders; |
efvanmarrewijk | 9:65c52c1f4a57 | 42 | |
efvanmarrewijk | 16:720365110953 | 43 | // Global variables |
efvanmarrewijk | 32:a5b411833d1e | 44 | const float pi = 3.14159265358979f; |
efvanmarrewijk | 32:a5b411833d1e | 45 | float u3 = 0.0f; // Normalised variable for the movement of motor 3 |
efvanmarrewijk | 32:a5b411833d1e | 46 | const float fCountsRad = 4200.0f; |
efvanmarrewijk | 42:cef1b3187e4c | 47 | const float dt = 0.01f; |
efvanmarrewijk | 16:720365110953 | 48 | |
efvanmarrewijk | 16:720365110953 | 49 | // Functions |
efvanmarrewijk | 32:a5b411833d1e | 50 | void Emergency() // Emgergency, if SW2 on biorobotics is pressed, everything will instantly abort and a red light goes on |
efvanmarrewijk | 32:a5b411833d1e | 51 | { greenled = 1; // Red light on |
efvanmarrewijk | 30:c4a3e868ef04 | 52 | blueled = 1; |
efvanmarrewijk | 30:c4a3e868ef04 | 53 | redled = 0; |
efvanmarrewijk | 32:a5b411833d1e | 54 | pin3 = 0; // All motor forces to zero |
efvanmarrewijk | 30:c4a3e868ef04 | 55 | pin5 = 0; |
efvanmarrewijk | 30:c4a3e868ef04 | 56 | pin6 = 0; |
efvanmarrewijk | 32:a5b411833d1e | 57 | exit (0); // Abort mission!! |
efvanmarrewijk | 30:c4a3e868ef04 | 58 | } |
efvanmarrewijk | 30:c4a3e868ef04 | 59 | |
efvanmarrewijk | 31:91ad5b188bd9 | 60 | // Subfunctions |
efvanmarrewijk | 35:ba556f2d0fcc | 61 | int Countslinput() // Gets the counts from encoder 1 |
efvanmarrewijk | 35:ba556f2d0fcc | 62 | { int countsl; |
efvanmarrewijk | 35:ba556f2d0fcc | 63 | countsl = Encoderl.getPulses(); |
efvanmarrewijk | 35:ba556f2d0fcc | 64 | return countsl; |
efvanmarrewijk | 27:3430dfb4c9fb | 65 | } |
efvanmarrewijk | 35:ba556f2d0fcc | 66 | int Countsrinput() // Gets the counts from encoder 2 |
efvanmarrewijk | 35:ba556f2d0fcc | 67 | { int countsr; |
efvanmarrewijk | 35:ba556f2d0fcc | 68 | countsr = Encoderr.getPulses(); |
efvanmarrewijk | 35:ba556f2d0fcc | 69 | return countsr; |
efvanmarrewijk | 27:3430dfb4c9fb | 70 | } |
efvanmarrewijk | 35:ba556f2d0fcc | 71 | int Countsfinput() // Gets the counts from encoder 3 |
efvanmarrewijk | 35:ba556f2d0fcc | 72 | { int countsf; |
efvanmarrewijk | 35:ba556f2d0fcc | 73 | countsf = Encoderf.getPulses(); |
efvanmarrewijk | 35:ba556f2d0fcc | 74 | return countsf; |
efvanmarrewijk | 27:3430dfb4c9fb | 75 | } |
efvanmarrewijk | 27:3430dfb4c9fb | 76 | |
efvanmarrewijk | 32:a5b411833d1e | 77 | float CurrentAngle(float counts) // Calculates the current angle of the motor (between -2*pi to 2*pi) based on the counts from the encoder |
efvanmarrewijk | 32:a5b411833d1e | 78 | { float angle = ((float)counts*2.0f*pi)/fCountsRad; |
efvanmarrewijk | 32:a5b411833d1e | 79 | while (angle > 2.0f*pi) |
efvanmarrewijk | 32:a5b411833d1e | 80 | { angle = angle-2.0f*pi; |
efvanmarrewijk | 27:3430dfb4c9fb | 81 | } |
efvanmarrewijk | 32:a5b411833d1e | 82 | while (angle < -2.0f*pi) |
efvanmarrewijk | 32:a5b411833d1e | 83 | { angle = angle+2.0f*pi; |
efvanmarrewijk | 30:c4a3e868ef04 | 84 | } |
efvanmarrewijk | 30:c4a3e868ef04 | 85 | return angle; |
efvanmarrewijk | 27:3430dfb4c9fb | 86 | } |
efvanmarrewijk | 27:3430dfb4c9fb | 87 | |
efvanmarrewijk | 32:a5b411833d1e | 88 | float ErrorCalc(float refvalue,float CurAngle) // Calculates the error of the system, based on the current angle and the reference value |
efvanmarrewijk | 32:a5b411833d1e | 89 | { float error = refvalue - CurAngle; |
efvanmarrewijk | 30:c4a3e868ef04 | 90 | return error; |
efvanmarrewijk | 30:c4a3e868ef04 | 91 | } |
efvanmarrewijk | 30:c4a3e868ef04 | 92 | |
efvanmarrewijk | 32:a5b411833d1e | 93 | float Kpcontr() // Sets the Kp value for the controller dependent on the scaled angle of potmeter 2 |
efvanmarrewijk | 32:a5b411833d1e | 94 | { float Kp = 20.0f*pot2; |
efvanmarrewijk | 30:c4a3e868ef04 | 95 | return Kp; |
efvanmarrewijk | 30:c4a3e868ef04 | 96 | } |
efvanmarrewijk | 30:c4a3e868ef04 | 97 | |
efvanmarrewijk | 32:a5b411833d1e | 98 | float Kdcontr() // Sets the Kd value for the controller dependent on the scaled angle of potmeter 1 |
efvanmarrewijk | 32:a5b411833d1e | 99 | { float Kd = 0.25f*pot1; |
efvanmarrewijk | 30:c4a3e868ef04 | 100 | return Kd; |
efvanmarrewijk | 30:c4a3e868ef04 | 101 | } |
efvanmarrewijk | 31:91ad5b188bd9 | 102 | |
efvanmarrewijk | 42:cef1b3187e4c | 103 | float PIDcontrollerl(float refvalue,float CurAngle) // PID controller for the motors, based on the reference value and the current angle of the motor |
efvanmarrewijk | 30:c4a3e868ef04 | 104 | { //float Kp = Kpcontr(); |
efvanmarrewijk | 39:dcf3e5019a63 | 105 | float Kp = 10.42f; |
efvanmarrewijk | 32:a5b411833d1e | 106 | float Ki = 1.02f; |
efvanmarrewijk | 39:dcf3e5019a63 | 107 | float Kd = 0.0493f; |
efvanmarrewijk | 30:c4a3e868ef04 | 108 | //float Kd = Kdcontr(); |
efvanmarrewijk | 32:a5b411833d1e | 109 | float error = ErrorCalc(refvalue,CurAngle); |
efvanmarrewijk | 30:c4a3e868ef04 | 110 | static float error_integral = 0.0; |
efvanmarrewijk | 30:c4a3e868ef04 | 111 | static float error_prev = error; // initialization with this value only done once! |
efvanmarrewijk | 42:cef1b3187e4c | 112 | static BiQuad PIDfilterl(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); |
efvanmarrewijk | 27:3430dfb4c9fb | 113 | // Proportional part: |
efvanmarrewijk | 30:c4a3e868ef04 | 114 | float u_k = Kp * error; |
efvanmarrewijk | 27:3430dfb4c9fb | 115 | // Integral part |
efvanmarrewijk | 42:cef1b3187e4c | 116 | //error_integral = error_integral + error * dt; |
efvanmarrewijk | 42:cef1b3187e4c | 117 | //float u_i = Ki * error_integral; |
efvanmarrewijk | 30:c4a3e868ef04 | 118 | // Derivative part |
efvanmarrewijk | 30:c4a3e868ef04 | 119 | float error_derivative = (error - error_prev)/dt; |
efvanmarrewijk | 42:cef1b3187e4c | 120 | float filtered_error_derivative = PIDfilterl.step(error_derivative); |
efvanmarrewijk | 30:c4a3e868ef04 | 121 | float u_d = Kd * filtered_error_derivative; |
efvanmarrewijk | 30:c4a3e868ef04 | 122 | error_prev = error; |
efvanmarrewijk | 27:3430dfb4c9fb | 123 | // Sum all parts and return it |
efvanmarrewijk | 42:cef1b3187e4c | 124 | pc.printf ("l\t u_p = %f \tu_i = %f\t u_d = %f\t\t ",u_k,0,u_d); |
efvanmarrewijk | 42:cef1b3187e4c | 125 | return u_k + u_d; |
efvanmarrewijk | 27:3430dfb4c9fb | 126 | } |
efvanmarrewijk | 30:c4a3e868ef04 | 127 | |
efvanmarrewijk | 35:ba556f2d0fcc | 128 | float DesiredAnglel() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1 |
efvanmarrewijk | 42:cef1b3187e4c | 129 | { return (pot1*2.0f*pi)-pi; |
efvanmarrewijk | 42:cef1b3187e4c | 130 | //return angle; |
efvanmarrewijk | 30:c4a3e868ef04 | 131 | } |
efvanmarrewijk | 35:ba556f2d0fcc | 132 | |
efvanmarrewijk | 35:ba556f2d0fcc | 133 | float DesiredAngler() // Sets the desired angle for the controller dependent on the scaled angle of potmeter 1 |
efvanmarrewijk | 42:cef1b3187e4c | 134 | { return (pot2*2.0f*pi)-pi; |
efvanmarrewijk | 42:cef1b3187e4c | 135 | //return angle; |
efvanmarrewijk | 35:ba556f2d0fcc | 136 | } |
efvanmarrewijk | 35:ba556f2d0fcc | 137 | |
efvanmarrewijk | 35:ba556f2d0fcc | 138 | float* turnl() // main function for movement of motor 1, all above functions with an extra tab are called |
efvanmarrewijk | 26:b48708ed51ff | 139 | { |
efvanmarrewijk | 35:ba556f2d0fcc | 140 | //float refvalue = pi/4.0f; |
efvanmarrewijk | 35:ba556f2d0fcc | 141 | float refvalue = DesiredAnglel(); // different minus sign per motor |
efvanmarrewijk | 35:ba556f2d0fcc | 142 | int counts = Countslinput(); // different encoder pins per motor |
efvanmarrewijk | 35:ba556f2d0fcc | 143 | float currentangle = CurrentAngle(counts); // different minus sign per motor |
efvanmarrewijk | 42:cef1b3187e4c | 144 | float PIDcontrol = PIDcontrollerl(refvalue,currentangle); // same for every motor |
efvanmarrewijk | 35:ba556f2d0fcc | 145 | float error = ErrorCalc(refvalue,currentangle); // same for every motor |
efvanmarrewijk | 30:c4a3e868ef04 | 146 | |
efvanmarrewijk | 42:cef1b3187e4c | 147 | //pin6 = fabs(PIDcontrol); // different pins for every motor |
efvanmarrewijk | 35:ba556f2d0fcc | 148 | pin7 = PIDcontrol > 0.0f; // different pins for every motor |
efvanmarrewijk | 31:91ad5b188bd9 | 149 | //pin6 = 0.4+0.6*fabs(PIDcontr); //geschaald |
efvanmarrewijk | 31:91ad5b188bd9 | 150 | //pin6 = fabs(PIDcontr)/pi; |
efvanmarrewijk | 42:cef1b3187e4c | 151 | //pc.printf(" countsl: %i currentanglel: %f PIDl: %f errorl: %f",counts,currentangle,PIDcontrol,error); |
efvanmarrewijk | 33:ec07e11676ec | 152 | float* outcome; |
efvanmarrewijk | 35:ba556f2d0fcc | 153 | float turninfo[3] = {error, refvalue, currentangle}; |
efvanmarrewijk | 35:ba556f2d0fcc | 154 | //float ( &fillarr( float (&outcome)[3] ) )[3] { // no decay; argument must be size 3 |
efvanmarrewijk | 35:ba556f2d0fcc | 155 | outcome = turninfo; |
efvanmarrewijk | 35:ba556f2d0fcc | 156 | return outcome; |
efvanmarrewijk | 35:ba556f2d0fcc | 157 | } |
efvanmarrewijk | 35:ba556f2d0fcc | 158 | |
efvanmarrewijk | 42:cef1b3187e4c | 159 | float PIDcontrollerr(float refvalue,float CurAngle) // PID controller for the motors, based on the reference value and the current angle of the motor |
efvanmarrewijk | 42:cef1b3187e4c | 160 | { //float Kp = Kpcontr(); |
efvanmarrewijk | 42:cef1b3187e4c | 161 | float Kp = 10.42f; |
efvanmarrewijk | 42:cef1b3187e4c | 162 | float Ki = 1.02f; |
efvanmarrewijk | 42:cef1b3187e4c | 163 | float Kd = 0.0493f; |
efvanmarrewijk | 42:cef1b3187e4c | 164 | //float Kd = Kdcontr(); |
efvanmarrewijk | 42:cef1b3187e4c | 165 | float error = ErrorCalc(refvalue,CurAngle); |
efvanmarrewijk | 42:cef1b3187e4c | 166 | static float error_integral = 0.0; |
efvanmarrewijk | 42:cef1b3187e4c | 167 | static float error_prev = error; // initialization with this value only done once! |
efvanmarrewijk | 42:cef1b3187e4c | 168 | static BiQuad PIDfilterr(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); |
efvanmarrewijk | 42:cef1b3187e4c | 169 | // Proportional part: |
efvanmarrewijk | 42:cef1b3187e4c | 170 | float u_k = Kp * error; |
efvanmarrewijk | 42:cef1b3187e4c | 171 | // Integral part |
efvanmarrewijk | 42:cef1b3187e4c | 172 | error_integral = error_integral + error * dt; |
efvanmarrewijk | 42:cef1b3187e4c | 173 | float u_i = Ki * error_integral; |
efvanmarrewijk | 42:cef1b3187e4c | 174 | // Derivative part |
efvanmarrewijk | 42:cef1b3187e4c | 175 | float error_derivative = (error - error_prev)/dt; |
efvanmarrewijk | 42:cef1b3187e4c | 176 | float filtered_error_derivative = PIDfilterr.step(error_derivative); |
efvanmarrewijk | 42:cef1b3187e4c | 177 | float u_d = Kd * filtered_error_derivative; |
efvanmarrewijk | 42:cef1b3187e4c | 178 | error_prev = error; |
efvanmarrewijk | 42:cef1b3187e4c | 179 | // Sum all parts and return it |
efvanmarrewijk | 42:cef1b3187e4c | 180 | //pc.printf ("Kp = %f Kd = %f",Kp,Kd); |
efvanmarrewijk | 42:cef1b3187e4c | 181 | pc.printf ("r\t u_p = %f \tu_i = %f\t u_d = %f\r\n",u_k,u_i,u_d); |
efvanmarrewijk | 42:cef1b3187e4c | 182 | return u_k + u_d; |
efvanmarrewijk | 42:cef1b3187e4c | 183 | } |
efvanmarrewijk | 42:cef1b3187e4c | 184 | |
efvanmarrewijk | 35:ba556f2d0fcc | 185 | float* turnr() // main function for movement of motor 1, all above functions with an extra tab are called |
efvanmarrewijk | 35:ba556f2d0fcc | 186 | { |
efvanmarrewijk | 35:ba556f2d0fcc | 187 | //float refvalue = pi/4.0f; |
efvanmarrewijk | 35:ba556f2d0fcc | 188 | float refvalue = DesiredAngler(); // different minus sign per motor |
efvanmarrewijk | 35:ba556f2d0fcc | 189 | int counts = Countsrinput(); // different encoder pins per motor |
efvanmarrewijk | 35:ba556f2d0fcc | 190 | float currentangle = CurrentAngle(counts); // different minus sign per motor |
efvanmarrewijk | 42:cef1b3187e4c | 191 | float PIDcontrol = PIDcontrollerr(refvalue,currentangle); // same for every motor |
efvanmarrewijk | 35:ba556f2d0fcc | 192 | float error = ErrorCalc(refvalue,currentangle); // same for every motor |
efvanmarrewijk | 35:ba556f2d0fcc | 193 | |
efvanmarrewijk | 42:cef1b3187e4c | 194 | //pin5 = fabs(PIDcontrol); // different pins for every motor |
efvanmarrewijk | 37:c61d7768c18a | 195 | pin4 = PIDcontrol > 0.0f; // different pins for every motor |
efvanmarrewijk | 35:ba556f2d0fcc | 196 | //pin6 = 0.4+0.6*fabs(PIDcontr); //geschaald |
efvanmarrewijk | 35:ba556f2d0fcc | 197 | //pin6 = fabs(PIDcontr)/pi; |
efvanmarrewijk | 35:ba556f2d0fcc | 198 | //pc.printf(" error: %f ref: %f angle: %f \r\n",error,refvalue,currentangle); |
efvanmarrewijk | 42:cef1b3187e4c | 199 | //pc.printf(" countsr: %i currentangler: %f PIDr: %f errorr: %f\r\n",counts,currentangle,PIDcontrol,error); |
efvanmarrewijk | 35:ba556f2d0fcc | 200 | float* outcome; |
efvanmarrewijk | 35:ba556f2d0fcc | 201 | float turninfo[3] = {error, refvalue, currentangle}; |
efvanmarrewijk | 33:ec07e11676ec | 202 | //float ( &fillarr( float (&outcome)[3] ) )[3] { // no decay; argument must be size 3 |
efvanmarrewijk | 33:ec07e11676ec | 203 | outcome = turninfo; |
efvanmarrewijk | 33:ec07e11676ec | 204 | return outcome; |
efvanmarrewijk | 18:ca084c362855 | 205 | } |
efvanmarrewijk | 25:76e9e5597416 | 206 | |
efvanmarrewijk | 32:a5b411833d1e | 207 | float ActualPosition(int counts, int offsetcounts) // After calibration, this function is used to return the counts (and thus the angle of the system) to 0 |
efvanmarrewijk | 32:a5b411833d1e | 208 | { float MotorPosition = - (counts - offsetcounts) / fCountsRad; |
efvanmarrewijk | 25:76e9e5597416 | 209 | // minus sign to correct for direction convention |
efvanmarrewijk | 32:a5b411833d1e | 210 | return MotorPosition; |
efvanmarrewijk | 25:76e9e5597416 | 211 | } |
efvanmarrewijk | 11:3efd6a324f16 | 212 | |
efvanmarrewijk | 16:720365110953 | 213 | // Main program |
efvanmarrewijk | 11:3efd6a324f16 | 214 | int main() |
efvanmarrewijk | 18:ca084c362855 | 215 | { |
efvanmarrewijk | 26:b48708ed51ff | 216 | pc.baud(115200); |
efvanmarrewijk | 32:a5b411833d1e | 217 | pin3.period_us(15); // If you give a period on one pin, c++ gives all pins this period |
efvanmarrewijk | 31:91ad5b188bd9 | 218 | |
efvanmarrewijk | 33:ec07e11676ec | 219 | //float motoroutcome1 = motor.attach(turn1,dt); |
efvanmarrewijk | 33:ec07e11676ec | 220 | |
efvanmarrewijk | 26:b48708ed51ff | 221 | emergencybutton.rise(Emergency); //If the button is pressed, stop program |
efvanmarrewijk | 37:c61d7768c18a | 222 | |
efvanmarrewijk | 16:720365110953 | 223 | while (true) |
efvanmarrewijk | 25:76e9e5597416 | 224 | { |
efvanmarrewijk | 40:1be9dfad0a10 | 225 | turnl(); |
efvanmarrewijk | 40:1be9dfad0a10 | 226 | turnr(); |
efvanmarrewijk | 40:1be9dfad0a10 | 227 | wait(dt); |
efvanmarrewijk | 40:1be9dfad0a10 | 228 | //float* motoroutcomel = turnl(); |
efvanmarrewijk | 40:1be9dfad0a10 | 229 | //float motorl1 = motoroutcomel[0]; |
efvanmarrewijk | 40:1be9dfad0a10 | 230 | //float motorl2 = motoroutcomel[1]; |
efvanmarrewijk | 40:1be9dfad0a10 | 231 | //float motorl3 = motoroutcomel[2]; |
efvanmarrewijk | 40:1be9dfad0a10 | 232 | //pc.printf(" errorl: %f refl: %f anglel: %f \r\n",motorl1,motorl2,motorl3); |
efvanmarrewijk | 33:ec07e11676ec | 233 | |
efvanmarrewijk | 40:1be9dfad0a10 | 234 | //float* motoroutcomer = turnr(); |
efvanmarrewijk | 40:1be9dfad0a10 | 235 | //float motorr1 = motoroutcomer[0]; |
efvanmarrewijk | 40:1be9dfad0a10 | 236 | //float motorr2 = motoroutcomer[1]; |
efvanmarrewijk | 40:1be9dfad0a10 | 237 | //float motorr3 = motoroutcomer[2]; |
efvanmarrewijk | 40:1be9dfad0a10 | 238 | //pc.printf(" errorr: %f refr: %f angler: %f \r\n",motorr1,motorr2,motorr3); |
efvanmarrewijk | 40:1be9dfad0a10 | 239 | |
efvanmarrewijk | 40:1be9dfad0a10 | 240 | //wait(dt); |
efvanmarrewijk | 33:ec07e11676ec | 241 | //wait(dt*10); |
efvanmarrewijk | 33:ec07e11676ec | 242 | //wait(printingfreq); --> still needs to be defined |
Ramonwaninge | 3:d39285fdd103 | 243 | } |
efvanmarrewijk | 30:c4a3e868ef04 | 244 | } |